
PERFORMANCE EVALUATION
 The goal of this experiment is to compare EPO against two well-known cache management algorithms LRU and BPLRU, and to understand
the impact of write buffer size on the performance of the four algorithms including NoCache. We tested write buffer size from 4 MB to 32 MB with 48
elements. All simulation experiments are conducted in three stages sequentially: pre-processing, reshaping, and feeding.

Conclusion

Acknowledgement

References

 Methods and Algorithm

PERFORMANCE EVALUATION

Boosting Random Write Performance for
Enterprise Flash Storage Systems

 The 27th IEEE Symposium on Massive Storage Systems and Technologies, 2011
Tao Xie and Janak Koshia, Department of Computer Science, San Diego State University, San Diego, CA 92182

U U2+

Introduction
 NAND flash memory has been successfully employed in mobile devices
like PDAs and laptops. With recent advances in capacity, bandwidth, and
durability, NAND flash memory based Solid State Disk (SSD) is starting to
replace hard disk drive (HDD) in desktop systems. Integrating SSD into
enterprise storage systems, however, is much more challenging. One of the
major challenges is that server applications normally demand an exceptional
random I/O performance, whereas current SSD performs poorly in random
writes. To fundamentally boost random write performance, we propose a new
write cache management scheme called EPO (element-level parallel
optimization), which reorders write requests so that element-level parallelism
within SSD can be effectively exploited. We evaluate EPO using a validated
disk simulator with realistic server-class traces. Experimental results show that
EPO noticeably outperforms traditional LRU algorithm and a state-of-the-art
flash buffer management scheme BPLRU (block padding least recently used).

Figure 1. Internal structure of a SSD with four elements.

Input: P, a pre-processed write request set; B, a write buffer
managed by the EPO scheme
Output: R, a re-shaped write request set that is aware of the
element-level parallelism in SSD
1. Clear B and R; k = 1; e = number of elements in SSD;
 create e queues from Q1 to Qe in B
2. for each request rk ∈ P do
3. j = number of pages requested by rk
4. Create a temporary array T with j cells
5. if j > 1 /* the request rk is a multiple-page request */
6. Divide the request rk into j single-page write requests
 and store them in T sequentially
7. else
8. Store rk in T
9. end if
10. h = 1
11. for each single-page write request th ∈ T do
12. i = the element number that th targets on and 1 ≤ i ≤ e
13. Search th in the corresponding queue Qi in B
14. if the page requested by th is found in Qi
15. Replace it with th and move th to the head of Qi
16. else
17. if there is no free space in B to accommodate th
18. for each queue from Q1 to Qe in B
19. Evict the request at the tail to R
20. Change its arrival time to the arrival time of th
21. end for
22. end if
23. Insert th at the head of Qi
24. The free block pool is increased by e - 1 blocks
24. end if
25. h = h + 1
26. end for
27. Delete the temporary array T
28. k = k + 1
29. end for

Parameter Value (Fixed) – (Varied)
Write buffer capacity (MB) (8) – (4, 8, 16, 32)

Number of elements (48) – (16, 32, 48, 64)
Page size (KB) (4) – (1, 2, 4)

Flash block size (page) (64)
Element capacity (GB) (4)

Flash SSD capacity (GB) (192) – (64, 128, 192, 256)
Block erase latency (µs) (1500)
Page read latency (µs) (25)
Page write latency (µs) (200)

Chip transfer latency per byte (μs) (0.025)
Number of planes in an element (8)

 We evaluate the four buffer management schemes by running
simulations over three real system traces: Financial1, Financial2, and
TPC-C, which have been widely used in the literature. We selected
those three traces so that the EPO scheme can be evaluated under
different degrees of access randomness. Since the simulation times in
our experiments are much shorter than the time spans of the traces,
we truncate each trace such that only the first 2, 0.65, and 2 million
write requests are included for Finanaical1, Financial2, and TPC-C,
respectively. The main simulation parameters are shown in left table.

 (a) (b) (c)
Figure 2. (a) Request processing flow; (b) internal structure of B; (c) states of
Q1 in sequence (1, 2, 3, 2, 4, 3).

 Fig. 2a illustrates the request
processing flow of EPO. Similar to
BPLRU, EPO only processes write
requests. For read requests, it simply
forwards them to the FTL. The basic
unit in the write buffer B is a block
whose size is equal to the size of a
flash memory page. Within B, EPO
maintains a free block pool and
multiple queues (Fig. 2b). Assume
that there are only four elements in
an SSD, Fig. 2b demonstrates how
EPO manages the free block pool
and the four queues with each queue
corresponding to one element. Fig.
2c shows four different states of Q in
sequence(1, 2, 3, 2, 4, 3).

Figure 3. Algorithm of the EPO scheme.

Figure 4. Performance impact of write buffer size on the four schemes.

Figure 5. Performance impact of flash page size on the four schemes.

Figure 6. Scalability of the four schemes.

