

978-1-4244-1694-3/08/$25.00 ©2008 IEEE

 1

A Static Data Placement Strategy towards Perfect
Load-Balancing for Distributed Storage Clusters

Deepthi K.Madathil, Rajani B. Thota, Paulina Paul, Tao Xie
Department of Computer Science, San Diego State University

5500 Campanile Drive, San Diego, CA 92182, USA
Deepthi-madathil@rohan.sdsu.edu

Rajani-thota@rohan.sdsu.edu

ppaul@rohan.sdsu.edu

xie@cs.sdsu.edu

Abstract— Applications like cluster-based Video-On-Demand
(VOD) systems are inherently data-intensive because clients
frequently retrieve data stored on a distributed storage
subsystem interconnected by a high-speed local network. To
meet the Quality-of-Service (QoS) imposed by the clients, quick
responses to access requests are fundamental for these
applications. Among the numerous ways to reduce response
times, data placement, has attracted much attention from
researchers due to its effectiveness and low cost. In this paper, we
propose a novel load-balancing and performance oriented static
data placement strategy, called perfect balancing (PB), which can
be applied to distributed storage subsystems in clusters to
noticeably improve system responsiveness. The basic idea of PB
is to balance the load across local disks and to minimize the
discrepancy of service times of data on each disk simultaneously.
A comprehensive experimental study shows that PB reduces
mean response time up to 19.04% and 8.67% over the two well-
known data placement algorithms Greedy and SP respectively.

I. INTRODUCTION
Due to their cost-effectiveness and good scalability, cluster-

based data-intensive applications such as Video-on-Demand
clusters and Web servers have become increasingly popular
[23][31]. A common requirement imposed by the end-users of
these applications is prompt response. For example, a Video-
On-Demand (VOD) cluster has to quickly respond to access
requests from multiple users so as to provide them with
continuous glitch-free video [13][25]. Similarly, a data-
intensive Web server application that publishes significant
amounts of data stored in a back-end database must answer
end-users’ inquiries instantly before they lose patience [4][23].
It is easy to understand that reducing mean response time of
customer requests is mandatory for these applications.

There are a wide spectrum of different ways of reducing the
mean response time or improving the system throughput for
cluster-based applications [1][13][16][21][22]. Data
placement, or file assignment, allocating of data onto an array
of disks before they are accessed, is one of such avenues that
can significantly affect the overall performance of a parallel
I/O system [1][22][28]. In order to fully exploit the capacities
of a parallel disk storage system, data placement algorithms
for parallel disk systems have been extensively investigated in
the literature [1][5][7][10][22]. Generally, these algorithms
place data onto a parallel disk array so that a special cost
function or performance metrics can be optimized. While

common cost functions include communication costs, storage
costs, and queuing costs, popular performance metrics are
mean response time and overall system throughput [11]. It is
well-known that finding the optimal solution for a cost
function or a performance metric in the context of data
placement on multiple disks is an NP-complete problem [11].
Thus, heuristic algorithms became practical solutions.

Typically, heuristic data placement algorithms fall into two
categories: static and dynamic. Most static data placement
algorithms require complete knowledge about the workload
statistics such as service times and access rates of all the files.
Dynamic data placement algorithms, on the other hand,
generate file-disk allocation schemes on-line to adapt to
varying workload patterns without a prior knowledge of the
files to be assigned in the future. In this paper, we address the
problem of statically assigning non-partitioned files in a
distributed storage subsystem where file accesses exhibit
Poisson arrival rates and fixed service times. Although each
node in a cluster might only have one hard disk drive, the
entire disk set in the cluster can be viewed as a virtual disk
array. Therefore, traditional data placement algorithms like
Greedy [15] and SP [22] are still valid in cluster-based date-
intensive applications.

Since load-balancing is a key step towards low mean
response times, existing algorithms strived to achieve an ideal
load balance across disks. In this paper, disk accesses to a file
fi are modeled as a Poisson process with a mean access rate λi.
Also, we assume a fixed service time ti for file fi. This
assumption is realistic for the following two reasons. First,
each access to file fi could be a sequential read of the entire
file, which is a typical scenario in most file systems or WWW
servers [19]. Second, for large files, when the access unit is
the entire file, the seek times and rotation latencies are
negligible compared with the transfer time. The load, also
called the heat, of a file fi is defined as follows [22]:

 hi =λi * ti . (1)
This is because the combination of a file’s access rate and its
service time accurately gives the load of the file. Greedy, one
of the most commonly used data placement heuristics,
maintains load-balancing by evenly distributing files onto
multiple disks so that each disk has a similar load, which is
the sum of the heat of all files on that disk. Although Greedy
achieved an overall load-balancing across an array of disks, it

