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Abstract— Applications like cluster-based Video-On-Demand 
(VOD) systems are inherently data-intensive because clients 
frequently retrieve data stored on a distributed storage 
subsystem interconnected by a high-speed local network. To 
meet the Quality-of-Service (QoS) imposed by the clients, quick 
responses to access requests are fundamental for these 
applications. Among the numerous ways to reduce response 
times, data placement, has attracted much attention from 
researchers due to its effectiveness and low cost. In this paper, we 
propose a novel load-balancing and performance oriented static 
data placement strategy, called perfect balancing (PB), which can 
be applied to distributed storage subsystems in clusters to 
noticeably improve system responsiveness. The basic idea of PB 
is to balance the load across local disks and to minimize the 
discrepancy of service times of data on each disk simultaneously. 
A comprehensive experimental study shows that PB reduces 
mean response time up to 19.04% and 8.67% over the two well-
known data placement algorithms Greedy and SP respectively. 

I. INTRODUCTION 
Due to their cost-effectiveness and good scalability, cluster-

based data-intensive applications such as Video-on-Demand 
clusters and Web servers have become increasingly popular 
[23][31]. A common requirement imposed by the end-users of 
these applications is prompt response. For example, a Video-
On-Demand (VOD) cluster has to quickly respond to access 
requests from multiple users so as to provide them with 
continuous glitch-free video [13][25]. Similarly, a data-
intensive Web server application that publishes significant 
amounts of data stored in a back-end database must answer 
end-users’ inquiries instantly before they lose patience [4][23]. 
It is easy to understand that reducing mean response time of 
customer requests is mandatory for these applications. 

There are a wide spectrum of different ways of reducing the 
mean response time or improving the system throughput for 
cluster-based applications [1][13][16][21][22]. Data 
placement, or file assignment, allocating of data onto an array 
of disks before they are accessed, is one of such avenues that 
can significantly affect the overall performance of a parallel 
I/O system [1][22][28]. In order to fully exploit the capacities 
of a parallel disk storage system, data placement algorithms 
for parallel disk systems have been extensively investigated in 
the literature [1][5][7][10][22]. Generally, these algorithms 
place data onto a parallel disk array so that a special cost 
function or performance metrics can be optimized. While 

common cost functions include communication costs, storage 
costs, and queuing costs, popular performance metrics are 
mean response time and overall system throughput [11]. It is 
well-known that finding the optimal solution for a cost 
function or a performance metric in the context of data 
placement on multiple disks is an NP-complete problem [11]. 
Thus, heuristic algorithms became practical solutions. 

Typically, heuristic data placement algorithms fall into two 
categories: static and dynamic. Most static data placement 
algorithms require complete knowledge about the workload 
statistics such as service times and access rates of all the files. 
Dynamic data placement algorithms, on the other hand, 
generate file-disk allocation schemes on-line to adapt to 
varying workload patterns without a prior knowledge of the 
files to be assigned in the future. In this paper, we address the 
problem of statically assigning non-partitioned files in a 
distributed storage subsystem where file accesses exhibit 
Poisson arrival rates and fixed service times. Although each 
node in a cluster might only have one hard disk drive, the 
entire disk set in the cluster can be viewed as a virtual disk 
array. Therefore, traditional data placement algorithms like 
Greedy [15] and SP [22] are still valid in cluster-based date-
intensive applications. 

Since load-balancing is a key step towards low mean 
response times, existing algorithms strived to achieve an ideal 
load balance across disks. In this paper, disk accesses to a file 
fi are modeled as a Poisson process with a mean access rate λi. 
Also, we assume a fixed service time ti for file fi. This 
assumption is realistic for the following two reasons. First, 
each access to file fi could be a sequential read of the entire 
file, which is a typical scenario in most file systems or WWW 
servers [19]. Second, for large files, when the access unit is 
the entire file, the seek times and rotation latencies are 
negligible compared with the transfer time. The load, also 
called the heat, of a file fi is defined as follows [22]: 

