
PERFORMANCE EVALUATION 
 The goal of this experiment is to compare EPO against two well-known cache management algorithms LRU and BPLRU, and to understand 
the impact of write buffer size on the performance of the four algorithms including NoCache. We tested write buffer size from 4 MB to 32 MB with 48 
elements. All simulation experiments are conducted in three stages sequentially: pre-processing, reshaping, and feeding. 
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Introduction 
 NAND flash memory has been successfully employed in mobile devices 
like PDAs and laptops. With recent advances in capacity, bandwidth, and 
durability, NAND flash memory based Solid State Disk (SSD) is starting to 
replace hard disk drive (HDD) in desktop systems. Integrating SSD into 
enterprise storage systems, however, is much more challenging. One of the 
major challenges is that server applications normally demand an exceptional 
random I/O performance, whereas current SSD performs poorly in random 
writes. To fundamentally boost random write performance, we propose a new 
write cache management scheme called EPO (element-level parallel 
optimization), which reorders write requests so that element-level parallelism 
within SSD can be effectively exploited. We evaluate EPO using a validated 
disk simulator with realistic server-class traces. Experimental results show that 
EPO noticeably outperforms traditional LRU algorithm and a state-of-the-art 
flash buffer management scheme BPLRU (block padding least recently used). 
  

Figure 1. Internal structure of a SSD with four elements. 

Input: P, a pre-processed write request set; B, a write buffer 
managed by the EPO scheme 
Output: R, a re-shaped write request set that is aware of the 
element-level parallelism in SSD 
1.  Clear B and R; k = 1; e = number of elements in SSD; 
     create e queues from Q1 to Qe in B 
2.  for each request rk ∈ P do  
3.    j = number of pages requested by rk  
4.    Create a temporary array T with j cells 
5.    if  j > 1 /* the request rk is a multiple-page request */ 
6.       Divide the request rk into j single-page write requests  
         and store them in T sequentially 
7.    else 
8.       Store rk in T 
9.    end if  
10.   h = 1 
11.   for each single-page write request th ∈ T do 
12.      i = the element number that th targets on and 1 ≤ i ≤ e 
13.     Search th in the corresponding queue Qi in B  
14.     if the page requested by th is found in Qi 
15.       Replace it with th and move th to the head of Qi 
16.     else      
17.       if there is no free space in B to accommodate th 
18.          for each queue from Q1 to Qe in B                   
19.             Evict the request at the tail to R  
20.             Change its arrival time to the arrival time of th 
21.          end for  
22.       end if 
23.       Insert th at the head of Qi  
24.       The free block pool is increased by e - 1 blocks 
24.     end if 
25.     h = h + 1 
26.   end for 
27.   Delete the temporary array T   
28.   k = k + 1 
29. end for 

Parameter Value (Fixed) – (Varied) 
Write buffer capacity (MB) (8) – (4, 8, 16, 32) 

Number of elements (48) – (16, 32, 48, 64) 
Page size (KB) (4) – (1, 2, 4) 

Flash block size (page) (64) 
Element capacity (GB) (4) 

Flash SSD capacity (GB) (192) – (64, 128, 192, 256)  
Block erase latency  (µs) (1500) 
Page read latency  (µs) (25) 
Page write latency  (µs) (200) 

Chip transfer latency per byte (μs) (0.025) 
Number of planes in an element (8) 

 We evaluate the four buffer management schemes by running 
simulations over three real system traces: Financial1, Financial2, and 
TPC-C, which have been widely used in the literature. We selected 
those three traces so that the EPO scheme can be evaluated under 
different degrees of access randomness. Since the simulation times in 
our experiments are much shorter than the time spans of the traces, 
we truncate each trace such that only the first 2, 0.65, and 2 million 
write requests are included for Finanaical1, Financial2, and TPC-C, 
respectively. The main simulation parameters are shown in left table. 

       (a)                         (b)                                             (c)  
Figure 2. (a) Request processing flow; (b) internal structure of B; (c) states of 
Q1 in sequence (1, 2, 3, 2, 4, 3). 

 Fig. 2a illustrates the request 
processing flow of EPO. Similar to 
BPLRU, EPO only processes write 
requests. For read requests, it simply 
forwards them to the FTL. The basic 
unit in the write buffer B is a block  
whose size is equal to the size of a 
flash memory page. Within B, EPO 
maintains a free block pool and 
multiple queues (Fig. 2b). Assume 
that there are only four elements in 
an SSD, Fig. 2b demonstrates how 
EPO manages the free block pool 
and the four queues with each queue 
corresponding to one element. Fig. 
2c shows four different states of Q in 
sequence(1, 2, 3, 2, 4, 3). 