 2

overlooked the fact that the variance of the service time at
each disk could significantly affect the mean response time
[22]. Based on this important observation, Lee et al. proposed
a static data placement algorithm, called Sort Partition (SP) in
[22]. Initially, all files are sorted in a list I in descending order
of their service times. Each disk dk is assigned the next
contiguous segment from the ordered list I until its load loadk
reaches the average disk utilization ρ, which is defined as:
 ∑ =

⋅=
m

i ih
n 1

1ρ , (2)

where m is the number of files and n is the number of disks.
This way the load is distributed among the disks evenly. In
fact, it allocates files with similar service times onto one disk
while keeping load balancing across all disks. The rationale
behind SP is to minimize the load variance across all disks, as
well as the variance of the service time at each disk
simultaneously. Performance evaluation provided by [22]
demonstrated that SP noticeably improve performance in
terms of mean response time. To the best of our knowledge,
SP is one of the best static data placement algorithms reported
in the literature so far.

However, there are two obvious drawbacks in the SP
algorithm. First of all, when SP assigns files onto the last disk
dz, it allocates all the remaining files in the list I onto it. As a
result, the load of disk dz is observably higher than that of the
rest disks. Thus, the principle of load balancing across all the
disks is violated. Second, SP algorithm is based on two
important workload characteristic assumptions: the file access
rate obeys a Zipf-like distribution and the file access
frequency is inversely correlated to the file size. In a Zipf-like
distribution, the relative probability of a request for the i’th
most popular file is proportional to 1/iα, with α typically
varying between 0 and 1. In other words, the most popular
files are typically small in size, while the large files are
relatively unpopular. These two workload assumptions were
supported by several early studies on web requests [2][9][14].
It is very difficult for the SP algorithm to reach an ideal load
balancing across the disks because the most popular files
could overload some disks due to their relatively large values
of heat. In other words, the granularity of heat of these files is
large, which makes disks having these files have a load
obviously larger than the average disk utilization ρ. Again, the
load balancing across the disks is affected.

Motivated by the above insightful observations made by
our research, we propose a new data placement strategy,
called perfect balancing (PB), which overcomes the two
drawbacks of SP. The PB strategy avoids the first drawback of
SP by assigning the remaining files onto a subset of the disks
where the average file service times are similar to that of the
remaining files. In addition, PB distributes the most popular
files onto different disks such that they cannot overload a
particular disk.

The rest of the paper is organized as follows. In the next
section we discuss the related work. In Section 3, we
formulate the problem and present the PB strategy as well as
the two existing algorithms. In Section 4 we evaluate
performance of our algorithms based on synthetic benchmarks.

Section 5 concludes the paper with summary and future
directions.

II. RELATED WORK
The data placement, or file assignment problem (FAP)

exists in a wide range of distributed systems including
distributed file systems [27], distributed databases [30], video
servers [31], content distribution networks [6] and the Grid
[12]. The first research work on FAP dates back to late 1960s
[8]. Since then FAP has been comprehensively investigated
because the potential gain obtained by solving a FAP is
significant [11]. Typically, solutions to FAP fall into two
camps: static and dynamic. Most static file assignment
algorithms assume that access statistics are immutable, and
hence the file assignment allocation scheme needs to be
computed only once and can continuously work for a long
time period [8][11][17]. Greedy, originated from longest
processing time (LPT) algorithm proposed by Graham in [15]
is one of the most well-known static file assignment heuristic
algorithms. Dynamic file assignment algorithms [24][29], on
the other hand, update the file allocation scheme potentially
upon every request. Obviously, they are effective when the
files are relatively small in size such as the case in Web proxy
caching. However, in applications like distributed video
servers [26][31], since the files are of large size and they do
not change in size, dynamic schemes become less useful.

With the advent of advances of distributed systems, new
algorithms have been developed recently to solve problems
such as data object replica placement [18][20], data
management for large-scale storage systems [3][22], and
automatic near-optimal storage system designs [4]. Essentially,
these problems are either directly derived from or closely
related to the FAP problem. In recognition that minimizing the
variance of service times at each disk is of the same
importance as minimizing the utilization of each disk, Lee et
al. proposed a static file assignment algorithm called sort
partition (SP) and a semi-dynamic file assignment algorithm
named hybrid partition (HP) [22]. Compared with the
traditional Greedy algorithm, SP significantly improves the
mean response time by taking the two minimizations into
account simultaneously [22]. On the other hand, HP is a
batch-based variant of SP, which can run in on-line mode.
Based on our knowledge, SP is one of the best existing static
file assignment algorithms so far.