                                      hi =λi * ti .                                      (1)                   
This is because the combination of a file’s access rate and its 
service time accurately gives the load of the file. Greedy, one 
of the most commonly used data placement heuristics, 
maintains load-balancing by evenly distributing files onto 
multiple disks so that each disk has a similar load, which is 
the sum of the heat of all files on that disk. Although Greedy 
achieved an overall load-balancing across an array of disks, it 
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overlooked the fact that the variance of the service time at 
each disk could significantly affect the mean response time 
[22]. Based on this important observation, Lee et al. proposed 
a static data placement algorithm, called Sort Partition (SP) in 
[22]. Initially, all files are sorted in a list I in descending order 
of their service times. Each disk dk is assigned the next 
contiguous segment from the ordered list I until its load loadk 
reaches the average disk utilization ρ, which is defined as: 
                                      ∑ =

⋅=
m

i ih
n 1

1ρ ,                             (2) 

where m is the number of files and n is the number of disks. 
This way the load is distributed among the disks evenly. In 
fact, it allocates files with similar service times onto one disk 
while keeping load balancing across all disks.  The rationale 
behind SP is to minimize the load variance across all disks, as 
well as the variance of the service time at each disk 
simultaneously. Performance evaluation provided by [22] 
demonstrated that SP noticeably improve performance in 
terms of mean response time. To the best of our knowledge, 
SP is one of the best static data placement algorithms reported 
in the literature so far. 

However, there are two obvious drawbacks in the SP 
algorithm. First of all, when SP assigns files onto the last disk 
dz, it allocates all the remaining files in the list I onto it. As a 
result, the load of disk dz is observably higher than that of the 
rest disks. Thus, the principle of load balancing across all the 
disks is violated. Second, SP algorithm is based on two 
important workload characteristic assumptions: the file access 
rate obeys a Zipf-like distribution and the file access 
frequency is inversely correlated to the file size. In a Zipf-like 
distribution, the relative probability of a request for the i’th 
most popular file is proportional to 1/iα, with α typically 
varying between 0 and 1. In other words, the most popular 
files are typically small in size, while the large files are 
relatively unpopular. These two workload assumptions were 
supported by several early studies on web requests [2][9][14]. 
It is very difficult for the SP algorithm to reach an ideal load 
balancing across the disks because the most popular files 
could overload some disks due to their relatively large values 
of heat. In other words, the granularity of heat of these files is 
large, which makes disks having these files have a load 
obviously larger than the average disk utilization ρ. Again, the 
load balancing across the disks is affected.  

Motivated by the above insightful observations made by 
our research, we propose a new data placement strategy, 
called perfect balancing (PB), which overcomes the two 
drawbacks of SP. The PB strategy avoids the first drawback of 
SP by assigning the remaining files onto a subset of the disks 
where the average file service times are similar to that of the 
remaining files. In addition, PB distributes the most popular 
files onto different disks such that they cannot overload a 
particular disk.  

The rest of the paper is organized as follows. In the next 
section we discuss the related work. In Section 3, we 
formulate the problem and present the PB strategy as well as 
the two existing algorithms. In Section 4 we evaluate 
performance of our algorithms based on synthetic benchmarks. 

Section 5 concludes the paper with summary and future 
directions.   

II. RELATED WORK 
The data placement, or file assignment problem (FAP) 

exists in a wide range of distributed systems including 
distributed file systems [27], distributed databases [30], video 
servers [31], content distribution networks [6] and the Grid 
[12]. The first research work on FAP dates back to late 1960s 
[8]. Since then FAP has been comprehensively investigated 
because the potential gain obtained by solving a FAP is 
significant [11]. Typically, solutions to FAP fall into two 
camps: static and dynamic. Most static file assignment 
algorithms assume that access statistics are immutable, and 
hence the file assignment allocation scheme needs to be 
computed only once and can continuously work for a long 
time period [8][11][17]. Greedy, originated from longest 
processing time (LPT) algorithm proposed by Graham in [15] 
is one of the most well-known static file assignment heuristic 
algorithms. Dynamic file assignment algorithms [24][29], on 
the other hand, update the file allocation scheme potentially 
upon every request. Obviously, they are effective when the 
files are relatively small in size such as the case in Web proxy 
caching. However, in applications like distributed video 
servers [26][31], since the files are of large size and they do 
not change in size, dynamic schemes become less useful. 

With the advent of advances of distributed systems, new 
algorithms have been developed recently to solve problems 
such as data object replica placement [18][20], data 
management for large-scale storage systems [3][22], and 
automatic near-optimal storage system designs [4]. Essentially, 
these problems are either directly derived from or closely 
related to the FAP problem. In recognition that minimizing the 
variance of service times at each disk is of the same 
importance as minimizing the utilization of each disk, Lee et 
al. proposed a static file assignment algorithm called sort 
partition (SP) and a semi-dynamic file assignment algorithm 
named hybrid partition (HP) [22]. Compared with the 
traditional Greedy algorithm, SP significantly improves the 
mean response time by taking the two minimizations into 
account simultaneously [22]. On the other hand, HP is a 
batch-based variant of SP, which can run in on-line mode. 
Based on our knowledge, SP is one of the best existing static 
file assignment algorithms so far. 

