
Making Garbage Collection Wear Conscious for Flash SSD

Jonathan Tjioe, Andrés Blanco, Tao Xie
Department of Computer Science

San Diego State University, San Diego, USA
jontjioe@gmail.com; blancore@rohan.sdsu.edu;

xie@cs.sdsu.edu

Yiming Ouyang
School of Computer & Information

Hefei University of Technology
Hefei, Anhui, P. R. China

oyymbox@163.com

Abstract—Since NAND flash memory has certain inherent
limitations like out-of-place updates and a coarse granularity
of erase unit, a NAND flash memory based solid state disk
needs a garbage collector to erase and recycle previously used
blocks from time to time. Garbage collection, however, can
significantly decrease flash SSD performance as it incurs high
overhead. Various techniques have been proposed to reduce
the cost of garbage collection. Unfortunately, most of them
only take performance into consideration while ignoring block
wear status when choosing victim blocks. As a result, some
blocks could be frequently erased and recycled due to garbage
collection, and thus, prematurely fail because of a high
concentration of erasure cycles. In this research, we propose a
wear conscious garbage collection mechanism named WECO
(wear conscious). To demonstrate the effectiveness of WECO,
we extend a well-known SSD simulator FlashSim so that
WECO can be integrated into typical FTLs (flash translation
layers) such as DFTL (demand-based FTL) and PM (page
mapping). Experimental results show that WECO-DFTL and
WECO-PM substantially improve wear-leveling while
maintaining a performance similar to the two original FTLs.

Keywords-flash memory; solid state disk; garbage collection;
wear-leveling; flash translation layer

I. INTRODUCTION
NAND flash memory (hereafter, flash memory) has

become the standard storage medium for consumer devices
such as MP3 players, smart phones, laptops, and digital
cameras [2][13]. The cost of flash memory continues to
decrease while its capacity keeps increasing [9]. Flash
memory has many benefits such as small form factor, low
energy consumption, and faster access times. As a result,
flash memory based solid state disk (hereafter, flash SSD) is
now considered a replacement for hard disk drive (HDD) not
only in PCs but also in server domains [9].

However, there are certain limitations of flash SSDs that
are not present in HDDs. First, flash SSD has the erase-
before-write problem [6][18], which stems from the intrinsic
physical nature of flash memory. Erase-before-write requires
that an occupied data block (typically 64 or 128 of 4KB
memory cells called pages) must be erased before the new
data can be written to that block. As a result, to update a
piece of data on a page, an out-of-place update method must
be employed: first, the new data is written to an erased page,
next, the page that contains the old data is invalidated,
finally, the virtual-to-physical address mapping table is
modified to reflect this change [14]. The out-of-place

updates necessitate the need for flash SSD to utilize a
garbage collection (GC) mechanism, which reclaims invalid
pages within a block by first relocating valid pages in the
block to new destinations and then erasing the entire block.
The second limitation is the coarser granularity of erase
operations. While write and read operations are conducted at
the page level, erasure must be performed at the block level.
Compared with reading or writing a page, erasing a block
takes a much longer time [1]. Lastly, the lifetime of a block
is limited to a finite number of erasures, after which the
reliability of the block can no longer be guaranteed.
Nowadays, flash memory device write-erase-cycles normally
range from 100K to 1 million [6]. Since many server-class
I/O intensive workloads have heavy localities [23], some
blocks of flash memory can prematurely fail due to a high
concentration of write cycles. The consequence is that the
entire flash memory becomes unreliable after it runs out of
its spare blocks. The write-erase-cycle limitation brings
about the need for a wear-leveling scheme [7][16], which
ensures that all blocks in a flash SSD are worn out evenly in
order to prolong the life and reliability of the flash SSD.

To overcome these limitations, flash SSD employs a
software component called the flash translation layer (FTL),
which serves as a middleware between the operating system
and the flash memory [13]. FTL helps flash SSD to emulate
a standard block device by exposing only read/write
operations to the upper software layers [14]. It performs the
virtual-to-physical address translations and hides the erase-
before-write characteristics of flash memory [14][18]. The
address mapping table is usually stored in a small piece of
SRAM. FTL also provides garbage collection and wear-
leveling capabilities that are vital to the performance and
reliability of flash SSD [13]. Garbage collection and wear-
leveling are two separate modules in an FTL. Garbage
collection mechanisms consolidate existing occupied data
blocks and erase the freed blocks, whereas wear-leveling
techniques distribute writes across the full array of memory
cells in order to avoid premature cell failures.

Since garbage collection involves time-consuming erase
operations plus numerous internal reads and writes, an
ongoing GC process stalls incoming user requests until it
completes [21]. As a consequence, the performance of flash
SSD could be significantly degraded by 20% due to the
queuing delay [8]. A variety of GC mechanisms [15][21]
have been proposed to minimize the garbage collection
overhead. In particular, they have put great efforts on
reducing the total amount of copied data from the victim

2012 IEEE Seventh International Conference on Networking, Architecture, and Storage

978-0-7695-4722-0/12 $26.00 © 2012 IEEE

DOI 10.1109/NAS.2012.20

114

blocks because moving valid data from victim blocks to new
blocks takes a large portion of the total execution time of a
GC process [15]. The most common way to achieve this goal
is to separate data based on their update frequency so that the
number of dead blocks (i.e., blocks that have no valid data)
and almost-dead blocks (i.e., blocks that have few valid data)
can be increased [15]. Recycling dead or almost-dead blocks
can substantially reduce overhead.