 Fig. 4 shows that the mean response time of all four schemes
does not noticeably change when the size of the write buffer
increases from 4 MB to 32 MB. This is because the write buffer is
still very small considering the large volume of requests from the
three server-class workloads. Consequently, the entire write buffer
even in its maximal size 32 MB is quickly filled out by arrival
requests, and thus, increasing write buffer size does not result in an
apparent performance improvement. Still, EPO always outperforms
the three existing schemes in all cases for it exploits the element-
level concurrency. One interesting observation from Fig. 4 is that
increasing the size of write buffer can neither significantly reduce the
mean response time nor increase throughput. The rationale behind is
that larger buffer size has little impact on a totally random access
pattern. To understand the sensitivity of EPO to other parameters, we
also measured the performance of EPO when changing the number
of elements and page size.

 We vary the size of a flash page from 1 KB to 4 KB. Fig. 5
plots the performance of the four algorithms as functions of the size
of a flash page. Several important observations can be drawn from
Fig. 5. First of all, flash page size has a noticeable impact on the
three existing algorithms. Recall that after the pre-processing stage
each write request’s size is configured to its closest multiples of flash
pages and each page is 4 KB. Therefore, when flash page size
enlarges to 4 KB, each request needs to write multiple pages rather
than a single page. Therefore, the response time of NoCache and
LRU increases. The mean response time of EPO, however, only
slightly changes because it always splits each multiple-page request
into multiple single-page requests (Step 6 in Fig.3). Second, larger
page size usually results in a higher throughput. In Financial 1 case,
EPO increases the throughput by 4.9 times when flash page size
changes from 1 KB to 4 KB. The reason is that larger flash page
improves write efficiency and decreases the number of block
erasures. Lastly, TPC-C workload is so intensive that all three
existing algorithms encounter large mean response times.

 Fig. 6 demonstrates that the
scalability of all algorithms including
EPO is sensitive to the workloads. In
Financial1 and Financial2 cases,
increasing the number of elements
does bring an apparent improvement in
e i the r mean r e sponse t ime o r
throughput (Fig. 6). After analyzing
the two traces we realized that the
outcome is expected because both
Financial1 and Financial2 workloads
have noticeable temporal locality and
spatial locality. As a result, a large
portion of requests concentrate on a
small logical space so that newly
added elements cannot receive enough
requests to share the entire load. In
Finanical2 case, compared with
NoCache and LRU, EPO on average
reduces mean response time by 10.5%
and 10.2%, respectively. Compared

with NoCache, LRU, and BPLRU, EPO on average improves throughput by 16.6%, 16.2%, and 59.1%,
respectively. In TPC-C scenario, EPO significantly outperforms all three existing algorithms in terms of
throughput. This is because EPO fully employs the element-level parallelism within an SSD.

 In this paper, we address the issue of SSD random write performance in server applications. The
basic idea of EPO is to reshape write access pattern by dynamically grouping multiple buffered write
requests that target on distinct elements into one batch. EPO exploits the element-level concurrency to
significantly shorten mean response time and improve throughput. Although EPO also employs an extra
battery-backup RAM buffer inside SSD and reshapes write access pattern, it is orthogonal to current
write requests buffering and reordering schemes because it seeks to exploit element-level parallelism
within SSD, which is a new avenue to solve the SSD random write problem. Comparing with adding
non-volatile RAM (NVRAM) buffer and enhanced FTL engine developing approaches, EPO has several
desired advantages. First, its hardware cost is low because of the limited size of RAM buffer used.
Second, it does not require any change in the FTL layer, and thus, is easy to be integrated into modern
SSDs. Lastly, its low time complexity implies its potential to be implemented in real applications.
Experimental results demonstrate that EPO consistently outperforms a state-of-the-art write buffer
management scheme BPLRU. It also performs better than the traditional LRU algorithm.

 This work was sponsored by the US National Science Foundation under grants CNS-0845105,
CNS-0834466, and CCF-0702781.

[1] N. Agrawal, V. Prabhakaran, T. Wobber, J. Davis, M. Manasse, and R. Panigrahy, “Design Tradeoffs
for SSD Performance,” Proc. USENIX Annual Technical Conference, pp. 57-70, 2008.
[2] M. Balakrishnan1, A. Kadav, V. Prabhakaran, and D. Malkhi, “Differential RAID: Rethinking RAID
for SSD Reliability,” Proc. 5th ACM European Conf. Computer Systems, Paris, France, April 13-16, 2010
[3] S. Boboila and P. Desnoyers, “Write Endurance in Flash Drives: Measurements and Analysis,” Proc.
8th USENIX Conference on File and Storage Technologies (FAST), 2010.
[4] L.P. Chang and T.W. Kuo, “Efficient management for large-scale flash-memory storage systems with
resource conservation,” ACM Transactions on Storage, Vol. 1, No. 4, pp. 381-418, 2005.
[5] D. Narayanan, E. Thereska, A. Donnelly, S. Elnikety, and A. Rowstron, “Migrating Enterprise Storage
to SSDs: Analysis of Tradeoffs,” Proc. 4th ACM European Conf. on Computer Systems, 2009.

	Slide Number 1

