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Abstract—Since NAND flash memory has certain inherent 
limitations like out-of-place updates and a coarse granularity 
of erase unit, a NAND flash memory based solid state disk 
needs a garbage collector to erase and recycle previously used 
blocks from time to time. Garbage collection, however, can 
significantly decrease flash SSD performance as it incurs high 
overhead. Various techniques have been proposed to reduce 
the cost of garbage collection. Unfortunately, most of them 
only take performance into consideration while ignoring block 
wear status when choosing victim blocks. As a result, some 
blocks could be frequently erased and recycled due to garbage 
collection, and thus, prematurely fail because of a high 
concentration of erasure cycles. In this research, we propose a 
wear conscious garbage collection mechanism named WECO 
(wear conscious). To demonstrate the effectiveness of WECO, 
we extend a well-known SSD simulator FlashSim so that 
WECO can be integrated into typical FTLs (flash translation 
layers) such as DFTL (demand-based FTL) and PM (page 
mapping). Experimental results show that WECO-DFTL and 
WECO-PM substantially improve wear-leveling while 
maintaining a performance similar to the two original FTLs. 

Keywords-flash memory; solid state disk; garbage collection; 
wear-leveling; flash translation layer 

I.  INTRODUCTION 
NAND flash memory (hereafter, flash memory) has 

become the standard storage medium for consumer devices 
such as MP3 players, smart phones, laptops, and digital 
cameras [2][13]. The cost of flash memory continues to 
decrease while its capacity keeps increasing [9]. Flash 
memory has many benefits such as small form factor, low 
energy consumption, and faster access times. As a result, 
flash memory based solid state disk (hereafter, flash SSD) is 
now considered a replacement for hard disk drive (HDD) not 
only in PCs but also in server domains [9].  

However, there are certain limitations of flash SSDs that 
are not present in HDDs. First, flash SSD has the erase-
before-write problem [6][18], which stems from the intrinsic 
physical nature of flash memory. Erase-before-write requires 
that an occupied data block (typically 64 or 128 of 4KB 
memory cells called pages) must be erased before the new 
data can be written to that block. As a result, to update a 
piece of data on a page, an out-of-place update method must 
be employed: first, the new data is written to an erased page, 
next, the page that contains the old data is invalidated, 
finally, the virtual-to-physical address mapping table is 
modified to reflect this change [14]. The out-of-place 

updates necessitate the need for flash SSD to utilize a 
garbage collection (GC) mechanism, which reclaims invalid 
pages within a block by first relocating valid pages in the 
block to new destinations and then erasing the entire block. 
The second limitation is the coarser granularity of erase 
operations. While write and read operations are conducted at 
the page level, erasure must be performed at the block level. 
Compared with reading or writing a page, erasing a block 
takes a much longer time [1]. Lastly, the lifetime of a block 
is limited to a finite number of erasures, after which the 
reliability of the block can no longer be guaranteed. 
Nowadays, flash memory device write-erase-cycles normally 
range from 100K to 1 million [6]. Since many server-class 
I/O intensive workloads have heavy localities [23], some 
blocks of flash memory can prematurely fail due to a high 
concentration of write cycles. The consequence is that the 
entire flash memory becomes unreliable after it runs out of 
its spare blocks. The write-erase-cycle limitation brings 
about the need for a wear-leveling scheme [7][16], which 
ensures that all blocks in a flash SSD are worn out evenly in 
order to prolong the life and reliability of the flash SSD. 

To overcome these limitations, flash SSD employs a 
software component called the flash translation layer (FTL), 
which serves as a middleware between the operating system 
and the flash memory [13]. FTL helps flash SSD to emulate 
a standard block device by exposing only read/write 
operations to the upper software layers [14]. It performs the 
virtual-to-physical address translations and hides the erase-
before-write characteristics of flash memory [14][18]. The 
address mapping table is usually stored in a small piece of 
SRAM. FTL also provides garbage collection and wear-
leveling capabilities that are vital to the performance and 
reliability of flash SSD [13]. Garbage collection and wear-
leveling are two separate modules in an FTL. Garbage 
collection mechanisms consolidate existing occupied data 
blocks and erase the freed blocks, whereas wear-leveling 
techniques distribute writes across the full array of memory 
cells in order to avoid premature cell failures. 