Despite the major concern of garbage collection is its
negative impacts on performance, it could also unfavorably
influence wear-leveling. Considerable research has shown
that real-world enterprise workloads exhibit temporal locality
[12][23], which implies that a group of related blocks may be
frequently accessed. The consequence is that these hot
blocks repeatedly become dead or almost-dead blocks, and
thus, are recycled very frequently by garbage collection.
Eventually, these blocks will reach their write-erase-cycle
limitation much faster than others, which leads to an
unreliable flash SSD. Current GC mechanisms normally
ignore wear-awareness when they select victim blocks and
leave the job of making wear evenly distributed to wear-
leveling schemes. Unfortunately, wear-leveling techniques
cannot solve this problem as they are not triggered by GC.
We argue that a new GC mechanism that is conscious of
wear is much needed for server-class flash SSDs.

In this research, we propose a novel garbage collection
mechanism named WECO (wear conscious) to escalate the
reliability of flash SSD by optimizing wear-leveling while
improving the performance. To illustrate the validity of
WECO, we incorporate it into two mainstream FTLs, PM
and DFTL, and rename the resulting FTLs to be WECO-PM
and WECO-DFTL, respectively. Next, we extend FlashSim
[20] to implement the two WECO-powered FTLs into the
well-known flash SSD simulator. Finally, we conduct
extensive simulations on the extended simulator against four
real-world enterprise-scale traces. Comprehensive
experimental results convincingly show that WECO-PM and
WECO-DFTL dramatically improve wear-leveling while
maintaining, and sometimes slightly exceeding, the
performance of the original PM and DFTL.

The remainder of this paper is organized as follows. In
the next section we discuss the related work and motivation.
In Section III, we describe the design and implementation of
WECO. Simulation environment will be presented in Section
IV. In Section V, we evaluate WECO using four real-world
traces. Section VI concludes the paper.

II. RELATED WORK AND MOTIVATION

A. Flash SSD Background
Flash SSD uses non-volatile NAND flash memory,

which enables it to retain data when the power is off [1].
Major components of a flash SSD include flash controller,
internal cache, and flash memory as shown in Fig. 1. The
flash controller manages the entire flash SSD including error
correction, interface with flash memory, and servicing host
requests [1]. The internal cache improves performance by
utilizing fast-access volatile data storage for read-write
buffers and device-specific management data. The flash

memory part of a flash SSD consists of one or more
packages and each package is composed of one or multiple
dies (also called chips). A die contains multiple planes. Each
plane has one register that serves as a buffer for I/O
operations (see Fig. 1). One plane consists of many blocks
and each block is composed of multiple pages. For example,
a Samsung 4GB flash memory package has two dies and
each die contains four planes (see Fig. 1) [1]. Each plane
consists of 2,048 blocks and one 4 KB data register. Each
block has 64 pages and each page is 4 KB.

FTL translates the logical page numbers (LPNs) provided
by the operating system to the physical page numbers (PPNs)
on the flash memory. The address translation typically
requires a page-mapping table to be stored in an internal
SRAM of a flash SSD. This table contains the LPN-to-PPN
mappings. Considerable research has been conducted on
developing various FTLs [14][18][22]. Depending on
address translation granularity, three major types of FTL
schemes have been developed: (1) page-level mapping FTL;
(2) block-level mapping FTL; and (3) hybrid FTL [14]. In a
page-level FTL (page-mapping or PM), each logical page
can be mapped to any physical page in a flash SSD.
Although it can efficiently utilize blocks in a flash SSD and
achieve the highest performance among all existing FTLs,
the size of its mapping table could be too large to be stored
in a SRAM-based cache, which is always very expensive
[14]. A block-level FTL scheme translates each LPN into a
physical flash block number, which results in a much smaller
mapping table. However, block-level FTL requires extra
operations to serve a request, and thus, degrades the
performance of flash SSD [18]. To avoid the drawbacks of
the above two extreme mapping schemes, hybrid FTL
schemes [22] logically divide all physical flash blocks into
two groups: data blocks and log blocks. The vast majority of
physical flash blocks are tagged as data blocks, which are

Figure 1. Internal structure of a flash SSD with multiple packages.

Package 1

Package 0

Die 0

4K Register 4K Register

Plane 0
Block 0
Page 0
Page 1
……

Page 63

Plane 1
Block 1
Page 0
Page 1
……

Page 63

 Die 1

Channel Channel

SATA Host Buffer Manager RAM

FTL
 Garbage

Collection
Wear

Leveling

Flash Controller

Address
Mapping

115

administered by a block-mapping scheme. All remaining
physical blocks are designated as log blocks, which are page-
mapped and invisible to users [18].

Typical hybrid FTL schemes like FAST [22] cannot
achieve a performance level comparable to that of page-
mapping FTLs due to their inherent log-buffer based
mechanisms [14]. Very recently, DFTL [14] and HAT [18],
two state-of-the-art FTLs, have been proposed to address the
problems associated with hybrid FTLs. Deriving from PM,
Aayush et al. proposed a demand-based FTL (DFTL) as a
page-level FTL that exploits the locality of enterprise
workloads by selectively caching page-level address
mappings [14]. The performance of DFTL approaches that of
PM while leading to a much smaller page-mapping table.

B. Existing Garbage Collection Techniques
Considerable research has focused on developing

efficient GC strategies [2][15][21]. Each of them has to make
the following three decisions: (1) when should GC occur? (2)
which block should be selected as a victim block? (3) how
should GC take place?

