Wel Wang, Deng Zhou, and Tao Xie,

San Diego State University, San Diego, CA 92182
The 8th ACM International Systems and Storage Conference (SYSTOR 2015, Full Paper), Haifa, Israel, May 26-28, 2015

An Embedded Storage Framework Abstracting
Fach Raw Flash Device as An MTD

Introduction

mobile devices such as smart- phones and 3-D digital cameras
normally use raw flash memory device directly managed by an
embedded flash file system, a dedicated file system designed for
storing files on raw flash memory devices. Thus, In addition to
provide normal file system functions and interface to up layer
system, flash file systems are also designed to directly control raw
flash memory devices, they can address the inherent constraints of
flash (e.g., wear out iIssue and the erase-before-write problem).
Although existing embedded flash storage systems are effective for
traditional mobile applications, they are becoming increasingly
Inadequate for emerging data- intensive mobile applications due to
the following limitations:

(1) Insufficient storage capacity: One of the most remarkable trends
of mobile computing Is that emerging mobile applications are
creating huge volume of data.

(2) Incompetent performance: current flash file system only supports
serial 10 access. This architecture significantly hinders 1/0
performance not only because of serial 10 but also due to features of
flash memory: asymmetric read & write latency.

(3) Inadequate level of reliability: This I1s mainly because data
sampled from mobile and dynamic environments is most likely
irreproducible, and thus, data loss is completely unacceptable.

To break the barrier of current single-MTD device architecture, In
this paper we propose an MTD-array based embedded flash storage
system framework called MA (MTD array)

Proposed Storage Structure

Current Single MTD Structure

Systm’ﬂ Calls

Device Driver

; : ¢ :

NAND NOR | |OneNAND |- AG-AND

Tier 1
Hardware

Figure 1. Current MTD subsystem in Linux kernel.

] . Sequential Write on SLC Scequential Write on MLC Sequential Write on TLC
Our Designl: MTD Proxy Middleware @;‘;g' MUBIFS ©2MA-UBIFS [4MA-UBIFS 2250 MUBIFS 1 2MA-UBIFS 1 4MA-UBIFS 5 140) MUBIFS [2MA-UBIFS = 4MA-UBIFS
& 250- o €200 _ o geM = m
: : S700- - 2 i . 100-
Flash File System (JFFS2, YAFFS2, UBIFS, etc.) The MTD proxy middleware has | £°% £ 150 . Z 80 a
. = _ 60-
PRTTRTTTTITTVTNTIRSSNNaS §-- e - the following components: | 100 [H [i [H [[[B 40 fH { { {
| . i : S 50 : S 10
' | MTD Proxy Middleware ' address mapping, access || & ol mr [ﬂ BN &) =l 22 _ ol
| | .] 4K 16K 64K 256K IM '~ 4M 16M 4K 16K 64K 256K IM ' 4M 16M 4K 16K 64K 256K IM ~4M 16M
| | me}(]Iltﬂrfﬂces : qUEUIng management’ mUItIpIe Seque u%i:(\;}%rqtg ioZe SLC Seque ﬁgf%gr%es(i)zeMLC SequeI{t?aflO{}s 'Stigg TLC
' | uen rite on uen rite on nti rite on
| Read Write and i work thread layer, proxy <07 © 2MA-UBIFS So0| ©2MA-UBIFS 2" & 2MA-UBIFS
i Handling Erase Queuin - interface module, With the %;‘g £ 4MA-UBIFS =40 2 4MA-UBIFS gigg - 4MA-UBIFS
i Device Work Device Work support of the four components, §zo_ g;g: § %0, S50
i Queues Threads the MTD proxy middleware | Elo o0 oo © Enl .o £ 40,
| : . enables an existing flash file A TEST 64K 256K 1M " 4M '16M "4 16K 64K 256K 1M 4M16M "THK 16K 64K 256K IM 4M 16M
| | Address Mapping | . . Record Size Record Size Record Size
: ¢ e ¢ ¢ : SyStem t0 communicate Wlth an Random Write on SLC 40 Random Write on MLC Random Write on TLC
| | . : 300 i i ~ 240, i i ~120- i i
| Device Arrav I . array of MTD devices without | Z5e mUBIFS © 2MA-UBIFS D4Mﬁi UBIFS o mUBIFS ©D2MA-UBIFS ©4MA-UBIFS o 120 H UBIFS ©2MA-UBIFS [14MA-UBIFS
| SVIEE ATty eyt . no modifications of existing || £2 o o < 160 " < 80 I
| MTD MID | .- | MID MTD | . . 2150- 2120 2 60
| 3 3 3 3 - flash file systems, which iIs an [500 B 80 B 40, fﬂ
i . attractive feature for system || £ EY_ mm Iﬂ g0
| NAND NAND NAND NAND | design and optimization y 0K '!glg'64K'256K' M 4aM M YUK '16K'6zg< '25d6ls<' M 4M 1M YTGK 16K 64K 256K M 4M16M
| ' . Record Size ecord Size Record Size
T T i A AT Demos NA T P Random Write on SLC Random Write on MLC Random Write on TLC
Figure 2. MTD Proxy Middleware. VFS <80 = JMA-UBIFS 801 & VA UBIFS 150 & oMA-UBIFS
¥ 60 - 4MA-UBIFS 60 - 4MA-UBIFS < A 4MA-UBIFS
Our design 2: MTD-array MA-UBIES o : 2 40 S0 =
1le Managemen 2 2 5 50
= 20- =204 . =
.y - = ST (it g N
To fully utilize the underlying e EPU o goumar o Dpace EJloreer -~ Egeer - F et
_ Tree Maintain 4K 16K 64K 256K IM ' 4M '16M 4K 16K 64K 256K 1M ' 4M 16M 4K 16K 64K 256K IM 4M '16M
MTD array, Wwe rEdESIQH Record Size Record Size Record Size
software stacks as shown In The MA Framework ‘]E Figure 4. Sequential write and random write throughput on three flash memory types.
Figure 3. - The MA-Aware Module L Re-Write on SLC Re-Write on MLC Re-Write on TLC
Compare d with the first Virtualized UBI Module 23(5)8— mUBIFS m2MA-UBIFS D4MA-UBIF_S gzzg- mUBIFS ©2MA-UBIFS D4MA-UBIliS g%gg: BUBIFS O2MA-UBIFS 0 4MA-UBIFS
: i A _ N S 200 N S 120 o
scheme, it can fully employ the v | |l £ - = 150 - <100
| I \ = i =]
: : | Dispatcher | £.150 £. 2. 80
parallelism among multiple 7 " 1 | i | B S100 100 5 00
MTD devices not only by = | Request Request Request | | Request | | | & Y "I £ il e 20 1]
\ | ‘ ()= : : : : : . (== : : : : : . O___::._'_-_V—\ : : : : : .
e ‘ Queue Queue Queue || Queue ‘ 4K 16K 64K 256K IM 4M 16M 4K 16K 64K 256K 1M 4M 16M 4K 16K 64K 256K 1M 4M 16M
splitting requests but also by I ot M) S S | Record Size Record Size Record Size
PR : | 1 Re-Write on SLC Re-Write on MLC Re-Write on TLC
ISSUINg multlple requests WOI‘kiIII WOfkiIll WOI‘kiIll Workin _50- ezMA-UB?FS ° <60 6-2MA-UBeiFSneon ~160- 6*2MA-UB(;FS ’
concurrently. - _ThreadO Thread]l Thread?2 Thread3 | | < 40 77 4MA-UBIES T 507 - 4MA-UBIFS <150 “4MA-UBIFS
Device Array Layer 520 %;8 2 -
UBIO UBI1 UBI2 UBI3 £10- El0 £ 40
| ¢ ¢ ¢ ¢ — 0 4K 16K 64K 256K IM 4M 16M 074K "16K 64K 256K IM ' 4M ' 16M 0 4K 16K 64K 256K IM 4M 16M
| MTDO MTDI1 MTD2 MTD3 | Record Size Record Size Record Size