Since garbage collection involves time-consuming erase 
operations plus numerous internal reads and writes, an 
ongoing GC process stalls incoming user requests until it 
completes [21]. As a consequence, the performance of flash 
SSD could be significantly degraded by 20% due to the 
queuing delay [8]. A variety of GC mechanisms [15][21] 
have been proposed to minimize the garbage collection 
overhead. In particular, they have put great efforts on 
reducing the total amount of copied data from the victim 
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blocks because moving valid data from victim blocks to new 
blocks takes a large portion of the total execution time of a 
GC process [15]. The most common way to achieve this goal 
is to separate data based on their update frequency so that the 
number of dead blocks (i.e., blocks that have no valid data) 
and almost-dead blocks (i.e., blocks that have few valid data) 
can be increased [15]. Recycling dead or almost-dead blocks 
can substantially reduce overhead.  

Despite the major concern of garbage collection is its 
negative impacts on performance, it could also unfavorably 
influence wear-leveling. Considerable research has shown 
that real-world enterprise workloads exhibit temporal locality 
[12][23], which implies that a group of related blocks may be 
frequently accessed. The consequence is that these hot 
blocks repeatedly become dead or almost-dead blocks, and 
thus, are recycled very frequently by garbage collection. 
Eventually, these blocks will reach their write-erase-cycle 
limitation much faster than others, which leads to an 
unreliable flash SSD. Current GC mechanisms normally 
ignore wear-awareness when they select victim blocks and 
leave the job of making wear evenly distributed to wear-
leveling schemes. Unfortunately, wear-leveling techniques 
cannot solve this problem as they are not triggered by GC. 
We argue that a new GC mechanism that is conscious of 
wear is much needed for server-class flash SSDs.  

In this research, we propose a novel garbage collection 
mechanism named WECO (wear conscious) to escalate the 
reliability of flash SSD by optimizing wear-leveling while 
improving the performance. To illustrate the validity of 
WECO, we incorporate it into two mainstream FTLs, PM 
and DFTL, and rename the resulting FTLs to be WECO-PM 
and WECO-DFTL, respectively. Next, we extend FlashSim 
[20] to implement the two WECO-powered FTLs into the 
well-known flash SSD simulator. Finally, we conduct 
extensive simulations on the extended simulator against four 
real-world enterprise-scale traces. Comprehensive 
experimental results convincingly show that WECO-PM and 
WECO-DFTL dramatically improve wear-leveling while 
maintaining, and sometimes slightly exceeding, the 
performance of the original PM and DFTL. 

The remainder of this paper is organized as follows. In 
the next section we discuss the related work and motivation. 
In Section III, we describe the design and implementation of 
WECO. Simulation environment will be presented in Section 
IV. In Section V, we evaluate WECO using four real-world 
traces. Section VI concludes the paper. 

II. RELATED WORK AND MOTIVATION 

A. Flash SSD Background 
Flash SSD uses non-volatile NAND flash memory, 

which enables it to retain data when the power is off [1]. 
Major components of a flash SSD include flash controller, 
internal cache, and flash memory as shown in Fig. 1. The 
flash controller manages the entire flash SSD including error 
correction, interface with flash memory, and servicing host 
requests [1]. The internal cache improves performance by 
utilizing fast-access volatile data storage for read-write 
buffers and device-specific management data. The flash 

memory part of a flash SSD consists of one or more 
packages and each package is composed of one or multiple 
dies (also called chips). A die contains multiple planes. Each 
plane has one register that serves as a buffer for I/O 
operations (see Fig. 1). One plane consists of many blocks 
and each block is composed of multiple pages. For example, 
a Samsung 4GB flash memory package has two dies and 
each die contains four planes (see Fig. 1) [1]. Each plane 
consists of 2,048 blocks and one 4 KB data register. Each 
block has 64 pages and each page is 4 KB.  

FTL translates the logical page numbers (LPNs) provided 
by the operating system to the physical page numbers (PPNs) 
on the flash memory. The address translation typically 
requires a page-mapping table to be stored in an internal 
SRAM of a flash SSD. This table contains the LPN-to-PPN 
mappings. Considerable research has been conducted on 
developing various FTLs [14][18][22]. Depending on 
address translation granularity, three major types of FTL 
schemes have been developed: (1) page-level mapping FTL; 
(2) block-level mapping FTL; and (3) hybrid FTL [14]. In a 
page-level FTL (page-mapping or PM), each logical page 
can be mapped to any physical page in a flash SSD. 
Although it can efficiently utilize blocks in a flash SSD and 
achieve the highest performance among all existing FTLs, 
the size of its mapping table could be too large to be stored 
in a SRAM-based cache, which is always very expensive 
[14]. A block-level FTL scheme translates each LPN into a 
physical flash block number, which results in a much smaller 
mapping table. However, block-level FTL requires extra 
operations to serve a request, and thus, degrades the 
performance of flash SSD [18]. To avoid the drawbacks of 
the above two extreme mapping schemes, hybrid FTL 
schemes [22] logically divide all physical flash blocks into 
two groups: data blocks and log blocks. The vast majority of 
physical flash blocks are tagged as data blocks, which are 

Figure 1.  Internal structure of a flash SSD with multiple packages.
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administered by a block-mapping scheme. All remaining 
physical blocks are designated as log blocks, which are page-
mapped and invisible to users [18]. 