A GC algorithm might be triggered once a certain
threshold is met. For example, when the percentage of
free/erased pages in a flash SSD is less than 5%, a GC
process is triggered until the SSD reclaims a certain amount
of space [15]. Other triggers could be based on parameters
such as the erase count, update count, or page status. If
supported by the FTL, when the SSD is idle and not serving
any requests, GC can be triggered in the background
transparent to the end user. This is known as passive GC, and
is another method of when GC could occur [13]. One newer
GC scheme is able to preempt on-going GC processes to
service a pending I/O request, and then resumes the GC
process at a later time [21].

Once a GC process is launched, it first needs to select a
victim block that will be recycled. The Greedy method
performs GC by selecting the block with the most invalid
pages. This method offers very high performance as a
smaller number of valid pages needs to be copied to new
blocks. Nevertheless, it cannot provide good wear-leveling
for it does not consider the block erase count. On the other
hand, a wear-leveling driven GC algorithm chooses the least
worn out blocks as victim blocks, and thus, obviously
degrades performance. This is because these least-worn-out
blocks normally store valid pages, which implies that the GC
overhead could be very high. Apparently, pursuing wear-
leveling and improving performance are two conflicting
goals for a GC algorithm. To maintain a balance between
these two often-conflicting goals, Kim and Lee use a score,
which is a weighted sum of block utilization value and wear-
leveling index [19]. However, their victim block selection
mechanism is specific to flash file systems (FFS) [19]. We
extend it to block devices as equation (1) in Section III.

Once a victim block is chosen, any data from valid pages
in the victim block has to be copied to new blocks. Instead of
merely writing this data to any new block, some GC
strategies choose to organize/group this data according to
some characteristic such as the data’s popularity [2][13][19]
so that valid page copying can be performed efficiently.

C. Motivation
Most existing GC techniques [2][15][21] focus only on

performance with little consideration on wear-leveling,
which is critical to flash SSD reliability. Besides, wear-
leveling algorithms are normally implemented as
independent modules inside FTLs, and thus, cannot solve the
wear-out-uneven problem caused by GC. Little research has
focused on obtaining a balance between performance and
wear-leveling in GC. Although touched upon, the method
proposed in [19] is dedicated for flash memory based log-
structured file systems. How to achieve a good trade-off
between performance and wear-leveling in GC for
enterprise-class flash SSDs remains an open question.

To make flash SSD GC techniques both performance-
centric and wear-conscious, in this research we propose a
new GC mechanism called WECO. Two main principles of
WECO are: (1) select victim blocks so that wear-leveling can
be improved while maintaining performance; and (2) group
cold and hot data in order to improve performance.

III. DESIGN AND IMPLEMENTATION
In this section, we provide the design and implementation

details of WECO, which can escalate reliability by
optimizing wear-leveling and maintain good performance by
improving the efficiency of GC. WECO has two major
components: (1) a wear-conscious victim block selection
policy; (2) an autonomous data separation method.

A. Wear-Conscious Victim Block Selection Policy
To make a good trade-off between performance and

wear-leveling, WECO extends the victim block
implementation proposed in [19] to flash SSDs. WECO’s
wear-conscious victim block selection policy is expressed by
equation (1) as below.

minmax

max

00;0
1

2

)1(,
1

)(
)()(

)()1(

����

�
��

����

�

��������

�

�

		

�
��

�
�

�		

�
��

�
�

��

�

andifif
e

where

jerasures
jinvalidjvalid

jvalidkScorevictimBloc

k

The physical block that has the lowest score will be
selected as the victim block. We can see that (1) has two
main terms and two preceding weighting factors. The first
term shows the utilization of a block j since it has the number
of valid pages of a block j divided by the total number of
pages in block j. Upon closer investigation, this term is
merely the Greedy algorithm, and it emphasizes performance
as the only consideration when performing GC. The second
term has the erase count of the block j divided by the
quantity (1 + �max) and it emphasizes wear-leveling as the
only concern. The preceding coefficients for the first and
second terms are (1-�) and �, respectively. � is defined as the
measurement of wear in the flash and k� is a constant used to
define the responsiveness of (1). In other words, if the wear
starts increasing, k� will determine how fast it will be
corrected. From empirical results, we have set 10 as the
default value of k� to provide a moderate “steepness” of
response. Since k� decides the value of �, which in turn
determines the trade-offs made by WECO between

116

performance and wear-leveling, we investigated the impacts
of k� on WECO in Section V. �� is the erasure count
difference between the block with the most erasures, �max,
and the block with the least erasures, �min.

Thus, for (1) when wear in the flash SSD is high, the
second term in the equation, which is wear-conscious,
weighs more heavily for victim block selection than the first
term does. On the other hand, if the wear � is low, then the
first term, which is performance-centric, has more weights
than the second term does. This allows the WECO strategy
to dynamically balance a GC process between performance
and wear-leveling depending on the current wear condition
of the flash SSD. Clearly, equation (1) makes WECO
intelligently adjust around a “sweet spot” between
performance and wear-leveling. Unlike existing GC
algorithms [13], WECO’s victim block selection policy does
not require a certain threshold to be met. Instead, during each
GC operation, it judiciously adjusts the perfect balance of
performance and wear-leveling, resulting in a smoother, less
jagged curve of the actual wear condition of the flash SSD.

B. Autonomous Data Separation Method
The second major component of WECO is an

autonomous data separation method that groups cold and hot
data separately in order to reduce GC overhead and thus to
improve GC performance. Many previous studies have
shown that real-world enterprise-level workloads exhibit
temporal locality [12][23]. Oftentimes, locality is described
as the popularity of a file. Since a file is simply data stored
on pages, locality can be extended to the finer granularity of
the page. Thus, in the context of disk storage systems,
locality has to do with a page or a group of related pages
being frequently accessed. This is sometimes referred to as
the temperature, heat, or popularity of a page. We define
temporal locality to be the times that a page or a group of
pages is accessed during a period of time [12].

