Boosting Random Write Performance for
Enterprise Flash Storage Systems

The 27" IEEE Symposium on Massive Storage Systems and Technologies, 2011
Tao Xie and Janak Koshia, Department of Computer Science, San Diego State University, San Diego, CA 92182

Introduction PERFORMANCE EVALUATION PERFORMANCE EVALUATION

NAND flash memory has been successfully employed in mobile devices The goal of this experiment is to compare EPO against two well-known cache management algorithms LRU and BPLRU, and to understand
like PDAs and laptops. With recent advances in capacity, bandwidth, and the impact of write buffer size on the performance of the four algorithms including NoCache. We tested write buffer size from 4 MB to 32 MB with 48 | | Financial | Financialt |
durability, NAND flash memory based Solid State Disk (SSD) is starting to elements. All simulation experiments are conducted in three stages sequentially: pre-processing, reshaping, and feeding. go7] — e | R | Fig. 6 demonstrates that the
replace hard disk drive (HDD) in desktop systems. Integrating SSD into Eool | — _ B 28| - scalability of all algorithms including

enterprise storage systems, however, is much more challenging. One of the Parameter Value (Fixed) — (Varied) sos b @ g | E=x 4 | EPO is sensitive to the workloads. In
major challenges is that server applications normally demand an exceptional Write buffer capacity (MB) (8) - (4, 8,16, 32) We evaluate the four buffer management schemes by running 2l il NI ~ |R)|® (B [E7 | Financiall and Financial2 cases,
random 1/O performance, whereas current SSD performs poorly in random Number of elements (48) — (16, 32, 48, 64) simulations over three real system traces: Financiall, Financial2, and i HiNini e Increasing the number of elements
writes. To fundamentally boost random write performance, we propose a new Page size (KB) (4)-(1,2,4) TPC-C, which have been widely used in the literature. We selected Number of Elements Number of Elements does bring an apparent improvement in
write cache management scheme called EPO (element-level parallel Flash block size (page) (64) those three traces so that the EPO scheme can be evaluated under | Financialz Financiaz either mean response time or
optimization), which reorders write requests so that element-level parallelism Element capacity (GB) (4) different degrees of access randomness. Since the simulation times in 7| o ; =m0l throughput (Fig. 6). After analyzing
within SSD can be effectively exploited. We evaluate EPO using a validated Flash SSD capacity (GB) (192) — (64, 128, 192, 256) our experiments are much shorter than the time spans of the traces, 5 _ g 28] = | the two traces we realized that the
disk simulator with realistic server-class traces. Experimental results show that Block erase latency (Js) (1500) we truncate each trace such that only the first 2, 0.65, and 2 million 5 04 _ £29) 4 | outcome Is expected because both
EPO noticeably outperforms traditional LRU algorithm and a state-of-the-art Page read latency (js) (25) write requests are included for Finanaicall, Financial2, and TPC-C, - BHiniuieE - |§) |kl Bl Bl | Financiall and Financial2 workloads
flash buffer management scheme BPLRU (block padding least recently used). Page write latency (us) (200) respectively. The main simulation parameters are shown in left table. | have noticeable temporal locality and
Chip transfer latency per byte (us) (0.025) Number of Elements Number of Elements spatial locality. As a result, a large
GortrlLine Number of planes in an element (8) | _ TPee TPeC portion of requests concentrate on a
Elemert Enables{—'ﬂememn Ellemen“ Ellememz E|Iemem3 _l !:!NoCache_ : !:!NoCache: small IOgicaI space So that neWIy
([oimes (P 1 (e z) = = sl ., mEPo || g 28] - | added elements cannot receive enough
Financiall Financiall _ b Tj‘f” ?—T” .