Typical hybrid FTL schemes like FAST [22] cannot 
achieve a performance level comparable to that of page-
mapping FTLs due to their inherent log-buffer based 
mechanisms [14]. Very recently, DFTL [14] and HAT [18], 
two state-of-the-art FTLs, have been proposed to address the 
problems associated with hybrid FTLs. Deriving from PM, 
Aayush et al. proposed a demand-based FTL (DFTL) as a 
page-level FTL that exploits the locality of enterprise 
workloads by selectively caching page-level address 
mappings [14]. The performance of DFTL approaches that of 
PM while leading to a much smaller page-mapping table.  

B. Existing Garbage Collection Techniques 
Considerable research has focused on developing 

efficient GC strategies [2][15][21]. Each of them has to make 
the following three decisions: (1) when should GC occur? (2) 
which block should be selected as a victim block? (3) how 
should GC take place? 

A GC algorithm might be triggered once a certain 
threshold is met. For example, when the percentage of 
free/erased pages in a flash SSD is less than 5%, a GC 
process is triggered until the SSD reclaims a certain amount 
of space [15]. Other triggers could be based on parameters 
such as the erase count, update count, or page status. If 
supported by the FTL, when the SSD is idle and not serving 
any requests, GC can be triggered in the background 
transparent to the end user. This is known as passive GC, and 
is another method of when GC could occur [13]. One newer 
GC scheme is able to preempt on-going GC processes to 
service a pending I/O request, and then resumes the GC 
process at a later time [21]. 

Once a GC process is launched, it first needs to select a 
victim block that will be recycled. The Greedy method 
performs GC by selecting the block with the most invalid 
pages. This method offers very high performance as a 
smaller number of valid pages needs to be copied to new 
blocks. Nevertheless, it cannot provide good wear-leveling 
for it does not consider the block erase count. On the other 
hand, a wear-leveling driven GC algorithm chooses the least 
worn out blocks as victim blocks, and thus, obviously 
degrades performance. This is because these least-worn-out 
blocks normally store valid pages, which implies that the GC 
overhead could be very high. Apparently, pursuing wear-
leveling and improving performance are two conflicting 
goals for a GC algorithm. To maintain a balance between 
these two often-conflicting goals, Kim and Lee use a score, 
which is a weighted sum of block utilization value and wear-
leveling index [19]. However, their victim block selection 
mechanism is specific to flash file systems (FFS) [19]. We 
extend it to block devices as equation (1) in Section III. 

Once a victim block is chosen, any data from valid pages 
in the victim block has to be copied to new blocks. Instead of 
merely writing this data to any new block, some GC 
strategies choose to organize/group this data according to 
some characteristic such as the data’s popularity [2][13][19] 
so that valid page copying can be performed efficiently. 

C. Motivation 
Most existing GC techniques [2][15][21] focus only on 

performance with little consideration on wear-leveling, 
which is critical to flash SSD reliability. Besides, wear-
leveling algorithms are normally implemented as 
independent modules inside FTLs, and thus, cannot solve the 
wear-out-uneven problem caused by GC. Little research has 
focused on obtaining a balance between performance and 
wear-leveling in GC. Although touched upon, the method 
proposed in [19] is dedicated for flash memory based log-
structured file systems. How to achieve a good trade-off 
between performance and wear-leveling in GC for 
enterprise-class flash SSDs remains an open question.  

To make flash SSD GC techniques both performance-
centric and wear-conscious, in this research we propose a 
new GC mechanism called WECO. Two main principles of 
WECO are: (1) select victim blocks so that wear-leveling can 
be improved while maintaining performance; and (2) group 
cold and hot data in order to improve performance.  

III. DESIGN AND IMPLEMENTATION 
In this section, we provide the design and implementation 

details of WECO, which can escalate reliability by 
optimizing wear-leveling and maintain good performance by 
improving the efficiency of GC. WECO has two major 
components: (1) a wear-conscious victim block selection 
policy; (2) an autonomous data separation method. 