Although grouping hot or cold data together in order to
improve performance has also been used by some existing

GC algorithms [2][8][17][19], they either need to manually
adjust certain tunable parameters [19] or require the
knowledge of workload characteristics a priori [8], which
largely limits their application in real-world environments.
WECO’s autonomous data separation method, however,
employs the average heat of all current hot pages as the “hot
temperature” threshold. In other words, if the heat of a page
exceeds this threshold, it will be categorized as a hot page.
Otherwise, it is taken as a cold page. In this way WECO can
automatically tune the “hot temperature” threshold based on
changing workload conditions without any user intervention
or any prior knowledge of workload characteristics.

WECO takes advantage of the temporal locality of
enterprise workloads by grouping hot data and cold data into
separate blocks when performing garbage collection. When
GC occurs, instead of merely just copying the valid data
from the victim block into a new data block, WECO first
checks the temperature of the LPN that the PPN’s data
corresponds to. If the page is determined to be “hot”, then
WECO moves it to a hot block. Otherwise, the page is
determined to be “cold” and it will be moved to a cold block.
The general premise is that blocks that contain hot, or
frequently updated, data will be invalidated faster than those
blocks that contain cold data. Grouping hot pages together
will cause the physical blocks that they reside on to be
invalidated faster, prompting those blocks to have a greater
chance of being selected as a victim block in the future. Once
a hot block is selected as a victim block, it will have mostly
invalid pages. As a result, less valid data will have to be
copied, resulting in a higher efficiency in GC operations. On
the other hand, cold data will be grouped together into cold
blocks. Data in these blocks will require little to no updating,
thus reducing the need to migrate valid cold data to new
blocks, thereby reducing the number of GC operations. This
will in turn result in an increase in performance. Fig. 2
illustrates the basic idea of WECO’s autonomous data
separation method.

In order to measure and keep track of the temperature of
LPNs, WECO uses a data structure called HPT (hot page
table), which has four fields: LPN of the hot page (pageID),
update counter (uc), last time stamp (lts), and temperature
(temper). Table I shows each field with its size.

The pageID is simply a unique number used to keep

track of a page. We use the LPN of the page for this field.
The uc is the number of updates that the corresponding LPN
has received. The lts is the arrival time of the most recent
request corresponding to the pageID. The temper is the
current temperature of the LPN, which is the update count of
the LPN. The size of the HPT table in terms of the number of
entries is designated by HPT_SIZE. The average temperature

Fields Function Type Size
pageID LPN (logical page number) ulong 4 bytes

uc Update counter ulong 4 bytes
lts Last time stamp ulong 4 bytes

temper LPN temperature ulong 4 bytes

Figure 2. Autonomous data separation method.

No

Copy a valid page
to a new block

pageID in HPT?

temper �AVE_HEAT?
Yes

Yes

No

Victim Block

Invalid
Valid

Valid
……

Invalid

Hot Block Cold Block

Valid
Valid

Valid
Valid
Valid

TABLE I. THE HPT TABLE

117

of all the hot pages in HPT is calculated by equation (2)

SIZEHPT

iuc
HEATAVE

SIZEHPT

i

_

)(
_

_

1
�
�� (2)

Read or write?

Incoming Request

AVE_HEAT is the average temperature of all of the hot
pages (all LPN entries in HPT) and it is used as the threshold
for determining whether a page is hot or not. In this way,
WECO is able to adapt to changing workloads. For example,
if the percentage of writes of a certain workload is moderate,
WECO will automatically adjust AVE_HEAT to a lower
value, prompting pages with temperatures greater than this
moderate value to be moved to a hot block. On the other
hand, if a workload exhibits an extremely high percentage of
writes, AVE_HEAT will increase, thus prompting only very
hot LPNs to be moved to a hot block. For many other FTLs,
in order to perform well under different workloads, certain
tunable parameters must be adjusted manually and a prior
knowledge of workload characteristics is required. However,
for WECO, using the average heat from all hot pages in HPT
allows this tuning to happen automatically without any user
intervention or any knowledge of workload characteristics.
In addition, since AVE_HEAT is dynamically calculated, if
a workload changes its access pattern over time, e.g., its
write request percentage decreases, WECO dynamically
adjusts AVE_HEAT with the changing workload. When a
valid page is about to be moved from the victim block,
WECO first checks if its LPN is contained in HPT (see Fig.
2). If not, it will be copied to a cold block because its LPN
has not been written to recently, and thus, does not have the
chance to be hot. On the other hand, if its LPN is in HPT and
its temper is no less than AVE_HEAT, the page is viewed to
be “hot” and will be copied to a hot block (Fig. 2).

Fig. 3 explains how WECO populates and maintains the
HPT table dynamically. Note that a LPN entry was added to
HPT because of an incoming write request to that LPN. Read
requests are skipped as they do not generate any update. The
HPT table is checked only during GC operations although its
contents are populated and updated during the servicing of
incoming requests. If the request is a read, nothing needs to
be done in HPT and the request is serviced normally. On the
other hand, if the request is a write, an entry needs to be
either added or updated in HPT. Upon arrival of a write
request, WECO checks HPT to see if there is a
corresponding entry for the LPN in question. If there is an
existing entry, then the arrival time of the request is written
to the latest time stamp (lts) field and the update counter (uc)
is incremented by one. If an entry does not exist for the LPN,
and there are empty rows in HPT, a new entry will be written
in the first empty row. If an entry does not exist, but there is
no empty row, then the entry with the oldest value in its lts
field will be replaced with the entry of current write request.
Thus, HPT employs a LRU (least recently used) eviction
policy. Once the new entry has been inserted into HPT, its lts
and uc fields will be updated. Finally, the write request will
be serviced normally (see Fig. 3).