Without loss of generality, we assume that (1) each data is
viewed as an independent file; (2) communication delays
between any pair of disks are identical and negligibly small
[22]; (3) disk access (read) to each data is modelled as a
Poisson process with a mean access rate λi; (4) a fixed service
time si for each data; for example, each read on a data results
in a sequential scan of the entire data. For large size data, this
assumption is valid because when the basic unit of data access
is entire data, seek time, rotation latency, and controller
overhead are negligible in comparison with data transfer time;
(5) the distributed disk storage system in the cluster is
homogeneous in the sense that each disk has the same
performance metrics.

 3

III. DESIGN AND IMPLEMENTATION OF PB
In this section, we first formulate the FAP problem and

present the system model, which is followed by a detailed
description of the PB algorithm. Then we prove the time
complexity of PB.

A. Problem Formulation and System Architecture
A distributed storage system consists of a linked group, e.g.,

D = {d1, ..., dj, …, dn}, of independent homogeneous disk
drives. The set of files can be represented as F = {f1, …, fi, ...,
fm}. In the system, a disk dj is modeled as a three-element
tuple dj = (cj, tj, lj), where cj, tj, lj are the disk capacity in
GByte, transfer rate (read speed) in Mbyte/second, and load
(total sum of files’ heats on the disk). We assume that disks
are always large enough to accommodate files to be assigned
on them. Similarly, a file fi is modeled as a set of rational
parameters, e.g., fi = (si, λi, ti, hi), where si, λi, ti, hi are the file’s
size in Mbyte, access rate, expected service time, and heat. In
this paper, disk accesses to a file fi are modeled as a Poisson
process with a mean access rate λi.

The architecture of the data placement problem is
illustrated in Fig. 1. Note that in this paper we assume that
each node in a cluster only has one hard disk drive attached.
Also, each node maintains a Local Queue, where requests
target on files on that node are stored in their arrival order.
Data placement algorithms like Greedy, SP, and PB allocate a
group of files onto a set of identical disks so that the mean
response time can be minimized. Fig. 1 depicts the subsequent
file access requests scheduling process after the file
assignment process completes. Here, we employ the First-
Come-First-Serve (FCFS) scheduling heuristic. Suppose there
are totally u requests in the request set, which is modeled as R
= {r1, ..., rk, …, ru}. Each request is modeled as rk = (fidk, ak),
where fidk is the file identifier targeted by the request and ak is
the request’s arrival time. For each arrival request, the FCFS
scheduler uses the allocation scheme X generated by data
placement algorithms to find the disk on which the target file
of the request resides. And then it directs the request to the
disk’s local queue. In fact, the request workload is a multi-

class workload with each class of requests having its fixed λi
and ti (see Fig. 1).

To obtain the response time of a request rk, two important
parameters, the start time and finish time of rk on a disk dj
must be computed. We denote the start time and finish time of
rk on disk dj by stj(rk) and ftj(rk), respectively. In what follows
we present derivations leading to the final expressions for
these two parameters. There are three cases when rk arrives in
Qj (1 ≤ j ≤ n), the local queue of disk dj. First, dj is idle and Qj
is empty. Second, dj is busy and Qj is empty. Third, dj is busy
and Qj is not empty. Thus, stj(rk) is expressed as

⎪
⎪

⎩

⎪
⎪

⎨

⎧

++

+=

∑
≤∈

otherwise ,

empty is andbusy is if ,

empty is and idle is if ,

)(

, kpjp

p
aaQr

fidjk

jjjk

jjk

kj

tra

Qdra

Qda

rst , (3)

where rj represents the remaining service time of a request
currently running on dj, and ∑

≤∈ kpjp

p
aaQr
fidt

,

 is the overall service

time of requests in Qj whose arrival times are earlier than that
of rk. Consequently, ftj(rk) can be calculated by

 ftj(rk) = stj(rk) +
kfidt , (4)

where
kfidt is the service time of the file that request rk targets

on. As a result, the response time of request rk can be obtained
by

 rtj(rk) = ftj(rk) - stj(rk). (5)
Thus, the mean response time of the request set R is

expressed as below
 mrt(R) = urrt

u

njk
kj∑

≤≤= 1,1

)(. (6)

The FAP problem now can be formulated as: given a set of
files F and a parallel disk set D, find an allocation scheme X
that optimizes the mean response time expressed by Eq. 6.