A. Wear-Conscious Victim Block Selection Policy 
To make a good trade-off between performance and 

wear-leveling, WECO extends the victim block 
implementation proposed in [19] to flash SSDs. WECO’s 
wear-conscious victim block selection policy is expressed by 
equation (1) as below.  

minmax

max

00;0
1

2

)1(,
1

)(
)()(

)()1(

����

�
��

����

�

��������

�

�

		



�
��



�
�

�		



�
��



�
�

��

�

andifif
e

where

jerasures
jinvalidjvalid

jvalidkScorevictimBloc

k

   

The physical block that has the lowest score will be 
selected as the victim block. We can see that (1) has two 
main terms and two preceding weighting factors. The first 
term shows the utilization of a block j since it has the number 
of valid pages of a block j divided by the total number of 
pages in block j. Upon closer investigation, this term is 
merely the Greedy algorithm, and it emphasizes performance 
as the only consideration when performing GC. The second 
term has the erase count of the block j divided by the 
quantity (1 + �max) and it emphasizes wear-leveling as the 
only concern. The preceding coefficients for the first and 
second terms are (1-�) and �, respectively. � is defined as the 
measurement of wear in the flash and k� is a constant used to 
define the responsiveness of (1). In other words, if the wear 
starts increasing, k� will determine how fast it will be 
corrected. From empirical results, we have set 10 as the 
default value of k� to provide a moderate “steepness” of 
response. Since k� decides the value of �, which in turn 
determines the trade-offs made by WECO between 
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performance and wear-leveling, we investigated the impacts 
of k� on WECO in Section V. �� is the erasure count 
difference between the block with the most erasures, �max, 
and the block with the least erasures, �min.  

Thus, for (1) when wear in the flash SSD is high, the 
second term in the equation, which is wear-conscious, 
weighs more heavily for victim block selection than the first 
term does. On the other hand, if the wear � is low, then the 
first term, which is performance-centric, has more weights 
than the second term does. This allows the WECO strategy 
to dynamically balance a GC process between performance 
and wear-leveling depending on the current wear condition 
of the flash SSD. Clearly, equation (1) makes WECO 
intelligently adjust around a “sweet spot” between 
performance and wear-leveling. Unlike existing GC 
algorithms [13], WECO’s victim block selection policy does 
not require a certain threshold to be met. Instead, during each 
GC operation, it judiciously adjusts the perfect balance of 
performance and wear-leveling, resulting in a smoother, less 
jagged curve of the actual wear condition of the flash SSD. 

B. Autonomous Data Separation Method 
The second major component of WECO is an 

autonomous data separation method that groups cold and hot 
data separately in order to reduce GC overhead and thus to 
improve GC performance. Many previous studies have 
shown that real-world enterprise-level workloads exhibit 
temporal locality [12][23]. Oftentimes, locality is described 
as the popularity of a file. Since a file is simply data stored 
on pages, locality can be extended to the finer granularity of 
the page. Thus, in the context of disk storage systems, 
locality has to do with a page or a group of related pages 
being frequently accessed. This is sometimes referred to as 
the temperature, heat, or popularity of a page. We define 
temporal locality to be the times that a page or a group of 
pages is accessed during a period of time [12].  

Although grouping hot or cold data together in order to 
improve performance has also been used by some existing 

GC algorithms [2][8][17][19], they either need to manually 
adjust certain tunable parameters [19] or require the 
knowledge of workload characteristics a priori [8], which 
largely limits their application in real-world environments. 
WECO’s autonomous data separation method, however, 
employs the average heat of all current hot pages as the “hot 
temperature” threshold. In other words, if the heat of a page 
exceeds this threshold, it will be categorized as a hot page. 
Otherwise, it is taken as a cold page. In this way WECO can 
automatically tune the “hot temperature” threshold based on 
changing workload conditions without any user intervention 
or any prior knowledge of workload characteristics.  

WECO takes advantage of the temporal locality of 
enterprise workloads by grouping hot data and cold data into 
separate blocks when performing garbage collection. When 
GC occurs, instead of merely just copying the valid data 
from the victim block into a new data block, WECO first 
checks the temperature of the LPN that the PPN’s data 
corresponds to. If the page is determined to be “hot”, then 
WECO moves it to a hot block. Otherwise, the page is 
determined to be “cold” and it will be moved to a cold block. 
The general premise is that blocks that contain hot, or 
frequently updated, data will be invalidated faster than those 
blocks that contain cold data. Grouping hot pages together 
will cause the physical blocks that they reside on to be 
invalidated faster, prompting those blocks to have a greater 
chance of being selected as a victim block in the future. Once 
a hot block is selected as a victim block, it will have mostly 
invalid pages. As a result, less valid data will have to be 
copied, resulting in a higher efficiency in GC operations. On 
the other hand, cold data will be grouped together into cold 
blocks. Data in these blocks will require little to no updating, 
thus reducing the need to migrate valid cold data to new 
blocks, thereby reducing the number of GC operations. This 
will in turn result in an increase in performance. Fig. 2 
illustrates the basic idea of WECO’s autonomous data 
separation method. 