C. Overhead of WECO
As with all FTLs, it is important to consider the overhead

associated with new capabilities added. With FAST, for

example, 3% of the physical flash is dedicated for log blocks
[22]. With DFTL [14], 0.2% of the physical flash is reserved
for translation pages to contain the complete LPN to PPN
mappings. Therefore, for a 64GB flash SSD, DFTL would
require about 132MB of the flash memory. For WECO, no
extra space on the physical flash needs to be reserved.
However, WECO does need to store its HPT table in SRAM.
Fortunately, the size of HPT is very small as it is set to 400
records in our implementation. Each record consists of 4
fields, each of which only takes 4 bytes each, yielding a size
of 16 Bytes per record. Thus, the total size of SRAM
required by WECO is only 6.25KB. Unlike DFTL and
FAST, which require a certain percentage of memory, the
overhead associated with WECO is fixed and will not
increase as the capacity of the flash SSD increases.

The incoming request monitoring is the main contributor
to the extra CPU time consumed by WECO (see Fig. 3).
Nevertheless, its runtime overhead is trivial because each of
the steps within an update process on the HPT table (see Fig.
3) only takes O(1) to complete. Besides, the size of HPT is
very small. Assume that the aggregate write request arrival
rate is 100/second. In other words, in every second there are
100 write requests arrive. With a modern 3 GHz processor
with 5 cycles per instruction, updating the HPT table 100
times only takes less than 1 millisecond.

IV. SIMULATOR AND OTHER CONTRIBUTIONS
In this section, we present the simulation environment

setup and other contributions of this research.

A. Simulation Environment
We used DiskSim 3.0 [4], a validated simulator for disk

storage systems, and a well-known flash SSD simulator
FlashSim [20]. DiskSim 3.0 is an efficient and highly
configurable hard disk system simulator designed to
evaluate various aspects of storage subsystem architecture
[4]. It contains modules that allow customizing and
simulating of storage architecture components such as

Figure 3. Population of the HPT.

Yes

No

Write

Read

Already in HPT?

HPT is full?
No Yes

Replace the
oldest lts entry

Add a new
entry

Service the
request

Update the lts
field

Update the uc
field

118

HDD, controllers, buses, etc. However, when DiskSim3.0
was originally created, it did not support the simulation of
flash SSDs. As a result, FlashSim [20], a flash memory
based SSD simulator, was developed to supplement
DiskSim3.0 so that researchers could evaluate the
performance of flash SSDs by using the combination of
DiskSim3.0 [4] and FlashSim [20]. In this research, we used
the DiskSim3.0/FlashSim environment described in [14] as
a starting point for our simulations. We installed
DiskSim3.0/FlashSim in a virtual machine (VM) running
the Ubuntu OS where all our simulations took place.

B. Other Contributions
In addition to the research contributions provided by this

research, we also spent considerable time to write
compilation instruction manuals for both DiskSim3.0 [4]
and FlashSim [20] as well as trace analysis scripts to help
other researchers in flash SSD community. When using the
DiskSim 3.0 environment described in [14], we found that
the available documentation to install, configure, and run
the simulations was inadequate. It took us a couple of weeks
to get the environment running. To save other researchers’
time, we wrote a step-by-step compilation instruction
manual on how to get the simulator working. This document
is now published by the DiskSim website [26]. Additionally,
existing documentation to get FlashSim running was also
found to be inadequate. We authored detailed compilation
procedures for FlashSim as well [27].

Using the freely available VirtualBox software provided
by Oracle [24], we walk the user through installing a VM
with the Ubuntu OS and also how to install and configure
both DiskSim 3.0 and FlashSim. Finally, we have provided
the virtual machine in the Open Virtualization Format
(.ovf), which can be easily imported into any popular
virtualization software. We take these efforts that we
devoted as other contributions to research community.

C. Simulator Extension
We found that there were many items that were hard

coded in the DiskSim/FlashSim environment. One such
example arose with the logical block address (LBA). We
modified DiskSim3.0 so that traces that have LBAs out of
the boundary of the flash SSD size being simulated could be
remapped onto the existing SSD size. This increases the
scalability of the simulation environment, while still
preserving the original characteristics of the real world
trace. We also found that the page size was hard coded to 4
sectors per page. Again, several modifications were made to
accommodate varying size of a page in DiskSim3.0 [4].

In order to evaluate the effectiveness of WECO, we
extended the DiskSim3.0/FlashSim simulation code so that
two WECO-powered FTLs, i.e., WECO-PM and WECO-
DFTL, could be implemented. In particular, we revised the
simulation code to have several toggles that allow us to
easily change the settings for victim block selection,
hot/cold blocks, and wear leveling.

V. PERFORMANCE EVALUATION

A. Experiment Setup
We use real-world traces to compare the performance of

DFTL and PM with WECO-DFTL and WECO-PM,
respectively. The four real-world traces used are: Build [5],
Exchange [11], Financial1 [25], and Financial2 [25]. These
traces were chosen because they are write-intensive. The
more erasures or “wear” that a flash SSD experiences, the
more contributions of wear-leveling to the reliability of the
flash SSD. The Build trace is from a collection of Microsoft
Build Server production traces and it spans a period of 25
hours. The Exchange trace is from a collection of production
traces collected over a period of 24 hours at Microsoft using
the event tracing for Windows framework. The Financial1
and Financial2 traces are I/O traces from OLTP applications
running at two large financial institutions [25]. Table II
shows the statistics of the real-world traces.