B. Algorithm Description
Fig. 2 outlines the PB algorithm with some detailed

explanations. It is recognized that even distribution of
workload among all disks and minimization of the variance of
the service time at each disk are two important paths towards
the goal of minimizing the queuing delay [22]. PB takes these
two critical aspects into account as well. Specifically, PB
computes the average disk load ρ in step 3 and enforces the
load on each disk not to exceed ρ (Step 7). Step 4 sorts the file
set F in file size so that files with similar sizes can be
allocated onto the same disk, a clever strategy that was
employed by SP as well [22]. Besides, PB separates the most
popular n-1 files onto different disks rather than a consecutive
allocation of a sorted file set, which was adopted by SP (Step
5). The reason why we exclude disk dn out of Step 5 is that it
will be exclusively used by files with very big sizes.
Confining very big files in one disk will prevent them from
severely block responses to the requests for small files, which
could happen if they are mixed together with small files on the
same disk. The advantage of dispersing the n-1 most popular

FCFS
Queue Class

Class

Class
λ1

λ2

λm

R
e
q
u
e
s
t
s

Local
Queue

d1

d2

dn

Fig. 1. System architecture

 4

files is that files with high load (heat) values will be
distributed onto distinct disks so that the overall load
balancing could be further improved. Moreover, the most
unpopular files with large sizes will be allocated on the last
disk dn (Step 6). PB overcomes a hidden drawback of SP
where the allocation of the remaining files onto the last disk
makes it overloaded. In stead of allocating all the remaining
files on the last disk, for each remaining file PB assigns it onto
the disk within the range [d1, dn-1], which currently has lowest
load (Step 8). This way the load of the remaining files can be
evenly shared by the n-1 disks.

C. Time Complexity Analysis
Before qualitatively comparing our scheme with two

existing algorithms, we demonstrate the time complexity of
the PB algorithm.
Theorem 1. Given a parallel disk array system D = {d1, d2, ...,
dj,…, dn} and a collection of files represented by a file queue

F = (f1, f2, ..., fi,…, fm), the time complexity of PB is
O(mlgm+2m+n), where m is the number of files in Q, n is the
number of disk in the system P.
Proof. It takes O(m) time to compute the heat hi for each file fi
(Step 1). Also, it takes O(n) time to initialize the load and the
allocation map for each disk (Step 2). The time complexity of
sorting the file set F is O(mlgm) as we have m files (Step 4).
Step 5 takes time O(n-1) to be completed. Similarly, Step 6
consumes time O(m-k+1). Step 7 takes O(k-n) to assign the
rest files on disks. To discover an appropriate disk in {d1, …,
dn-1} for a remaining file to be allocated, the worst case for PB
is to visit each of the n-1 disks in {d1, …, dn-1} (Step8).
Consequently, the worst case time complexity for allocating
one remaining file is O(n-1) (see Step 8). Assume we have w
remaining files (1 ≤ w ≤≤ m). Thus, Step 8 takes O(w(n-1)).
Since w is far smaller than m and n is usually a very small
number compared with m, O(w(n-1)) is much smaller than
O(m). Therefore, time complexity of Step 8 can be ignored.

Input: n = number of disks, m = number of files, hi = heat of file fi, si = expected service time of file fi
Output: A file allocation matrix X (n, m)
Step 1- Compute the heat hi for each file fi
Step 2- Initialize the load and the allocation map for each disk

for each disk dj do
 loadj = 0; X(dj, :) = 0

end for
Step 3- Use Eq. 2 to compute the average disk load ρ
Step 4- Sort the service time of all files in ascending order
Step 5- Assign the most popular n-1 files {f1, f2, .., fn-1} to disks {d1, d2, …, dn-1}, respectively

fi = 1
for (dj = 1; dj ≤ n-1; dj++) do

loadj = loadj + hi
X(dj, :) = fi
fi = fi +1

 end for
Step 6- Assign the most unpopular files {fk, fk+1, .., fm} onto the disk dn until its load reaches ρ
Step 7- Assign the rest files to disks until the disk load reaches the predetermined threshold value ρ

fi = n;
for (dj = 1; dj ≤ n-1; dj++) do

loadj = 0;
while (loadj ≤ ρ and fi ≤ k) do

 X(dj, :) = fi // File fi is allocated on disk dj
loadj = loadj + hi
fi = fi +1

 end while
 end for
Step 8- Assign the remaining files to disks in the range {d1, …, dn-1}
 if (fi ≤ k)
 for each remaining file do
 Find the lowest loaded disk dj where 1 ≤ j ≤ n-1
 X(dj, :) = fi // File fi is allocated on disk dj

loadj = loadj + hi
 end for
 end if

Fig. 2. The PB algorithm

 5

Other steps simply take O(1) time. Hence, the worst-case time
complexity of the PB algorithm is: O(m)+O(n) + O(mlgm)+
O(n-1)+O(m-k+1)+O(k-n) = O(mlgm+2m+n). �

Theorem 1 indicates that the time complexity of the PB
algorithm is typically low. For example, in our experiments,
the value of m is set to 5000 and the value of n is in the range
[8, 32], which should take less than hundreds of microseconds
to complete the PB algorithm in modern processors. An
implication of Theorem 1 is that PB has potential to be
extended to be applied in real-world applications because of
its low complexity.