Figure 3. Algorithm of the EPO scheme. 

Figure 4. Performance impact of write buffer size on the four schemes. 

Figure 5. Performance impact of flash page size on the four schemes. 

Figure 6. Scalability of the four schemes. 

 Fig. 4 shows that the mean response time of all four schemes 
does not noticeably change when the size of the write buffer 
increases from 4 MB to 32 MB.  This is because the write buffer is 
still very small considering the large volume of requests from the 
three server-class workloads. Consequently, the entire write buffer 
even in its maximal size 32 MB is quickly filled out by arrival 
requests, and thus, increasing write buffer size does not result in an 
apparent performance improvement. Still, EPO always outperforms 
the three existing schemes in all cases for it exploits the element-
level concurrency. One interesting observation from Fig. 4 is that 
increasing the size of write buffer can neither significantly reduce the 
mean response time nor increase throughput. The rationale behind is 
that larger buffer size has little impact on a totally random access 
pattern. To understand the sensitivity of EPO to other parameters, we 
also measured the performance of EPO when changing the number 
of elements and page size. 

 We vary the size of a flash page from 1 KB to 4 KB. Fig. 5 
plots the performance of the four algorithms as functions of the size 
of a flash page. Several important observations can be drawn from 
Fig. 5. First of all, flash page size has a noticeable impact on the 
three existing algorithms. Recall that after the pre-processing stage 
each write request’s size is configured to its closest multiples of flash 
pages and each page is 4 KB. Therefore, when flash page size 
enlarges to 4 KB, each request needs to write multiple pages rather 
than a single page. Therefore, the response time of NoCache and 
LRU increases. The mean response time of EPO, however, only 
slightly changes because it always splits each multiple-page request 
into multiple single-page requests (Step 6 in Fig.3). Second, larger 
page size usually results in a higher throughput. In Financial 1 case, 
EPO increases the throughput by 4.9 times when flash page size 
changes from 1 KB to 4 KB. The reason is that larger flash page 
improves write efficiency and decreases the number of block 
erasures. Lastly, TPC-C workload is so intensive that all three 
existing algorithms encounter large mean response times. 

 Fig. 6 demonstrates that the 
scalability of all algorithms including 
EPO is sensitive to the workloads. In 
Financial1 and Financial2 cases, 
increasing the number of elements 
does bring an apparent improvement in 
e i the r  mean  r e sponse  t ime  o r 
throughput (Fig. 6). After analyzing 
the two traces we realized that the 
outcome is expected because both 
Financial1 and Financial2 workloads 
have noticeable temporal locality and 
spatial locality. As a result, a large 
portion of requests concentrate on a 
small logical space so that newly 
added elements cannot receive enough 
requests to share the entire load. In 
Finanical2 case, compared with 
NoCache and LRU, EPO on average 
reduces mean response time by 10.5% 
and 10.2%, respectively. Compared 

with NoCache, LRU, and BPLRU, EPO on average improves throughput by 16.6%, 16.2%, and 59.1%, 
respectively. In TPC-C scenario, EPO significantly outperforms all three existing algorithms in terms of 
throughput. This is because EPO fully employs the element-level parallelism within an SSD. 

 In this paper, we address the issue of SSD random write performance in server applications. The 
basic idea of EPO is to reshape write access pattern by dynamically grouping multiple buffered write 
requests that target on distinct elements into one batch. EPO exploits the element-level concurrency to 
significantly shorten mean response time and improve throughput. Although EPO also employs an extra 
battery-backup RAM buffer inside SSD and reshapes write access pattern, it is orthogonal to current 
write requests buffering and reordering schemes because it seeks to exploit element-level parallelism 
within SSD, which is a new avenue to solve the SSD random write problem.  Comparing with adding 
non-volatile RAM (NVRAM) buffer and enhanced FTL engine developing approaches, EPO has several 
desired advantages. First, its hardware cost is low because of the limited size of RAM buffer used.  
Second, it does not require any change in the FTL layer, and thus, is easy to be integrated into modern 
SSDs. Lastly, its low time complexity implies its potential to be implemented in real applications. 
Experimental results demonstrate that EPO consistently outperforms a state-of-the-art write buffer 
management scheme BPLRU. It also performs better than the traditional LRU algorithm.  
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