Table III illustrates the experimental parameters used.

The three metrics that we measured during simulations are:
� Mean Response Time: average response time of all
requests submitted to a flash SSD. This is the performance
metric used to evaluate the performance of the four FTLs.
� Std. Dev. of Number of Erasures: the standard deviation of
number of erasures that each flash block receives during a
simulation experiment. This is the primary metric for
measuring the four FTLs’ performance in wear-leveling.
� Delta Epsilon: the difference in number of erasures
between the block with the most number of erasures and the
block with the least number of erasures in a flash SSD (see
(1)). This is the secondary metric for measuring the four
FTLs’ performance in terms of wear-leveling.

B. Overall Comparisons
In this section, we compare the overall performance of

the four FTLs. Also, we evaluate the scalability of the four
FTLs by investigating the impacts of flash SSD capacity on
performance and wear-leveling. The maximal capacity of a
flash SSD is set to 8 GB due to the limited footprint of the
four real-world traces. The results from Fig. 4 show that all
four FTLs exhibit a good scalability when the flash SSD
capacity increases from 2 GB to 8 GB. We found that the
two PM-based FTLs (PM and WECO-PM) consistently

Trace
Name

Write
Percentage

Ave. Size
(sector)

Access Rate
(reqs/sec.)

Duration
(hour)

Build 52.90 21 319.3 0.25
Exchange 90.80 23 172.8 0.25
Financial1 76.83 6 122 12.14
Financial2 17.65 4 90.2 11.39

TABLE II. REAL-WORLD TRACE STATISTICS

TABLE III. SIMULATION PARAMETERS

Parameter Value (Fixed) – (Varied)
SSD Capacity (GB) (2) – 2, 4, 8
Page Size (KB) (4) – 4, 8, 16, 32
k� (10) – 0, 4, 6, 8, 10, 20,20, 50, 100, 1000
HPT_SIZE 400

119

Figure 4. The impacts of flash SSD capacity on performance.

Figure 5. The impacts of flash SSD capacity on wear-levling.

outperform the two DFTL-oriented algorithms (DFTL and
WECO-DFTL) in all cases. As we explained before, PM can
provide the highest performance although its cost for
maintaining a large mapping table could be prohibitive.
Next, we discovered that the performance of WECO-DFTL
and WECO-PM are very close to that of DFTL and PM,
respectively. In the worse case, WECO-DFTL increases
mean response time by 9.9% compared with DFTL when
flash SSD capacity is 2 GB in Build trace (see Fig. 4). In
most scenarios, the performance gap between the two
original FTLs and the two WECO-powered FTLs is almost
unnoticeable. Compared with the original DFTL algorithm
WECO-DFTL on average only degrades performance by
2.7% and 1.5% in Financial1 and Financial 2, respectively.
Similarly, compared with the existing PM scheme WECO-
PM on average merely lowers down performance by 1.03%
and 0.45% in Financial1 and Financial 2, respectively. In
fact, in occasional cases, the WECO-powered FTLs are
slightly faster than the originals. For example, WECO-DFTL

slightly performs better than DFTL by 3.9% for the
Exchange trace with a 2GB SSD.

Fig. 5 demonstrates the four FTLs’ performance in terms
of wear-leveling because a lower standard deviation of
number of erasures among all blocks in a flash SSD indicates
a more even distribution of wear, which leads to a higher
level of reliability. The two WECO-powered FTL schemes
are obviously superior to the two original FTLs in wear-
leveling in all cases. On average, WECO-DFTL performs
better than DFTL by 50.4% in wear-leveling. Similarly,
WECO-PM is on average 41.88% better than PM in wear-
leveling. We argue that on average improving wear-leveling
by more than 40% at the cost of performance degradation no
more than 2.4% is worthwhile as it can largely improve flash
reliability. Fig. 6 shows the impacts of flash SSD capacity on
delta epsilon (��, see (1)), which is another metric to show
the degree of wear-leveling. A lower value of delta epsilon
implies a better scenario for wear-leveling as the distribution
of erasures among all blocks in an SSD becomes more even.

Figure 6. The impacts of flash SSD capacity on delta epsilon.

120

Figure 7. The impacts of flash page size on performance.

Figure 8. The impacts of flash page size on wear-leveling.

C. The Impacts of Page Size
This experiment is intended to investigate the impact of

flash page size on the WECO strategy. We vary the size of a
flash page from 4 KB to 32 KB. Fig. 7 plots the
performance of the four FTLs as functions of page size. Fig.
7, similar to Fig. 4, shows comparable mean response times
between the FTLs incorporating the WECO strategy and the
original FTLs. Still, several important observations can be
drawn from Fig. 7. First of all, the performance of all four
FTLs increases when the page size enlarges from 4 KB to
32 KB. This is because the space utilization is improved
when larger pages are used, thereby decreasing the mean
response time. Consider the example of a 32KB file. If the
page size is 4 KB, then a 32KB file would take 8 pages.
Updates to any of the 8 pages could result in a block erasure
later. If the page size was increased to 8 KB, then the 32KB
file would only consist of 4 pages, which obviously reduces

the possibility of a future block erasure. From this example,
it is easy to see that by increasing the page size the block
utilization (see (1)) can be improved. More importantly, by
using larger pages the number of erasures can be reduced as
the number of pages decreases in the first place, which can
improve overall performance of the flash SSD. Second,
when page size increases from 4 KB to 8 KB, all four FTLs
greatly improve their performance (see Fig. 7). This is
especially true for Build and Exchange. However, when
page size is further enlarged from 8 KB to 16 KB, the four
FTLs did not gain too much performance improvement in
Financial1 and Financial2 traces. On the contrary, the
performance improvement is still substantial for the four
algorithms in Build and Exchange traces. For example, in
Build and Exchange traces WECO-DFTL further reduces its
mean response time by 63.6% and 50.5%, respectively.
Note that the average request size for Build is 10.5 KB and
it is 11.5 KB for Exchange (see Table II). Thus, the majority

Figure 9. The impacts of flash page size on delta epsilon.