IV. SIMULATION STUDY
Now we are in a position to evaluate the effectiveness of

the proposed PB data placement scheme using extensive
simulations. The advantage of using simulation is that we can
easily vary parameters, which is a key component of this
paper. The two baseline algorithms that were used to compare
with our PB strategy are briefly described below.
(1) Greedy: The most common heuristic for multiple disks
load balancing. It can operate in either on-line mode or off-
line mode. Here, we only consider its off-line mode because
PB is an off-line file assignment strategy. It first calculates the
mean load of all files and then assigns a consecutive set of
files whose total load is equal to the mean load onto each disk.
Its goal is to generate a file assignment scheme such that the
mean response time of the parallel I/O system can be
minimized.
(2) SP (Sort Partition): It first computes the average disk
utilization using Eq. 2. Next, it sorts all files into a list I in
descending order of their service times. Finally, it allocates
each disk dj the next contiguous segment of I until its load
loadj reaches the maximum allowed threshold ρ. The
remainder files (if any) after one round allocation will be
assigned to dn. It improves the performance of the Greedy
algorithm by minimizing the variances of service times at
each disk.

A. Simulator and Parameter Space
We have developed an execution-driven simulator that

models an array of conventional Cheetah disks. The main
characteristics of the conventional disk are shown in Table I.

TABLE I
MAIN CHARACTERISTICS OF THE CHEETAH DISK

Description Value
Disk model Seagate Cheetah ST39205LC
Storage capacity 9.17 GBytes
Average seek time 5.4 msecs
Average rotation time 3 msecs
Standard interface SCSI
Rotational speed 10000 rpm
Number of platters 1
Transfer rate 31 Mbytes/second

The performance metrics by which we evaluate system

performance include:

• Mean response time: average response time of all file
access requests submitted to the simulated distributed storage
cluster.
• Mean response time improvement: decrease in percentage
of mean response time gained by PB compared with the two
existing algorithms.

Two categories of parameters directly influence the file
assignment algorithms that we investigate: workload
characteristics and disk drive characteristics. Among the large
number of parameters that specify a workload, we identified
five key characteristics: number of files, request rate, file
popularity weight, file size distribution and the coverage of
the file system.
1. Number of files: Since the total number of files to be
assigned onto a parallel disk array directly determines the
disk array’s load, we set it to 5000 so that each disk can
accommodate around 312 files in case there are 16 disk
drives in the array. The number of files per disk is a realistic
mimic of the real-world situation. Each file was allocated to a
single disk. No files can be partitioned or replicated.
2. Request rate: Each file access represents a sequential read
of the entire file. Hence, the service time of a file access
request is proportional to the file’s size. We assume that each
file has a fixed request arrival rate λi and the arrival interval
times are exponentially distributed. The aggregate arrival rate

of the entire system is defined as ∑ =

5000

1i iλ . The value of the
aggregate arrival rate represents the intensity of the total
access requests submitted to the disk array where 5000 files
have been assigned across.
3. File popularity weight: File popularity weight relates to
the frequency with which file requests arrive at the
distributed storage cluster. Since the frequency of file access
usually exhibits a Zipf-like distribution, we assume that the
distribution of file access requests is a Zipf-like distribution

with a skew parameter θ = log 100
X

/log 100
Y

, where X percent
of all accesses were directed to Y percent of files [22]. The
value of X:Y is called skew degree in this paper and α =1- θ
(see Section 1 for α). Fig. 3 shows a Zipf-like distribution of
file access rate on the 5000 files with X:Y =70:30 assuming
that file f1 is the most popular file and f5000 is the most
unpopular one. In our simulations, we tested four values of θ
with skew degree (X:Y) changing from 50:50 to 70:30.
4. File size distribution: The distribution of access rates
across the files and the distribution of file sizes were
inversely correlated with the same skew parameter θ, as
shown in Fig. 3. The file size distribution is reasonable
because the phenomena that popular files are generally small
ones can be frequently observed.
5. Coverage of the system: The file system coverage is
defined as the percentage of the entire file repository that is
actually accessed by the request workload. We set the
coverage of the system to 100% in our simulations, which
means all files in the system are accessed at least once.