In order to measure and keep track of the temperature of 
LPNs, WECO uses a data structure called HPT (hot page 
table), which has four fields: LPN of the hot page (pageID), 
update counter (uc), last time stamp (lts), and temperature 
(temper). Table I shows each field with its size.  

 
The pageID is simply a unique number used to keep 

track of a page. We use the LPN of the page for this field. 
The uc is the number of updates that the corresponding LPN 
has received. The lts is the arrival time of the most recent 
request corresponding to the pageID. The temper is the 
current temperature of the LPN, which is the update count of 
the LPN. The size of the HPT table in terms of the number of 
entries is designated by HPT_SIZE. The average temperature 

Fields Function Type Size 
pageID LPN (logical page number) ulong 4 bytes 

uc Update counter ulong 4 bytes 
lts Last time stamp ulong 4 bytes 

temper LPN temperature ulong 4 bytes 

Figure 2. Autonomous data separation method. 
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of all the hot pages in HPT is calculated by equation (2) 
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AVE_HEAT is the average temperature of all of the hot 
pages (all LPN entries in HPT) and it is used as the threshold 
for determining whether a page is hot or not. In this way, 
WECO is able to adapt to changing workloads. For example, 
if the percentage of writes of a certain workload is moderate, 
WECO will automatically adjust AVE_HEAT to a lower 
value, prompting pages with temperatures greater than this 
moderate value to be moved to a hot block. On the other 
hand, if a workload exhibits an extremely high percentage of 
writes, AVE_HEAT will increase, thus prompting only very 
hot LPNs to be moved to a hot block. For many other FTLs, 
in order to perform well under different workloads, certain 
tunable parameters must be adjusted manually and a prior 
knowledge of workload characteristics is required. However, 
for WECO, using the average heat from all hot pages in HPT 
allows this tuning to happen automatically without any user 
intervention or any knowledge of workload characteristics. 
In addition, since AVE_HEAT is dynamically calculated, if 
a workload changes its access pattern over time, e.g., its 
write request percentage decreases, WECO dynamically 
adjusts AVE_HEAT with the changing workload. When a 
valid page is about to be moved from the victim block, 
WECO first checks if its LPN is contained in HPT (see Fig. 
2). If not, it will be copied to a cold block because its LPN 
has not been written to recently, and thus, does not have the 
chance to be hot. On the other hand, if its LPN is in HPT and 
its temper is no less than AVE_HEAT, the page is viewed to 
be “hot” and will be copied to a hot block (Fig. 2).  

Fig. 3 explains how WECO populates and maintains the 
HPT table dynamically. Note that a LPN entry was added to 
HPT because of an incoming write request to that LPN. Read 
requests are skipped as they do not generate any update. The 
HPT table is checked only during GC operations although its 
contents are populated and updated during the servicing of 
incoming requests. If the request is a read, nothing needs to 
be done in HPT and the request is serviced normally. On the 
other hand, if the request is a write, an entry needs to be 
either added or updated in HPT. Upon arrival of a write 
request, WECO checks HPT to see if there is a 
corresponding entry for the LPN in question. If there is an 
existing entry, then the arrival time of the request is written 
to the latest time stamp (lts) field and the update counter (uc) 
is incremented by one. If an entry does not exist for the LPN, 
and there are empty rows in HPT, a new entry will be written 
in the first empty row. If an entry does not exist, but there is 
no empty row, then the entry with the oldest value in its lts 
field will be replaced with the entry of current write request. 
Thus, HPT employs a LRU (least recently used) eviction 
policy. Once the new entry has been inserted into HPT, its lts 
and uc fields will be updated. Finally, the write request will 
be serviced normally (see Fig. 3). 

C. Overhead of WECO 
As with all FTLs, it is important to consider the overhead 

associated with new capabilities added. With FAST, for 

example, 3% of the physical flash is dedicated for log blocks 
[22]. With DFTL [14], 0.2% of the physical flash is reserved 
for translation pages to contain the complete LPN to PPN 
mappings. Therefore, for a 64GB flash SSD, DFTL would 
require about 132MB of the flash memory. For WECO, no 
extra space on the physical flash needs to be reserved. 
However, WECO does need to store its HPT table in SRAM. 
Fortunately, the size of HPT is very small as it is set to 400 
records in our implementation. Each record consists of 4 
fields, each of which only takes 4 bytes each, yielding a size 
of 16 Bytes per record. Thus, the total size of SRAM 
required by WECO is only 6.25KB. Unlike DFTL and 
FAST, which require a certain percentage of memory, the 
overhead associated with WECO is fixed and will not 
increase as the capacity of the flash SSD increases. 