Figure 3. MTD-array storage hierarchy.

Table 1: Flash memory major characteristics

Experiment Setup

Type

SLC

MLC

TLC

Evaluation environment is set on a 3.1GHz

Page size (KB) 2

2

4

Intel Core 15 machine with 8 GB of RAM.
Operating system is Ubuntu 13.04 with

Read time (us) 25

25

75

3.8.0 Linux kernel. We also modified

Program time (us) | 200

NANDSIm to support multiple MTD
devices emulation.

Erase time (ms) 1.5

2

4

We change the number of raw
flash memory devices used In

Table 2: Flash memory capacity and UBI volume size

MA-UBIFS to measure Its

Conf_1 | Conf 2

Conf_3

scalability. Table 2 illustrates

the number of flash memory Device num.

1

2

4

devices and the capacity of MTD capacity (MB)

1024

512

256

each device In every

experiment UBI Volume (IVIB)

986

493

Figure 5. Re-write throughput on three flash memory types.

Conclusions

Emerging data-intensive and mission-critical mobile applications are increasingly
demanding a huge storage capacity, superior 1/O performance, while existing
embedded flash storage systems only support single MTD devices and serial 10 access.
To cope with this problem, we designs, implements, and evaluates a high-performance
embedded flash storage system. Supporting an array of MTD devices Is a breakthrough
for contemporary embedded flash storage systems. In addition, the positive
experimental results demonstrate the feasibility of the proposed MA framework. Lastly,

to further enhance data reliability, MA will be extended to incorporate RAID- like data
redundancy.

Acknowledgement
This work was supported by the U.S. NSF under grant CNS-1320738.

References

[1] ENGEL,J.,ANDETAL. Logfs-finally a scalable flash file system. In 12th International Linux
System Technology Conference.

[2] HUNTER,A.A brief introduction to the design of ubifs,2008.

[3] LINUX. Nand simulator in linux kernel, http://www.linux- mtd.infradead.org/fag/nand.html.

	Slide Number 1