TABLE II

CHARACTERISTICS OF SYSTEM PARAMETERS

 6

Parameter

Value (Fixed) – (Varied)

Number of files (5000)

Skew degree (70:30) – (50:50, 60:40,
70:30)

Coverage (100%)

Number of disks (16) – (8, 12, 16, 20,
24,28,32)

Aggregate access rate (10) – (10, 15, 20, 25, 30, 35,
40, 45, 50) (1/second)

Simulation duration (1000) seconds

Table II summarizes the configuration parameters of a

simulated distributed storage cluster used in our experiments
and characteristics of the synthetic workload. All synthetic
workload used from Section IV.B to Section IV.D were
created by our trace generator. Although number of disks,
aggregate access rate, and size of files are synthetically
generated, we examined impacts of these important
parameters on system performance by controlling the
parameters.

B. Impact of Aggregate Access Rate
The goal of this experiment is to compare the proposed PB

algorithm against the two well-known file assignment
schemes, and to understand the sensitivity of the three
heuristics to the aggregate access rate in a distributed storage
cluster, where an array of identical disk drives serve incoming
requests simultaneously. The aggregate access rate varies
from 10 (1/second) to 50 (1/second) and the file sizes were
distributed according to Zipf’s law with skew degree 70:30.

Fig. 4 shows the simulation results for the three algorithms
on a simulated distributed storage cluster with 16 disk drives
(nodes). We observe from Fig. 4a that PB consistently
outperforms the two exiting approaches in terms of mean
response time. This is because PB considers both minimizing
variance of service time for each disk and fine-tuning load
balancing degree. Consequently, the sorted files were
continuously assigned to disks such that a more evenly

0

1000

2000

3000

4000

5000

0 20 40 60

aggregate access rate(1/s)

m
ea

n
re

sp
on

se
 ti

m
e(

s)

SP
PB
Greedy

Fig. 4. Impact of aggregate access rate

TABLE III

DETAILED COMPARISONS IN AGGREAGE ACCESS RATE

Access
rate

Greedy SP PB
Improved

over
(SP)

Improved
over

(Greedy)
10 797.76 690.78 678.41 1.79% 14.96%
15 1241.48 1077.94 1060.59 1.61% 14.57%
20 1669.48 1469.33 1446.61 1.55% 13.35%
25 2116.73 1855.27 1826.31 1.56% 13.72%
30 2555.54 2247.66 2211.35 1.62% 13.47%
35 2977.21 2634.41 2592.83 1.58% 12.91%
40 3488.79 3023.85 2975.10 1.61% 14.72%
45 3898.65 3407.68 3356.71 1.49% 13.90%
50 4397.67 3802.93 3741.20 1.62% 14.93%

distributed workload allocation scheme was generated. SP
takes the second place in mean response time metric, which is
consistent with our expectation because it is one of the best
existing static file assignment heuristics. To clearly
demonstrate the performance improvement, Table III provides
mean response time decrease gained by PB compared with
Greedy and SP, respectively. In particular, PB can reduce
mean response time on average by 14.1%nd 1.1%, compared
with Greedy and SP, respectively.

C. Scalability
This experiment is intended to investigate the scalability of

the three algorithms. We scale the number of disks in the
system from 8 to 32. The aggregate access rate is configured
to 10 (1/second). The skew degree is still set to 70:30. Fig. 5
plots the performance of the three algorithms as functions of
the number of disks. The results show that PB exhibits a good
scalability.

Fig. 5 shows that all of the three algorithms deliver better
performance in mean response time when the number of disks
increases. This is because each disk has few files to be
assigned on when the system is scaled up. One important
observation is that PB outperforms the rest two approaches in
all tested cases. Comparing the results from Table IV, we can
see that the mean response time improvement becomes more
pronounced when the number of disks becomes larger. In
addition, the implication of results from Table IV is that PB
scales well when the number of disk in a cluster increases.
Another observation is that the number of disks significantly

0 1000 2000 3000 4000 5000
0

0.2

0.4

0.6

0.8

1.0

File

Access Rate and File Size Distributions

Access rate
File size

Fig. 3. Access rate and file size distributions

 7

0

500

1000

1500

2000

0 10 20 30 40

number of disks

m
ea

n
re

sp
on

se
 ti

m
e(

s)
SP
PB
Greedy

Fig. 5. Impact of the number of disks

TABLE IV

DETAILED COMPARISONS IN NUMBER OF DISKS

Disk
number

Greedy SP PB Improve
(SP)

Improve
(Greedy)

8 1678.14 1457.27 1447.89 0.64% 13.72%
12 1113.20 947.37 934.45 1.36% 16.06%
16 809.67 689.91 678.02 1.72% 16.26%
20 626.18 544.28 526.78 3.21% 15.87%
24 504.81 445.13 424.36 4.66% 15.94%
28 432.49 370.62 350.46 5.44% 18.96%
32 364.99 323.56 295.48 8.67% 19.04%

affects system performance and our PB scheme can better
exploit the increased number of disks when compared to
Greedy and SP.