The incoming request monitoring is the main contributor 
to the extra CPU time consumed by WECO (see Fig. 3). 
Nevertheless, its runtime overhead is trivial because each of 
the steps within an update process on the HPT table (see Fig. 
3) only takes O(1) to complete. Besides, the size of HPT is 
very small. Assume that the aggregate write request arrival 
rate is 100/second. In other words, in every second there are 
100 write requests arrive. With a modern 3 GHz processor 
with 5 cycles per instruction, updating the HPT table 100 
times only takes less than 1 millisecond. 

IV. SIMULATOR AND OTHER CONTRIBUTIONS 
In this section, we present the simulation environment 

setup and other contributions of this research. 

A. Simulation Environment 
We used DiskSim 3.0 [4], a validated simulator for disk 

storage systems, and a well-known flash SSD simulator 
FlashSim [20]. DiskSim 3.0 is an efficient and highly 
configurable hard disk system simulator designed to 
evaluate various aspects of storage subsystem architecture 
[4]. It contains modules that allow customizing and 
simulating of storage architecture components such as 

Figure 3. Population of the HPT. 
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HDD, controllers, buses, etc. However, when DiskSim3.0 
was originally created, it did not support the simulation of 
flash SSDs. As a result, FlashSim [20], a flash memory 
based SSD simulator, was developed to supplement 
DiskSim3.0 so that researchers could evaluate the 
performance of flash SSDs by using the combination of 
DiskSim3.0 [4] and FlashSim [20]. In this research, we used 
the DiskSim3.0/FlashSim environment described in [14] as 
a starting point for our simulations. We installed 
DiskSim3.0/FlashSim in a virtual machine (VM) running 
the Ubuntu OS where all our simulations took place. 

B. Other Contributions 
In addition to the research contributions provided by this 

research, we also spent considerable time to write 
compilation instruction manuals for both DiskSim3.0 [4] 
and FlashSim [20] as well as trace analysis scripts to help 
other researchers in flash SSD community. When using the 
DiskSim 3.0 environment described in [14], we found that 
the available documentation to install, configure, and run 
the simulations was inadequate. It took us a couple of weeks 
to get the environment running. To save other researchers’ 
time, we wrote a step-by-step compilation instruction 
manual on how to get the simulator working. This document 
is now published by the DiskSim website [26]. Additionally, 
existing documentation to get FlashSim running was also 
found to be inadequate. We authored detailed compilation 
procedures for FlashSim as well [27].  

Using the freely available VirtualBox software provided 
by Oracle [24], we walk the user through installing a VM 
with the Ubuntu OS and also how to install and configure 
both DiskSim 3.0 and FlashSim. Finally, we have provided 
the virtual machine in the Open Virtualization Format 
(.ovf), which can be easily imported into any popular 
virtualization software. We take these efforts that we 
devoted as other contributions to research community.  

C. Simulator Extension 
We found that there were many items that were hard 

coded in the DiskSim/FlashSim environment. One such 
example arose with the logical block address (LBA). We 
modified DiskSim3.0 so that traces that have LBAs out of 
the boundary of the flash SSD size being simulated could be 
remapped onto the existing SSD size. This increases the 
scalability of the simulation environment, while still 
preserving the original characteristics of the real world 
trace. We also found that the page size was hard coded to 4 
sectors per page. Again, several modifications were made to 
accommodate varying size of a page in DiskSim3.0 [4]. 

In order to evaluate the effectiveness of WECO, we 
extended the DiskSim3.0/FlashSim simulation code so that 
two WECO-powered FTLs, i.e., WECO-PM and WECO-
DFTL, could be implemented. In particular, we revised the 
simulation code to have several toggles that allow us to 
easily change the settings for victim block selection, 
hot/cold blocks, and wear leveling.  

V. PERFORMANCE EVALUATION 

A. Experiment Setup 
We use real-world traces to compare the performance of 

DFTL and PM with WECO-DFTL and WECO-PM, 
respectively. The four real-world traces used are: Build [5], 
Exchange [11], Financial1 [25], and Financial2 [25]. These 
traces were chosen because they are write-intensive. The 
more erasures or “wear” that a flash SSD experiences, the 
more contributions of wear-leveling to the reliability of the 
flash SSD. The Build trace is from a collection of Microsoft 
Build Server production traces and it spans a period of 25 
hours. The Exchange trace is from a collection of production 
traces collected over a period of 24 hours at Microsoft using 
the event tracing for Windows framework. The Financial1 
and Financial2 traces are I/O traces from OLTP applications 
running at two large financial institutions [25]. Table II 
shows the statistics of the real-world traces.  

