
Introduction
mobile devices such as smart- phones and 3-D digital cameras
normally use raw flash memory device directly managed by an
embedded flash file system, a dedicated file system designed for
storing files on raw flash memory devices. Thus, in addition to
provide normal file system functions and interface to up layer
system, flash file systems are also designed to directly control raw
flash memory devices, they can address the inherent constraints of
flash (e.g., wear out issue and the erase-before-write problem).
Although existing embedded flash storage systems are effective for
traditional mobile applications, they are becoming increasingly
inadequate for emerging data- intensive mobile applications due to
the following limitations:
(1) Insufficient storage capacity: One of the most remarkable trends
of mobile computing is that emerging mobile applications are
creating huge volume of data.
(2) Incompetent performance: current flash file system only supports
serial IO access. This architecture significantly hinders I/O
performance not only because of serial IO but also due to features of
flash memory: asymmetric read & write latency.
(3) Inadequate level of reliability: This is mainly because data
sampled from mobile and dynamic environments is most likely
irreproducible, and thus, data loss is completely unacceptable.

To break the barrier of current single-MTD device architecture, in
this paper we propose an MTD-array based embedded flash storage
system framework called MA (MTD array)

 An Embedded Storage Framework Abstracting
 Each Raw Flash Device as An MTD

Proposed Storage Structure

Wei Wang, Deng Zhou, and Tao Xie，
San Diego State University, San Diego, CA 92182

The 8th ACM International Systems and Storage Conference (SYSTOR 2015, Full Paper), Haifa, Israel, May 26-28, 2015

The MTD proxy middleware has
the following components:
address mapping, access
queuing management, multiple
work thread layer, proxy
interface module, With the
support of the four components,
the MTD proxy middleware
enables an existing flash file
system to communicate with an
array of MTD devices without
no modifications of existing
flash file systems, which is an
attractive feature for system
design and optimization.

Evaluation environment is set on a 3.1GHz
Intel Core i5 machine with 8 GB of RAM.
Operating system is Ubuntu 13.04 with
3.8.0 Linux kernel. We also modified
NANDSim to support multiple MTD
devices emulation.

Emerging data-intensive and mission-critical mobile applications are increasingly
demanding a huge storage capacity, superior I/O performance, while existing
embedded flash storage systems only support single MTD devices and serial IO access.
To cope with this problem, we designs, implements, and evaluates a high-performance
embedded flash storage system. Supporting an array of MTD devices is a breakthrough
for contemporary embedded flash storage systems. In addition, the positive
experimental results demonstrate the feasibility of the proposed MA framework. Lastly,
to further enhance data reliability, MA will be extended to incorporate RAID- like data
redundancy.

[1] ENGEL,J.,ANDETAL. Logfs-finally a scalable flash file system. In 12th International Linux
System Technology Conference.
[2] HUNTER,A.A brief introduction to the design of ubifs,2008.
[3] LINUX. Nand simulator in linux kernel, http://www.linux- mtd.infradead.org/faq/nand.html.

References

Experiment Setup

Acknowledgement
This work was supported by the U.S. NSF under grant CNS-1320738.

 Current Single MTD Structure

 Our Design1: MTD Proxy Middleware

To fully utilize the underlying
MTD array, we redesign
software stacks as shown in
Figure 3.
Compared with the first
scheme, it can fully employ the
parallelism among multiple
MTD devices not only by
splitting requests but also by
issuing multiple requests
concurrently.

Figure 2. MTD Proxy Middleware.

 Our design 2: MTD-array

Figure 3. MTD-array storage hierarchy.

Figure 4. Sequential write and random write throughput on three flash memory types.

Conclusions

We change the number of raw
flash memory devices used in
MA-UBIFS to measure its
scalability. Table 2 illustrates
the number of flash memory
devices and the capacity of
each device in every
experiment

Figure 1. Current MTD subsystem in Linux kernel.

Figure 5. Re-write throughput on three flash memory types.

	Slide Number 1