121

Figure 10. The impacts of k-epsilon on performance.

Figure 11. The impacts of k-epsilon on wear-leveling.

of requests can be accommodated by a single page if page
size 16 KB is used. Otherwise, they need to involve two
pages when 8 KB page size is employed. This explains why
we still see substantial performance improvement when
page size is further enlarged to 16 KB.

The general trend shown in Fig. 8 is that wear-leveling
can be improved when page size increases. For Financial1
trace, in terms of standard deviation of number of erasures,
WECO-DFTL on average is only 8% of that of DFTL. Note
that in both Build and Exchange traces there are some bars
missing in figures Fig. 5, Fig. 6, Fig. 8, and Fig.9. This is
because there are no longer any erasures required during the
entire course of the simulations.

D. Trade-offs between Performance and Wear-Leveling
In this section we investigate the impacts of k� (i.e., k-

epsilon, see (1)) on the two WECO-powered FTLs. As for
DFTL and PM, we do not include them in this group of
experiments because they are irrelevant to k�. We tune the
value of k-epsilon from 0 to 1000 to test its impacts.

Fig. 10 demonstrates that the two WECO-powered FTLs
improve their performance while the value of k-epsilon
increases. As we can see from (1), the value of � decreases
when the value of k-epsilon increases, which in turn
increases the weight of the utilization term in equation (1).
Thus, the two FTLs prefer to select a block with lower
utilization to be the victim whenever GC occurs. In other
words, in this case the two FTLs are performance-driven
while largely ignoring wear-leveling. This speculation is
proved by experimental results shown in Fig. 10 to Fig. 11.

Fig. 10 clearly shows that the mean response time of both
WECO-DFTL and WECO-PM decreases when k-epsilon

increases. However, the impact of k-epsilon on WECO-PM
is much lighter than that of on WECO-DFTL. As we
explained, PM-based FTLs can achieve highest performance
due to their fine granularity page-level address mapping.
Therefore, the performance impact caused by GC is limited.
When k-epsilon is equal to 0, � becomes one. In other words,
WECO turns out to be pure wear-leveling-centric while
completely overlooking performance during GC operations
(see (1)). In this extreme case, both WECO-PM and WECO-
DFTL exhibit the worst performance (see Fig. 10). When the
value of k-epsilon is enlarged, the two FTLs noticeably
improve their performance. Meanwhile, however, their
performance in terms of wear-leveling decreases (see Fig.
11). Based on equation (1), this observation is
understandable as with an increasing k-epsilon WECO starts
to make a good trade-off between performance and wear-
leveling by paying more consideration on performance when
selecting victim blocks. Based on the results shown in
Fig.10-11, the “sweet spot” for k-epsilon lies in the range
between 10 and 20. Experimental results presented in this
section verify the effectiveness of WECO in its ability to
achieve a good balance between performance and wear-
leveling during GC operations.

VI. CONCLUSIONS
Flash memory has become ubiquitous in the commercial

market, but it has still not become the de facto standard in
enterprise-scale environments due to its inherent limitations
such as out-of-place updates and coarse granularity of erase
unit [1][6][18]. In particular, garbage collection can not only
degrade performance due to its high overhead but also
negatively affect flash SSD reliability due to an uneven

122

distribution of erasures it may cause. Unfortunately, current
wear-leveling schemes [6][7][16] cannot solve the wear-out-
uneven problem as garbage collection mechanism and wear-
leveling scheme are two independent modules implemented
in one FTL. Therefore, a wear-conscious garbage collection
mechanism is much needed. In this research, we design and
implement a new garbage collection mechanism called
WECO, which can dynamically make good trade-offs
between performance and wear-leveling during garbage
collection depending on current wear conditions.

In order to implement WECO into two mainstream FTLs
(i.e., DFTL and PM), we extended the DiskSim3.0/FlashSim
simulation environment considerably. We provided a
portable virtual environment as well as a scripting
framework for analysis of traces to assist other flash SSD
researchers. Our comprehensive experimental results show
that WECO-DFTL and WECO-PM far exceed the two
original FTLs in terms of wear-leveling while maintaining a
similar performance. The future work of this research is to
transport WECO into a hardware prototype based on a
development board.

ACKNOWLEDGMENT
We would like to thank Abdul Rahman for helping us

setup experiment environment. This work was supported in
part by the U.S. National Science Foundation under grants
CNS (CAREER)-0845105 and CNS-0834466.

REFERENCES
[1] N. Agrawal, V. Prabhakaran, T. Wobber, J. Davis, M.

Manasse, and R. Panigrahy, “Design Tradeoffs for SSD
Performance,” Proc. USENIX Annual Technical Conference,
pp. 57-70, 2008.

[2] S. Baek, S. Ahn, and J. Choi, “Uniformity Improving Page
Allocation for Flash Memory File Systems,” Proc. 7th
ACM/IEEE Int’l Conf. Embedded Software (EMSOFT 07),
Sept. 2007, pp. 154-163.