 
Table III illustrates the experimental parameters used. 

The three metrics that we measured during simulations are: 
� Mean Response Time: average response time of all 
requests submitted to a flash SSD. This is the performance 
metric used to evaluate the performance of the four FTLs. 
� Std. Dev. of Number of Erasures: the standard deviation of 
number of erasures that each flash block receives during a 
simulation experiment. This is the primary metric for 
measuring the four FTLs’ performance in wear-leveling.  
� Delta Epsilon: the difference in number of erasures 
between the block with the most number of erasures and the 
block with the least number of erasures in a flash SSD (see 
(1)). This is the secondary metric for measuring the four 
FTLs’ performance in terms of wear-leveling. 

 

B. Overall Comparisons 
In this section, we compare the overall performance of 

the four FTLs. Also, we evaluate the scalability of the four 
FTLs by investigating the impacts of flash SSD capacity on 
performance and wear-leveling. The maximal capacity of a 
flash SSD is set to 8 GB due to the limited footprint of the 
four real-world traces. The results from Fig. 4 show that all 
four FTLs exhibit a good scalability when the flash SSD 
capacity increases from 2 GB to 8 GB. We found that the 
two PM-based FTLs (PM and WECO-PM) consistently 

Trace  
Name  

Write  
Percentage 

Ave. Size 
(sector) 

Access Rate 
(reqs/sec.) 

Duration 
(hour) 

Build 52.90 21 319.3 0.25 
Exchange 90.80 23 172.8 0.25 
Financial1 76.83 6 122 12.14 
Financial2 17.65 4 90.2 11.39 

TABLE II.          REAL-WORLD TRACE STATISTICS 

TABLE III.          SIMULATION PARAMETERS 

Parameter  Value (Fixed) – (Varied) 
SSD Capacity (GB) (2) – 2, 4, 8 
Page Size (KB) (4) – 4, 8, 16, 32 
k� (10) – 0, 4, 6, 8, 10, 20,20, 50, 100, 1000 
HPT_SIZE 400 
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Figure 4. The impacts of flash SSD capacity on performance. 

Figure 5. The impacts of flash SSD capacity on wear-levling. 

outperform the two DFTL-oriented algorithms (DFTL and 
WECO-DFTL) in all cases. As we explained before, PM can 
provide the highest performance although its cost for 
maintaining a large mapping table could be prohibitive. 
Next, we discovered that the performance of WECO-DFTL 
and WECO-PM are very close to that of DFTL and PM, 
respectively. In the worse case, WECO-DFTL increases 
mean response time by 9.9% compared with DFTL when 
flash SSD capacity is 2 GB in Build trace (see Fig. 4). In 
most scenarios, the performance gap between the two 
original FTLs and the two WECO-powered FTLs is almost 
unnoticeable. Compared with the original DFTL algorithm 
WECO-DFTL on average only degrades performance by 
2.7% and 1.5% in Financial1 and Financial 2, respectively. 
Similarly, compared with the existing PM scheme WECO-
PM on average merely lowers down performance by 1.03% 
and 0.45% in Financial1 and Financial 2, respectively. In 
fact, in occasional cases, the WECO-powered FTLs are 
slightly faster than the originals. For example, WECO-DFTL 

slightly performs better than DFTL by 3.9% for the 
Exchange trace with a 2GB SSD. 

Fig. 5 demonstrates the four FTLs’ performance in terms 
of wear-leveling because a lower standard deviation of 
number of erasures among all blocks in a flash SSD indicates 
a more even distribution of wear, which leads to a higher 
level of reliability. The two WECO-powered FTL schemes 
are obviously superior to the two original FTLs in wear-
leveling in all cases. On average, WECO-DFTL performs 
better than DFTL by 50.4% in wear-leveling. Similarly, 
WECO-PM is on average 41.88% better than PM in wear-
leveling. We argue that on average improving wear-leveling 
by more than 40% at the cost of performance degradation no 
more than 2.4% is worthwhile as it can largely improve flash 
reliability. Fig. 6 shows the impacts of flash SSD capacity on 
delta epsilon (��, see (1)), which is another metric to show 
the degree of wear-leveling. A lower value of delta epsilon 
implies a better scenario for wear-leveling as the distribution 
of erasures among all blocks in an SSD becomes more even. 

Figure 6. The impacts of flash SSD capacity on delta epsilon. 
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Figure 7. The impacts of flash page size on performance. 

Figure 8. The impacts of flash page size on wear-leveling. 