Table IV gives detailed experimental result comparisons
among the three algorithms. Clearly, the improvement gained
by PB comparing SP noticeably escalates when the system
was scaled up. In short, compared with Greedy and SP, PB
improves mean response time up to 19.04% and 8.67%,
respectively.

D. Impact of Skew Degree
To verify the performance impact of the skew parameter θ,

we evaluate the performance as functions of skew degree.
When the skew degree set to 50:50, PB degraded to SP and
Greedy in terms of mean response time (Fig. 6). This is
because the skew parameter θ is equal to 1, which means the
access requests were evenly distributed across all files without
any request skew. On the other hand, when the skew degree
was enlarged to 70:30, PB can reduce mean response time by
1.67% and 16.26%, compared with SP and Greedy,
respectively. We observe from Fig. 6 that PB achieves the best
mean response time improvement when the skew degree is
70:30. In Fig. 6, the “1”, “2”, and “3” on X axis represents
skew degree 50:50, 60:40, and 70:30, respectively.

V. CONCLUSIONS
In this paper, we address the issue of statically allocating

non-partitioned files onto a distributed storage cluster where
the file access requests exhibit Poisson arrival rates and fixed

service times. We found that the performance of existing data
placement algorithms can be observably improved by
improving load-balancing across the disks. Therefore, a
perfect balancing (PB) data placement strategy is developed to
generate optimized file allocations that minimize mean
response time. To quantitatively evaluate the effectiveness and
practicality of the proposed PB scheme, we conducted
extensive experiments using synthetic benchmarks.
Experimental results show that when the distribution of access
rates across the files and the distribution of file sizes were
inversely correlated with the same skew parameter θ (Fig. 3),
PB consistently improves the performance of distributed
storage clusters in terms of mean response time over two well-
known file assignment algorithms. In comparison PB,
achieves improvement in mean response time by up to 8.67%
over one of the best existing static non-partitioned file
assignment algorithms SP. The improvement of PB in mean
response time over Greedy on average is 14.06%.

Future studies in this research can be performed in the
following directions. First, we will extend our scheme to a
fully dynamic environment, where file access characteristics
are not known in advance and may vary over time. As a result,
a dynamic file assignment algorithm is mandatory so that
dynamically arrived files can be re-allocated by migrating
files from one disk to another. Second, we intend to enable the
PB scheme to cooperate with the RAID architecture, where
files are usually partitioned and then distributed across disks
in order to further reduce the service time of a single request.

ACKNOWLEDGMENT
This work was supported by the National Science

Foundation under grant number CCF-0742187.

REFERENCES
[1] Akyürek and K. Salem, “Adaptive block rearrangement,”

ACM Trans. Computer Systems, Vol. 13, Issue 2, pp. 89-
121, 1995.

[2] V. Almeda, M. Cesario, R. Fonseca, W. Meira Jr. and C.
Murta, “Analyzing the behaviour of a proxy server,” The
3rd Int’l WWW Caching Workshop, 1998.

[3] G.A. Alvarez et al., “Minerva: An automated resource
provisioning tool for large-scale storage systems,” ACM

0

200

400

600

800

1000

1 2 3
skew degree

m
ea

n
re

sp
on

se
 ti

m
e(

s) sort
pb
greedy

Fig. 6. Impact of skew degree

 8

Trans. Computer Systems, Vol. 19, No. 4, pp. 483 - 518,
Nov. 2001.

[4] E. Anderson, S. Spence, R. Swaminathan, M. Kallahalla
and Q. Wang, “Quickly finding near-optimal storage
designs,” ACM Trans. Computer Systems, Vol. 23, No. 4,
pp. 337 - 374, Nov. 2005.

[5] A. Brinkmann, K. Salzwedel, and C. Scheideler,
“Efficient, distributed data placement strategies for
storage area networks,” Proc. 12th Annual ACM
Symposium on Parallel Algorithms and Architectures, pp.
119-128, 2000.

[6] S. Buchholz and T. Buchholz, “Replica placement in
adaptive content distribution networks,” ACM Symp.
Applied Computing, pp. 1705 - 1710, 2004.

[7] Y. Cho, M. Winslett, Y. Chen, and S.W. Kuo, “Parallel
I/O performance of fine grained data distributions,” Proc.
7th Int’l Symp. High Performance Distributed
Computing, pp. 163-170, 1998.

[8] W. Chu, “Optimal file allocation in a multiple computer
system,” IEEE Trans. Computers, Vol. 18, No. 10, pp.
885 - 889, 1969.