[3] S. Boboila and P. Desnoyers, “Write Endurance in Flash
Drives: Measurements and Analysis,” Proc. 8th USENIX
Conference on File and Storage Technologies (FAST), 2010.

[4] J.S. Bucy and G.R. Ganger, “The DiskSim Simulation
Environment Version 3.0 Reference Manual,” Pittsburgh, PA,
Carnegie Mellon University, 2003.

[5] Build Server Trace, SNIA IOTTA Repository,
http://iotta.snia.org/traces/158, Accessed 2010-04-20.

[6] Y.H. Chang, J.W. Hsieh, and T.W. Kuo, “Endurance
Enhancement of Flash-Memory Storage Systems: An
Efficient Static Wear Leveling Design,” Proc. ACM 44th
Annual Design Automation Conference (DAC 07), ACM
Press, June 2007, pp. 212-217.

[7] L.P. Chang and C.D. Du, “Design and Implementation of an
Efficient Wear-Leveling Algorithm for Solid-State-Disk
Microcontrollers,” ACM Transactions on Design Automation
of Electronic Systems. 15, 1, Article 6, 2009.

[8] L. Chang and T. Kuo, “An adaptive striping architecture for
flash memory storage systems of embedded systems,” Proc.
IEEE Real-Time and Embedded Technology and Applications
Symposium, pp. 187–196, 2002.

[9] F. Chen, D.A. Koufaty, and X. Zhang, “Understanding
Intrinsic Characteristics and System Implications Of Flash

Memory based Solid State Drives,” Proc. 11th Int’l Joint
Conf. Measurement and Modeling of Computer Systems
(SIGMETRICS), pp. 181-192, 2009.

[10] C. Dirik and B. Jacob, “The performance of PC solid-state
disks (SSDs) as a function of bandwidth, concurrency, device
architecture, and system organization,” Proc. 36th Int’l Symp.
Computer Architecture (ISCA), pp. 279-289, 2009.

[11] Exchange Trace, SNIA IOTTA Repository,
http://iotta.snia.org/traces/130, Accessed 2010-04-20.

[12] C. Fox, D. Lojpur, and A. Wang, “Quantifying Temporal and
Spatial Localities in Storage Workloads and Transformations
by Data Path Components,” IEEE Int’l Symp. Modeling,
Analysis and Simulation of Computers and
Telecommunication Systems (MASCOTS), 2008.

[13] E. Galand,S. Toledo, “Algorithms and data structures for flash
memories,” ACM Computing Surveys, 37, pp. 138-163, 2005.

[14] A. Gupta, Y. Kim, and B. Urgaonkar, “DFTL: a flash
translation layer employing demand-based selective caching
of page-level address mappings,” Proc. 14th Int’l Conf.
Architectural Support for Programming Languages and
Operating Systems (ASPLOS), pp. 229-240, 2009.

[15] K. Ha and J. Kim, “A Program Context-Aware Data
Separation Technique for Reducing Garbage Collection
Overhead in NAND Flash Memory,” Proc. 7th IEEE SNAPI,
May 2011.

[16] P.G. Harrison and S. Zertal, “Investigating Flash memory
wear levelling and execution modes,” Proc. Int’l Symp.
Performance Evaluation of Computer & Telecommunication
Systems, pp. 81-88, 2009.

[17] J. Hsieh, L. Chang, and T. Kuo, “Efficient on-line
identification of hot data for flash-memory management,”
Proc. ACM Symp. Applied Computing, pp. 838–842, 2005.

[18] Y. Hu, H. Jiang, D. Feng, L. Tian, S. Zhang, J. Liu, W. Tong,
Y. Qin, and L. Wang, “Achieving page-mapping FTL
performance at block-mapping FTL cost by hiding address
translation,” Proc MSST, pp. 1-12, 2010.

[19] H. Kim and S. Lee, “An Effective Flash Memory Manager for
Reliable Flash Memory Space Management,” IEICE TRANS.
INF. & SYST., E85-D(6), June 2002.

[20] Y. Kim, B. Taurus, A. Gupta, and B. Urgaonkar, “FlashSim:
A Simulator for NAND Flash-based Solid-State Drives,” Proc
Int’l Conf. Advances System Simulation, Sept. 2009.

[21] J. Lee, Y. Kim, G. Shipman, S. Oral, F. Yang, and J. Kim, “A
Semi-Preemptive Garbage Collector for Solid State Drives,”
IEEE Int’l Symp. Performance Analysis of Systems and
Software (ISPASS 11), April 2011, pp. 12-21.

[22] S.W. Lee, D.J. Park, T.S. Chung, D.H. Lee, S. Park, and H.J.
Song, “A log buffer-based flash translation layer using fully-
associative sector translation,” ACM Trans. Embedded
Computing Systems (TECS), Vol. 6, Issue 3, July 2007.

[23] A. Leung, S. Pasupathy, G. Goodson, and E.L. Miller,
“Measurement and Analysis of Large-Scale Network File
SystemWorkloads,” Proc. USENIX Annual Technical Conf.,
Boston, MA, June 2008.

[24] Oracle, VirtualBox Virtualizaton Software,
http://www.virtualbox.org/, Accessed on 2010-10-25.

[25] SPC, “Storage Performance Council I/O traces,”
http://www.storageperformance.org/.

[26] J. Tjioe, Compiling_DiskSim3.0_v1.0,
http://www.pdl.cmu.edu/DiskSim/Compiling_DiskSim3.0_v1
.0.pdf, 2010, Accessed 2010-10-25.

[27] J. Tjioe, Compiling_FlashSim_v1.0, 2010.

123