Without loss of generality, we assume that (1) each data is 
viewed as an independent file; (2) communication delays 
between any pair of disks are identical and negligibly small 
[22]; (3) disk access (read) to each data is modelled as a 
Poisson process with a mean access rate λi; (4) a fixed service 
time si for each data; for example, each read on a data results 
in a sequential scan of the entire data. For large size data, this 
assumption is valid because when the basic unit of data access 
is entire data, seek time, rotation latency, and controller 
overhead are negligible in comparison with data transfer time; 
(5) the distributed disk storage system in the cluster is 
homogeneous in the sense that each disk has the same 
performance metrics. 
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III. DESIGN AND IMPLEMENTATION OF PB 
In this section, we first formulate the FAP problem and 

present the system model, which is followed by a detailed 
description of the PB algorithm. Then we prove the time 
complexity of PB. 

A. Problem Formulation and System Architecture 
A distributed storage system consists of a linked group, e.g., 

D = {d1, ..., dj, …, dn}, of independent homogeneous disk 
drives. The set of files can be represented as F = {f1, …, fi, ..., 
fm}. In the system, a disk dj is modeled as a three-element 
tuple dj = (cj, tj, lj), where cj, tj, lj are the disk capacity in 
GByte, transfer rate (read speed) in Mbyte/second, and load 
(total sum of files’ heats on the disk). We assume that disks 
are always large enough to accommodate files to be assigned 
on them. Similarly, a file fi is modeled as a set of rational 
parameters, e.g., fi = (si, λi, ti, hi), where si, λi, ti, hi are the file’s 
size in Mbyte, access rate, expected service time, and heat. In 
this paper, disk accesses to a file fi are modeled as a Poisson 
process with a mean access rate λi. 

The architecture of the data placement problem is 
illustrated in Fig. 1. Note that in this paper we assume that 
each node in a cluster only has one hard disk drive attached. 
Also, each node maintains a Local Queue, where requests 
target on files on that node are stored in their arrival order. 
Data placement algorithms like Greedy, SP, and PB allocate a 
group of files onto a set of identical disks so that the mean 
response time can be minimized. Fig. 1 depicts the subsequent 
file access requests scheduling process after the file 
assignment process completes. Here, we employ the First-
Come-First-Serve (FCFS) scheduling heuristic. Suppose there 
are totally u requests in the request set, which is modeled as R 
= {r1, ..., rk, …, ru}. Each request is modeled as rk = (fidk, ak), 
where fidk is the file identifier targeted by the request and ak is 
the request’s arrival time. For each arrival request, the FCFS 
scheduler uses the allocation scheme X generated by data 
placement algorithms to find the disk on which the target file 
of the request resides. And then it directs the request to the 
disk’s local queue. In fact, the request workload is a multi-

class workload with each class of requests having its fixed λi 
and ti (see Fig. 1). 

To obtain the response time of a request rk, two important 
parameters, the start time and finish time of rk on a disk dj 
must be computed. We denote the start time and finish time of 
rk on disk dj by stj(rk) and ftj(rk), respectively. In what follows 
we present derivations leading to the final expressions for 
these two parameters. There are three cases when rk arrives in 
Qj (1 ≤ j ≤ n), the local queue of disk dj. First, dj is idle and Qj 
is empty. Second, dj is busy and Qj is empty. Third, dj is busy 
and Qj is not empty. Thus, stj(rk) is expressed as  
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where rj represents the remaining service time of a request 
currently running on dj, and ∑

≤∈ kpjp

p
aaQr
fidt

,

 is the overall service 

time of requests in  Qj whose arrival times are earlier than that 
of rk.  Consequently, ftj(rk) can be calculated by 

                               ftj(rk) = stj(rk) + 
kfidt ,                           (4) 

where 
kfidt is the service time of the file that request rk targets 

on. As a result, the response time of request rk can be obtained 
by 

                               rtj(rk) = ftj(rk) - stj(rk).                           (5) 
Thus, the mean response time of the request set R is 

expressed as below 
                                mrt(R) = urrt

u

njk
kj∑

≤≤= 1,1

)( .                (6) 

The FAP problem now can be formulated as: given a set of 
files F and a parallel disk set D, find an allocation scheme X 
that optimizes the mean response time expressed by Eq. 6. 