[9] C. Cunha, A. Bestavros and M. Crovella,
“Characteristics of WWW Client-based Traces,”
Technical Report, 1995-010, Boston University, 1995.

[10] C.H.Q. Ding and Y. He, “Data organization and I/O in a
parallel ocean circulation model,” Proc. 13th Annual
Int’l Conf. Supercomputing, 1999.

[11] W. Dowdy and D. Foster, “Comparative Models of the
File Assignment Problem,” ACM Computing Surveys,
vol.14, No.2, pp.287-313, 1982.

[12] I. Foster, “The Grid: Blueprint for a New Computing
Infrastructure,” Morgan Kaufmann, 2 Ed., 2003.//change

[13] S. Ghandeharizadeh, S.H. Kim, and C. Shababi, “On
disk scheduling and data placement for video servers,”
Sigmetrics Performance Evaluation, Vol. 23, Issue 1, pp.
37-46, 1995.

[14] S. Glassman, “A caching relay for the World Wide
Web,” First Conf. World-Wide Web, pp. 165 - 173, 1994.

[15] R.L. Graham, “Bounds on Multiprocessing Timing
Anomalies,” SIAM Journal Applied Math., Vol. 7, No. 2,
pp. 416 – 429, 1969.

[16] H. Huang, W. Hung, and K.G. Shin, “FS2: dynamic data
replication in free disk space for improving disk
performance and energy consumption,” Proc. 12th ACM
SOSP, pp. 263-276, 2005.

[17] J. Kangasharju, J. Roberts, and K. Ross, “Object
replication strategies in content distribution networks,”
Computer Communications, Vol. 25, No. 4, pp. 367 -
383, 2002.

[18] M. Karlsson and C. Karamanolis, “Choosing replica
placement heuristics for wide-area systems,” Proc. 24th
Int'l Conf. Distributed Computing Systems, pp. 350 -
359, 2004.

[19] T. Kwan, R. Mcgrath, and D. Reed, “Ncsas World Wide
Web Server Design and Performance,” Computer, vol.
28, no. 11, pp. 67 - 74, Nov.1995.

[20] T. Loukopoulos, P. Lampsas and I. Ahmad, “Continuous
replica placement schemes in distributed systems,” Proc.
19th Int'l Conf. Supercomputing, pp. 284 - 292, 2005.

[21] J.N. Matthews, D. Roselli, A.M. Costello, R.Y. Wang,
and T.E. Anderson, “Improving the performance of log-
structured file systems with adaptive methods,” Proc.
16th ACM Symposium on Operating Systems Principles,
pp. 238-251, 1997.

[22] L.W. Lee, P. Scheuermann, and R. Vingralek, “File
assignment in parallel I/O systems with minimal
variance of service time,” IEEE Trans. Computers, Vol.
49, Issue 2, pp. 127-140, 2000.

[23] P. Merialdo, P. Atzeni, and G. Mecca, “Design and
development of data-intensive web sites: The Araneus
approach,” ACM Trans. Internet Technology, Vol. 3,
Issue 1, pp. 49-92, February 2003.

[24] L. Qiu, et al., “On the placement of web server replicas,”
Proc. IEEE INFOCOM, pp. 1587 - 1596, April 2001.

[25] N.J. Sarhan and C.R. Das, “Adaptive Block
Rearrangement Algorithms for Video-On-Demand
Servers,” Proc. 30th Int’l Conf. Parallel Processing,
2001.

[26] P. Scheuermann, G. Weikum, and P. Zabback, “Data
Partitioning and Load Balancing in Parallel Disk
Systems,” VLDB, Vol.7, No.1, pp. 48 - 66, 1998.

[27] R. Tewari, “Distributed file allocation with consistency
constraints,” Proc. ICDCS, pp. 408 - 415, June 1992.

[28] P. Triantafillou, S. Christodoulakis, and C. Georgiadis,
“Optimal data placement on disks: a comprehensive
solution for different technologies,” IEEE Transactions
on Knowledge and Data Engineering, Vol. 12, Issue. 2,
pp. 324-330, 2000.

[29] J. Wolf, K. Pattipati, “A File Assignment Problem
Model for Extended Local Area Network
Environments,” Proc. 10th Int'l Conf. Distributed
Computing Systems, pp. 554 - 561, 1990.

[30] O. Wolfson, S. Jajodia, and Y. Huang, “An adaptive data
replication algorithm,” ACM Trans. Database Systems,
Vol. 22, No. 4, pp. 255 - 314, 1997.

[31] X. Zhou and C. Xu, “Optimal video replication and
placement on a cluster of video-on-demand servers,”
Proc. Int'l Conf. Parallel Processing (ICPP), pp. 547 -
555, 2002.