- 2 e requests to share the entire load. In

|:Ii\loCache I . . |:|i\loCache |
=== ol | & 32| | _ _ g | Finanical2 case, compared with
e N 3 : | 2 2| | Fig. 4 shows that the mean response time of all four schemes |) NoCache and LRU, EPO on average

[4K Hegister] [4K Hegister] [4K Regiﬂer] [4K Hegisterl - . . .
=l == I = == 2> £ 6| _ QOes not noticeably change When_th_e size of the write buff(?r Number of Elements N Number of Elements reduces mean response time by 10.5%
‘ ’ ’ ’ | | e | Increases from 4 MB to 32 MB. This is because the write buffer is Figure 6. Scalability of the four schemes. and 10.2%, respectively. Compared

: : oo <o e e 2o aemy ¢ Srt]'” very smalll con3|dke|r|ng the large VOhIJmehOf requests _frorbn ftfhe with NoCache, LRU, and BPLRU, EPO on average improves throughput by 16.6%, 16.2%, and 59.1%,
Figure 1. Internal structure of a SSD with four elements. three server-class workloads. Consequently, the entire write butfer respectively. In TPC-C scenario, EPO significantly outperforms all three existing algorithms in terms of

" [EaNecasne B " [Ciecacne| even in its maximal size 32 MB is quickly filled out by arrival throughput. This is because EPO fully employs the element-level parallelism within an SSD.

requests, and thus, increasing write buffer size does not result in an
: ' ' = 24/ | apparent performance improvement. Still, EPO always outperforms
Methods and Al go rithm 3o I Sio 1 the three existing schemes in all cases for it exploits the element-
. 2] | | 1 level concurrency. One interesting observation from Fig. 4 is that Concl U SiOn
White Buffer B | Head 15l - L ? R increasing the size of write buffer can neither significantly reduce the
e ekl 1@ 3 2] A 3 rRee e TR T mean response time nor increase throughput. The rationale behind is In this paper, we address the issue of SSD random write performance in server applications. The
' — : that larger buffer size has little impact on a totally random access basic idea of EPO is to reshape write access pattern by dynamically grouping multiple buffered write

I Scenario 1 SCenatio 3 ' ' [INoCache i ' [INoCache

[
|
I
[
e | | Hea Tal | Head E o6l) _ 5 o2 =] | pattern. To understand the sensitivity of EPO to other parameters, we requests that target on distinct elements into one batch. EPO exploits the element-level concurrency to
:
[
|

S |

Data Linea{

Crriginal lﬁequem :

Pre-processar

Flazh JFequest
FTL

2, %4- 3 {e| 1 ///ﬁ 4-+% Boa | | ‘ ' ' also measured the performance of EPO when changing the number significantly shorten mean response time and improve throughput. Although EPO also employs an extra
| Scenario? Scenatio 4 ge N i of elements and page size. battery-backup RAM buffer inside SSD and reshapes write access pattern, it is orthogonal to current
' B | | _ | write requests buffering and reordering schemes because it seeks to exploit element-level parallelism
(a) (b) (C) - - _ within SSD, which is a new avenue to solve the SSD random write problem. Comparing with adding
Figure 2. (a) Request processing flow; (b) internal structure of B; (c) states of _ e _ oo non-volatile RAM (NVRAM) buffer and enhanced FTL engine developing approaches, EPO has several
Q, in sequence (1, 2, 3, 2, 4, 3). Figure 4. Performance Impact of write buffer size on the four schemes. desired advantages. First, its hardware cost is low because of the limited size of RAM buffer used.
Second, it does not require any change in the FTL layer, and thus, is easy to be integrated into modern

Input; P, @ pre-processed wiie request set; B, a e buffe , . Finanell e | . Financian — SSDs. Lastly, its low time complexity implies its potential to be implemented in real applications.

Output: R, a re-shaped write request set that is aware of the Fig. 2a illustrates the request g2 LRy _ 32| mmLRU | Experimental results demonstrate that EPO consistently outperforms a state-of-the-art write buffer

clement-lovel naralliom in 68D _ 0 We vary the size of a flash page from 1 KB to 4 KB. Fig. 5 " _
1. Clear Band R; k = 1; e = number of elements in SSD; processing flow of EPO. Similar to plots the performance of the four algorithms as functions of the size management scheme BPLRU. It also performs better than the traditional LRU algorithm.

of a flash page. Several important observations can be drawn from

Fig. 5. First of all, flash page size has a noticeable impact on the gl ﬁ [_ _ ACkn OWIGdgem ent

three existing algorithms. Recall that after the pre-processing stage ol aize o) ol aize o)

O erinT whose size is equal to the size of a each write request’s size Is configured to its closest multiples of flash | Financiaz . Fiancaz This work was sponsored by the US National Science Foundation under grants CNS-0845105,

0. end i flash memory page. Within B, EPO pages and each page Is 4 KB. Therefore, when flash page size 507 BiNoCache| | B NoCache| CNS-0834466, and CCF-0702781.