B. Algorithm Description 
Fig. 2 outlines the PB algorithm with some detailed 

explanations. It is recognized that even distribution of 
workload among all disks and minimization of the variance of 
the service time at each disk are two important paths towards 
the goal of minimizing the queuing delay [22]. PB takes these 
two critical aspects into account as well. Specifically, PB 
computes the average disk load ρ in step 3 and enforces the 
load on each disk not to exceed ρ (Step 7). Step 4 sorts the file 
set F in file size so that files with similar sizes can be 
allocated onto the same disk, a clever strategy that was 
employed by SP as well [22]. Besides, PB separates the most 
popular n-1 files onto different disks rather than a consecutive 
allocation of a sorted file set, which was adopted by SP (Step 
5). The reason why we exclude disk dn out of Step 5 is that it 
will be exclusively used by files with very big sizes. 
Confining very big files in one disk will prevent them from 
severely block responses to the requests for small files, which 
could happen if they are mixed together with small files on the 
same disk. The advantage of dispersing the n-1 most popular 
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Fig. 1. System architecture  
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files is that files with high load (heat) values will be 
distributed onto distinct disks so that the overall load 
balancing could be further improved. Moreover, the most 
unpopular files with large sizes will be allocated on the last 
disk dn (Step 6). PB overcomes a hidden drawback of SP 
where the allocation of the remaining files onto the last disk 
makes it overloaded. In stead of allocating all the remaining 
files on the last disk, for each remaining file PB assigns it onto 
the disk within the range [d1, dn-1], which currently has lowest 
load (Step 8). This way the load of the remaining files can be 
evenly shared by the n-1 disks. 

C. Time Complexity Analysis 
Before qualitatively comparing our scheme with two 

existing algorithms, we demonstrate the time complexity of 
the PB algorithm. 
Theorem 1. Given a parallel disk array system D = {d1, d2, ..., 
dj,…, dn} and a collection of files represented by a file queue 

F = (f1, f2, ..., fi,…, fm), the time complexity of PB is 
O(mlgm+2m+n), where m is the number of files in Q, n is the 
number of disk in the system P. 
Proof. It takes O(m) time to compute the heat hi for each file fi 
(Step 1). Also, it takes O(n) time to initialize the load and the 
allocation map for each disk (Step 2). The time complexity of 
sorting the file set F is O(mlgm) as we have m files (Step 4). 
Step 5 takes time O(n-1) to be completed. Similarly, Step 6 
consumes time O(m-k+1). Step 7 takes O(k-n) to assign the 
rest files on disks. To discover an appropriate disk in {d1, …, 
dn-1} for a remaining file to be allocated, the worst case for PB 
is to visit each of the n-1 disks in {d1, …, dn-1} (Step8). 
Consequently, the worst case time complexity for allocating 
one remaining file is O(n-1) (see Step 8). Assume we have w 
remaining files (1 ≤ w ≤≤ m). Thus, Step 8 takes O(w(n-1)). 
Since w is far smaller than m and n is usually a very small 
number compared with m, O(w(n-1)) is much smaller than 
O(m). Therefore, time complexity of Step 8 can be ignored. 

Input:  n = number of disks, m = number of files, hi = heat of file fi, si = expected service time of file fi 
Output:  A file allocation matrix X (n, m) 
Step 1-  Compute the heat hi for each file fi 
Step 2-   Initialize the load and the allocation map for each disk 

for each disk dj do  
   loadj = 0; X(dj, :) = 0    

end for 
Step 3-  Use Eq. 2 to compute the average disk load ρ  
Step 4-  Sort the service time of all files in ascending order  
Step 5-  Assign the most popular n-1 files {f1, f2, .., fn-1} to disks {d1, d2, …, dn-1}, respectively 

fi = 1 
for ( dj = 1; dj ≤ n-1; dj++)  do 

loadj = loadj + hi 
X(dj, :) = fi 
fi = fi +1 

             end for 
Step 6-   Assign the most unpopular files {fk, fk+1, .., fm} onto the disk dn until its load reaches ρ 
Step 7-   Assign the rest files to disks until the disk load reaches the predetermined threshold value ρ 

