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An Embedded Storage Framework Abstracting
Fach Raw Flash Device as An MTD

Introduction

mobile devices such as smart- phones and 3-D digital cameras
normally use raw flash memory device directly managed by an
embedded flash file system, a dedicated file system designed for
storing files on raw flash memory devices. Thus, In addition to
provide normal file system functions and interface to up layer
system, flash file systems are also designed to directly control raw
flash memory devices, they can address the inherent constraints of
flash (e.g., wear out iIssue and the erase-before-write problem).
Although existing embedded flash storage systems are effective for
traditional mobile applications, they are becoming increasingly
Inadequate for emerging data- intensive mobile applications due to
the following limitations:

(1) Insufficient storage capacity: One of the most remarkable trends
of mobile computing Is that emerging mobile applications are
creating huge volume of data.

(2) Incompetent performance: current flash file system only supports
serial 10 access. This architecture significantly hinders 1/0
performance not only because of serial 10 but also due to features of
flash memory: asymmetric read & write latency.

(3) Inadequate level of reliability: This I1s mainly because data
sampled from mobile and dynamic environments is most likely
irreproducible, and thus, data loss is completely unacceptable.

To break the barrier of current single-MTD device architecture, In
this paper we propose an MTD-array based embedded flash storage
system framework called MA (MTD array)
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Figure 1. Current MTD subsystem in Linux kernel.
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Figure 3. MTD-array storage hierarchy.

Table 1: Flash memory major characteristics

Experiment Setup

Type

SLC

MLC

TLC

Evaluation environment is set on a 3.1GHz

Page size (KB) 2

2

4

Intel Core 15 machine with 8 GB of RAM.
Operating system is Ubuntu 13.04 with

Read time (us) 25

25

75

3.8.0 Linux kernel. We also modified

Program time (us) | 200

NANDSIm to support multiple MTD
devices emulation.

Erase time (ms) 1.5

2

4

We change the number of raw
flash memory devices used In

Table 2: Flash memory capacity and UBI volume size

MA-UBIFS to measure Its

Conf_1 | Conf 2

Conf_3

scalability. Table 2 illustrates

the number of flash memory Device num.

1

2

4

devices and the capacity of MTD capacity (MB)

1024

512

256

each  device In  every

experiment UBI Volume (IVIB)

986

493

Figure 5. Re-write throughput on three flash memory types.

Conclusions

Emerging data-intensive and mission-critical mobile applications are increasingly
demanding a huge storage capacity, superior 1/O performance, while existing
embedded flash storage systems only support single MTD devices and serial 10 access.
To cope with this problem, we designs, implements, and evaluates a high-performance
embedded flash storage system. Supporting an array of MTD devices Is a breakthrough
for contemporary embedded flash storage systems. In addition, the positive
experimental results demonstrate the feasibility of the proposed MA framework. Lastly,

to further enhance data reliability, MA will be extended to incorporate RAID- like data
redundancy.
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