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NAND flash memory has been successfully employed in mobile devices The goal of this experiment is to compare EPO against two well-known cache management algorithms LRU and BPLRU, and to understand
like PDAs and laptops. With recent advances in capacity, bandwidth, and the impact of write buffer size on the performance of the four algorithms including NoCache. We tested write buffer size from 4 MB to 32 MB with 48 | | Financial |  Financialt |
durability, NAND flash memory based Solid State Disk (SSD) is starting to elements. All simulation experiments are conducted in three stages sequentially: pre-processing, reshaping, and feeding. go7 ] — e | R | Fig. 6 demonstrates that the
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major challenges is that server applications normally demand an exceptional Write buffer capacity (MB) (8) - (4, 8,16, 32) We evaluate the four buffer management schemes by running 2l il NI ~ |R)|® (B [E7 | Financiall and Financial2 cases,
random 1/O performance, whereas current SSD performs poorly in random Number of elements (48) — (16, 32, 48, 64) simulations over three real system traces: Financiall, Financial2, and i HiNini e Increasing the number of elements
writes. To fundamentally boost random write performance, we propose a new Page size (KB) (4)-(1,2,4) TPC-C, which have been widely used in the literature. We selected Number of Elements Number of Elements does bring an apparent improvement in
write cache management scheme called EPO (element-level parallel Flash block size (page) (64) those three traces so that the EPO scheme can be evaluated under | Financialz  Financiaz either mean response time or
optimization), which reorders write requests so that element-level parallelism Element capacity (GB) (4) different degrees of access randomness. Since the simulation times in 7| o ; =m0l throughput (Fig. 6). After analyzing
within SSD can be effectively exploited. We evaluate EPO using a validated Flash SSD capacity (GB) (192) — (64, 128, 192, 256) our experiments are much shorter than the time spans of the traces, 5 _ g 28] = | the two traces we realized that the
disk simulator with realistic server-class traces. Experimental results show that Block erase latency (Js) (1500) we truncate each trace such that only the first 2, 0.65, and 2 million 5 04 _ £29) 4 | outcome Is expected because both
EPO noticeably outperforms traditional LRU algorithm and a state-of-the-art Page read latency (js) (25) write requests are included for Finanaicall, Financial2, and TPC-C, - BHiniuieE - |§) |kl Bl Bl | Financiall and Financial2 workloads
flash buffer management scheme BPLRU (block padding least recently used). Page write latency (us) (200) respectively. The main simulation parameters are shown in left table. | have noticeable temporal locality and
Chip transfer latency per byte (us) (0.025) Number of Elements Number of Elements spatial locality. As a result, a large
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‘ ’ ’ ’ | | e | Increases from 4 MB to 32 MB. This is because the write buffer is Figure 6. Scalability of the four schemes. and 10.2%, respectively. Compared

: : oo <o e e 2o aemy ¢ Srt]'” very smalll con3|dke|r|ng the large VOhIJmehOf requests _frorbn ftfhe with NoCache, LRU, and BPLRU, EPO on average improves throughput by 16.6%, 16.2%, and 59.1%,
Figure 1. Internal structure of a SSD with four elements. three server-class workloads. Consequently, the entire write butfer respectively. In TPC-C scenario, EPO significantly outperforms all three existing algorithms in terms of

" [EaNecasne B " [Ciecacne| even in its maximal size 32 MB is quickly filled out by arrival throughput. This is because EPO fully employs the element-level parallelism within an SSD.

requests, and thus, increasing write buffer size does not result in an
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(a) (b) (C) - - _ within SSD, which is a new avenue to solve the SSD random write problem. Comparing with adding
Figure 2. (a) Request processing flow; (b) internal structure of B; (c) states of _ e _ oo non-volatile RAM (NVRAM) buffer and enhanced FTL engine developing approaches, EPO has several
Q, in sequence (1, 2, 3, 2, 4, 3). Figure 4. Performance Impact of write buffer size on the four schemes. desired advantages. First, its hardware cost is low because of the limited size of RAM buffer used.
Second, it does not require any change in the FTL layer, and thus, is easy to be integrated into modern
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Output: R, a re-shaped write request set that is aware of the Fig. 2a illustrates the request g2 LRy _ 32| mmLRU | Experimental results demonstrate that EPO consistently outperforms a state-of-the-art write buffer

clement-lovel naralliom in 68D _ 0 We vary the size of a flash page from 1 KB to 4 KB. Fig. 5 " _
1. Clear Band R; k = 1; e = number of elements in SSD; processing flow of EPO. Similar to plots the performance of the four algorithms as functions of the size management scheme BPLRU. It also performs better than the traditional LRU algorithm.
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