fi = n; 
for ( dj = 1; dj ≤ n-1; dj++)  do 

loadj = 0; 
while (loadj ≤ ρ and fi ≤ k) do 

                             X(dj, :) = fi   // File fi is allocated on disk dj 
loadj = loadj + hi 
fi = fi +1 

         end while 
               end for 
Step 8-   Assign the remaining files to disks in the range {d1, …, dn-1} 
               if (fi ≤ k)             
                     for each remaining file do 
                      Find the lowest loaded disk dj where 1 ≤ j ≤ n-1 
                             X(dj, :) = fi // File fi is allocated on disk dj 

loadj = loadj + hi 
                     end for 
 end if 

Fig. 2. The PB algorithm 
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Other steps simply take O(1) time. Hence, the worst-case time 
complexity of the PB algorithm is: O(m)+O(n) + O(mlgm)+ 
O(n-1)+O(m-k+1)+O(k-n) = O(mlgm+2m+n).                       � 

Theorem 1 indicates that the time complexity of the PB 
algorithm is typically low. For example, in our experiments, 
the value of m is set to 5000 and the value of n is in the range 
[8, 32], which should take less than hundreds of microseconds 
to complete the PB algorithm in modern processors. An 
implication of Theorem 1 is that PB has potential to be 
extended to be applied in real-world applications because of 
its low complexity. 

IV. SIMULATION STUDY 
Now we are in a position to evaluate the effectiveness of 

the proposed PB data placement scheme using extensive 
simulations. The advantage of using simulation is that we can 
easily vary parameters, which is a key component of this 
paper. The two baseline algorithms that were used to compare 
with our PB strategy are briefly described below. 
(1) Greedy:  The most common heuristic for multiple disks 
load balancing. It can operate in either on-line mode or off-
line mode. Here, we only consider its off-line mode because 
PB is an off-line file assignment strategy. It first calculates the 
mean load of all files and then assigns a consecutive set of 
files whose total load is equal to the mean load onto each disk. 
Its goal is to generate a file assignment scheme such that the 
mean response time of the parallel I/O system can be 
minimized.  
(2) SP (Sort Partition): It first computes the average disk 
utilization using Eq. 2. Next, it sorts all files into a list I in 
descending order of their service times.  Finally, it allocates 
each disk dj the next contiguous segment of I until its load 
loadj reaches the maximum allowed threshold ρ. The 
remainder files (if any) after one round allocation will be 
assigned to dn. It improves the performance of the Greedy 
algorithm by minimizing the variances of service times at 
each disk. 

A. Simulator and Parameter Space  
We have developed an execution-driven simulator that 

models an array of conventional Cheetah disks. The main 
characteristics of the conventional disk are shown in Table I.  

TABLE I 
MAIN CHARACTERISTICS OF THE CHEETAH DISK 

Description Value 
Disk model Seagate Cheetah ST39205LC 
Storage capacity 9.17 GBytes 
Average seek time 5.4 msecs 
Average rotation time 3 msecs 
Standard interface SCSI 
Rotational speed 10000 rpm 
Number of platters 1 
Transfer rate 31 Mbytes/second 
 
The performance metrics by which we evaluate system 

performance include: 

• Mean response time: average response time of all file 
access requests submitted to the simulated distributed storage 
cluster. 
• Mean response time improvement: decrease in percentage 
of mean response time gained by PB compared with the two 
existing algorithms.  

Two categories of parameters directly influence the file 
assignment algorithms that we investigate: workload 
characteristics and disk drive characteristics. Among the large 
number of parameters that specify a workload, we identified 
five key characteristics: number of files, request rate, file 
popularity weight, file size distribution and the coverage of   
the file system. 
1. Number of files: Since the total number of files to be 
assigned onto a parallel disk array directly determines the 
disk array’s load, we set it to 5000 so that each disk can 
accommodate around 312 files in case there are 16 disk 
drives in the array. The number of files per disk is a realistic 
mimic of the real-world situation. Each file was allocated to a 
single disk. No files can be partitioned or replicated. 
2. Request rate: Each file access represents a sequential read 
of the entire file. Hence, the service time of a file access 
request is proportional to the file’s size. We assume that each 
file has a fixed request arrival rate λi and the arrival interval 
times are exponentially distributed. The aggregate arrival rate 