11. for each single-page write requestt, « T do S ' ! enlarges to 4 KB, each request needs to write multiple pages rather [-

s, Searth g in the cortesponding Queie QB maintains a free block pool and than a single page. Therefore, the response time of NoCache and Boa 0 Bn n e =2 | References
LRU increases. The mean response time of EPO, however, only go ' '

13. Search t;, in the corresponding queue Q; in B
slightly changes because it always splits each multiple-page request a B | | [1] N. Agrawal, V. Prabhakaran, T. Wobber, J. Davis, M. Manasse, and R. Panigrahy, “Design Tradeoffs

Rezhaped |Reguest

Fla=h Memoaory

create e queues from Q, to Q. in B

. for each requestr, < P do BPLRU, EPO only processes write

] = number of pages requested by r,

2

?1 Create a temporary array T with j cells requeStS' For read requeStS’ It Slmply
5. if j>1/*th tri Itiple- t*/ :
> ® reduest > & MutiPe-page reques forwards them to the FTL. The basic

Divide the request r, into j single-page write requests

and store them in T sequentially unit in the write buffer B is a block

. else

14. if the page requested by t,, is found in Q, mul“ple queues (F|g 2b) Assume

17. if there is no free space in B to qccommodate t, . - : - - - : | -, ! :

15, Euictthe requestat he (a0 R an SSD, Fig. 2b demonstrates how into multiple single-page requests (Step 6 in Fig.3). Second, larger oo cize o1my oo size o1my for SSD Performance,” Proc. USENIX Annual Technical Conference, pp. 57-70, 2008.

20. Change its arrival time to the arrival time of t, EPO manageS the fl‘ee bIOCk pOOI

21. end for

24, The free biock pool s ncrease by ¢ - blocks corresponding to one element. Fig. changes from 1 KB to 4 KB. The reason is that larger flash page = o e 2 28 [3] S. Boboila and P. Desnoyers, “Write Endurance in Flash Drives: Measurements and Analysis,” Proc.
o e o improves write efficiency and decreases the number of Dblock Boal Wt Wt Wt et Z20 - 8th USENIX Conference on File and Storage Technologies (FAST), 2010.

27: Delete the temporary array T Sequence(]" 2’ 3’ 2’ 4’ 3) - -

29, end for existing algorithms encounter large mean response times. 1) i | 1 resource conservation,” ACM Transactions on Storage, Vol. 1, No. 4, pp. 381-418, 2005.

' 32

12 ell‘\;zplace it with t,, and move t, to the head of Q, that there are only four e|ement5 in
19. Evict the request at the tail to R _ _ _ _ _
d the £ th each page size usually results in a higher throughput. In Financial 1 case, | ~ teee [2] M. Balakrishnanl, A. Kadav, V. Prabhakaran, and D. Malkhi, “Differential RAID: Rethinking RAID
23, Inserttatthe head of O antl the Tour qUetes With each queLe EPO increases the throughput by 4.9 times when flash page size 7| = H=tviled [el for SSD Reliability,” Proc. 5th ACM European Conf. Computer Systems, Paris, France, April 13-16, 2010
25. h=h+1 2¢ shows four different states of Q iIn
21. Delete erasures. Lastly, TPC-C workload is so intensive that all three g0 R] [4] L.P. Chang and T.W. Kuo, “Efficient management for large-scale flash-memory storage systems with
Cache size (MB) 2 Cache size (MB) [5] D. Narayanan, E. Thereska, A. Donnelly, S. Elnikety, and A. Rowstron, “Migrating Enterprise Storage
Figure 3. Algorithm of the EPO scheme. Figure 5. Performance impact of flash page size on the four schemes. to SSDs: Analysis of Tradeoffs,” Proc. 4th ACM European Conf. on Computer Systems, 2009.

	Slide Number 1