of the entire system is defined as ∑ =

5000

1i iλ . The value of the 
aggregate arrival rate represents the intensity of the total 
access requests submitted to the disk array where 5000 files 
have been assigned across. 
3. File popularity weight: File popularity weight relates to 
the frequency with which file requests arrive at the 
distributed storage cluster. Since the frequency of file access 
usually exhibits a Zipf-like distribution, we assume that the 
distribution of file access requests is a Zipf-like distribution 

with a skew parameter θ = log 100
X

/log 100
Y

, where X percent 
of all accesses were directed to Y percent of files [22]. The 
value of X:Y is called skew degree in this paper and α =1- θ 
(see Section 1 for α). Fig. 3 shows a Zipf-like distribution of 
file access rate on the 5000 files with X:Y =70:30 assuming 
that file f1 is the most popular file and f5000 is the most 
unpopular one. In our simulations, we tested four values of θ 
with skew degree (X:Y) changing from 50:50 to 70:30.  
4. File size distribution: The distribution of access rates 
across the files and the distribution of file sizes were 
inversely correlated with the same skew parameter θ, as 
shown in Fig. 3. The file size distribution is reasonable 
because the phenomena that popular files are generally small 
ones can be frequently observed.  
5. Coverage of the system: The file system coverage is 
defined as the percentage of the entire file repository that is 
actually accessed by the request workload. We set the 
coverage of the system to 100% in our simulations, which 
means all files in the system are accessed at least once. 

 
TABLE II  

CHARACTERISTICS OF SYSTEM PARAMETERS 
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Parameter 
 

Value (Fixed) – (Varied) 
 

Number of files (5000) 

Skew degree  (70:30) – (50:50, 60:40, 
70:30) 

Coverage  (100%)  

Number of disks (16) – (8, 12, 16, 20, 
24,28,32) 

Aggregate access rate  (10) – (10, 15, 20, 25, 30, 35, 
40, 45, 50) (1/second) 

Simulation duration  (1000) seconds 
 
Table II summarizes the configuration parameters of a 

simulated distributed storage cluster used in our experiments 
and characteristics of the synthetic workload. All synthetic 
workload used from Section IV.B to Section IV.D were 
created by our trace generator. Although number of disks, 
aggregate access rate, and size of files are synthetically 
generated, we examined impacts of these important 
parameters on system performance by controlling the 
parameters. 

B. Impact of Aggregate Access Rate   
The goal of this experiment is to compare the proposed PB 

algorithm against the two well-known file assignment 
schemes, and to understand the sensitivity of the three 
heuristics to the aggregate access rate in a distributed storage 
cluster, where an array of identical disk drives serve incoming 
requests simultaneously. The aggregate access rate varies 
from 10 (1/second) to 50 (1/second) and the file sizes were 
distributed according to Zipf’s law with skew degree 70:30.  

Fig. 4 shows the simulation results for the three algorithms 
on a simulated distributed storage cluster with 16 disk drives 
(nodes). We observe from Fig. 4a that PB consistently 
outperforms the two exiting approaches in terms of mean 
response time.  This is because PB considers both minimizing 
variance of service time for each disk and fine-tuning load 
balancing degree. Consequently, the sorted files were 
continuously assigned to disks such that a more evenly  
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Fig. 4. Impact of aggregate access rate 

 
TABLE III 

DETAILED COMPARISONS IN AGGREAGE ACCESS RATE 

Access 
rate 

Greedy SP PB 
Improved 

over 
(SP) 

Improved 
over 

(Greedy) 
10 797.76 690.78 678.41 1.79% 14.96% 
15 1241.48 1077.94 1060.59 1.61% 14.57% 
20 1669.48 1469.33 1446.61 1.55% 13.35% 
25 2116.73 1855.27 1826.31 1.56% 13.72% 
30 2555.54 2247.66 2211.35 1.62% 13.47% 
35 2977.21 2634.41 2592.83 1.58% 12.91% 
40 3488.79 3023.85 2975.10 1.61% 14.72% 
45 3898.65 3407.68 3356.71 1.49% 13.90% 
50 4397.67 3802.93 3741.20 1.62% 14.93% 

 
distributed workload allocation scheme was generated. SP 
takes the second place in mean response time metric, which is 
consistent with our expectation because it is one of the best 
existing static file assignment heuristics. To clearly 
demonstrate the performance improvement, Table III provides 
mean response time decrease gained by PB compared with 
Greedy and SP, respectively. In particular, PB can reduce 
mean response time on average by 14.1%nd 1.1%, compared 
with Greedy and SP, respectively. 

C. Scalability   
This experiment is intended to investigate the scalability of 

the three algorithms. We scale the number of disks in the 
system from 8 to 32. The aggregate access rate is configured 
to 10 (1/second). The skew degree is still set to 70:30. Fig. 5 
plots the performance of the three algorithms as functions of 
the number of disks. The results show that PB exhibits a good 
scalability.  

Fig. 5 shows that all of the three algorithms deliver better 
performance in mean response time when the number of disks 
increases. This is because each disk has few files to be 
assigned on when the system is scaled up. One important 
observation is that PB outperforms the rest two approaches in 
all tested cases. Comparing the results from Table IV, we can 
see that the mean response time improvement becomes more 
pronounced when the number of disks becomes larger. In 
addition, the implication of results from Table IV is that PB 
scales well when the number of disk in a cluster increases. 
Another observation is that the number of disks significantly  
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Fig. 5. Impact of the number of disks 

TABLE IV 

DETAILED COMPARISONS IN NUMBER OF DISKS 

Disk 
number 

Greedy SP PB Improve 
(SP) 

Improve 
(Greedy) 

8 1678.14 1457.27 1447.89 0.64% 13.72% 
12 1113.20 947.37 934.45 1.36% 16.06% 
16 809.67 689.91 678.02 1.72% 16.26% 
20 626.18 544.28 526.78 3.21% 15.87% 
24 504.81 445.13 424.36 4.66% 15.94% 
28 432.49 370.62 350.46 5.44% 18.96% 
32 364.99 323.56 295.48 8.67% 19.04% 

 
affects system performance and our PB scheme can better 
exploit the increased number of disks when compared to 
Greedy and SP. 

Table IV gives detailed experimental result comparisons 
among the three algorithms. Clearly, the improvement gained 
by PB comparing SP noticeably escalates when the system 
was scaled up. In short, compared with Greedy and SP, PB 
improves mean response time up to 19.04% and 8.67%, 
respectively. 

D. Impact of Skew Degree 
To verify the performance impact of the skew parameter θ, 

we evaluate the performance as functions of skew degree. 
When the skew degree set to 50:50, PB degraded to SP and 
Greedy in terms of mean response time (Fig. 6). This is 
because the skew parameter θ is equal to 1, which means the 
access requests were evenly distributed across all files without 
any request skew. On the other hand, when the skew degree 
was enlarged to 70:30, PB can reduce mean response time by 
1.67% and 16.26%, compared with SP and Greedy, 
respectively. We observe from Fig. 6 that PB achieves the best 
mean response time improvement when the skew degree is 
70:30. In Fig. 6, the “1”, “2”, and “3” on X axis represents 
skew degree 50:50, 60:40, and 70:30, respectively. 

V. CONCLUSIONS 
In this paper, we address the issue of statically allocating 

non-partitioned files onto a distributed storage cluster where 
the file access requests exhibit Poisson arrival rates and fixed 

service times. We found that the performance of existing data 
placement algorithms can be observably improved by 
improving load-balancing across the disks. Therefore, a 
perfect balancing (PB) data placement strategy is developed to 
generate optimized file allocations that minimize mean 
response time. To quantitatively evaluate the effectiveness and 
practicality of the proposed PB scheme, we conducted 
extensive experiments using synthetic benchmarks. 
Experimental results show that when the distribution of access 
rates across the files and the distribution of file sizes were 
inversely correlated with the same skew parameter θ (Fig. 3), 
PB consistently improves the performance of distributed 
storage clusters in terms of mean response time over two well-
known file assignment algorithms. In comparison PB, 
achieves improvement in mean response time by up to 8.67% 
over one of the best existing static non-partitioned file 
assignment algorithms SP. The improvement of PB in mean 
response time over Greedy on average is 14.06%.  

Future studies in this research can be performed in the 
following directions. First, we will extend our scheme to a 
fully dynamic environment, where file access characteristics 
are not known in advance and may vary over time. As a result, 
a dynamic file assignment algorithm is mandatory so that 
dynamically arrived files can be re-allocated by migrating 
files from one disk to another. Second, we intend to enable the 
PB scheme to cooperate with the RAID architecture, where 
files are usually partitioned and then distributed across disks 
in order to further reduce the service time of a single request.   
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