C. The Impacts of Page Size 
This experiment is intended to investigate the impact of 

flash page size on the WECO strategy. We vary the size of a 
flash page from 4 KB to 32 KB. Fig. 7 plots the 
performance of the four FTLs as functions of page size. Fig. 
7, similar to Fig. 4, shows comparable mean response times 
between the FTLs incorporating the WECO strategy and the 
original FTLs. Still, several important observations can be 
drawn from Fig. 7. First of all, the performance of all four 
FTLs increases when the page size enlarges from 4 KB to 
32 KB. This is because the space utilization is improved 
when larger pages are used, thereby decreasing the mean 
response time. Consider the example of a 32KB file. If the 
page size is 4 KB, then a 32KB file would take 8 pages. 
Updates to any of the 8 pages could result in a block erasure 
later. If the page size was increased to 8 KB, then the 32KB 
file would only consist of 4 pages, which obviously reduces 

the possibility of a future block erasure. From this example, 
it is easy to see that by increasing the page size the block 
utilization (see (1)) can be improved. More importantly, by 
using larger pages the number of erasures can be reduced as 
the number of pages decreases in the first place, which can 
improve overall performance of the flash SSD. Second, 
when page size increases from 4 KB to 8 KB, all four FTLs 
greatly improve their performance (see Fig. 7). This is 
especially true for Build and Exchange. However, when 
page size is further enlarged from 8 KB to 16 KB, the four 
FTLs did not gain too much performance improvement in 
Financial1 and Financial2 traces. On the contrary, the 
performance improvement is still substantial for the four 
algorithms in Build and Exchange traces. For example, in 
Build and Exchange traces WECO-DFTL further reduces its 
mean response time by 63.6% and 50.5%, respectively. 
Note that the average request size for Build is 10.5 KB and 
it is 11.5 KB for Exchange (see Table II). Thus, the majority 

Figure 9. The impacts of flash page size on delta epsilon. 
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Figure 10. The impacts of k-epsilon on performance. 

Figure 11. The impacts of k-epsilon on wear-leveling. 

of requests can be accommodated by a single page if page 
size 16 KB is used. Otherwise, they need to involve two 
pages when 8 KB page size is employed. This explains why 
we still see substantial performance improvement when 
page size is further enlarged to 16 KB.  

The general trend shown in Fig. 8 is that wear-leveling 
can be improved when page size increases. For Financial1 
trace, in terms of standard deviation of number of erasures, 
WECO-DFTL on average is only 8% of that of DFTL. Note 
that in both Build and Exchange traces there are some bars 
missing in figures Fig. 5, Fig. 6, Fig. 8, and Fig.9. This is 
because there are no longer any erasures required during the 
entire course of the simulations. 

D. Trade-offs between Performance and Wear-Leveling 
In this section we investigate the impacts of k� (i.e., k-

epsilon, see (1)) on the two WECO-powered FTLs. As for 
DFTL and PM, we do not include them in this group of 
experiments because they are irrelevant to k�. We tune the 
value of k-epsilon from 0 to 1000 to test its impacts.  

Fig. 10 demonstrates that the two WECO-powered FTLs 
improve their performance while the value of k-epsilon 
increases. As we can see from (1), the value of � decreases 
when the value of k-epsilon increases, which in turn 
increases the weight of the utilization term in equation (1). 
Thus, the two FTLs prefer to select a block with lower 
utilization to be the victim whenever GC occurs. In other 
words, in this case the two FTLs are performance-driven 
while largely ignoring wear-leveling. This speculation is 
proved by experimental results shown in Fig. 10 to Fig. 11. 

Fig. 10 clearly shows that the mean response time of both 
WECO-DFTL and WECO-PM decreases when k-epsilon 

increases. However, the impact of k-epsilon on WECO-PM 
is much lighter than that of on WECO-DFTL. As we 
explained, PM-based FTLs can achieve highest performance 
due to their fine granularity page-level address mapping. 
Therefore, the performance impact caused by GC is limited. 
When k-epsilon is equal to 0, � becomes one. In other words, 
WECO turns out to be pure wear-leveling-centric while 
completely overlooking performance during GC operations 
(see (1)). In this extreme case, both WECO-PM and WECO-
DFTL exhibit the worst performance (see Fig. 10). When the 
value of k-epsilon is enlarged, the two FTLs noticeably 
improve their performance. Meanwhile, however, their 
performance in terms of wear-leveling decreases (see Fig. 
11). Based on equation (1), this observation is 
understandable as with an increasing k-epsilon WECO starts 
to make a good trade-off between performance and wear-
leveling by paying more consideration on performance when 
selecting victim blocks. Based on the results shown in 
Fig.10-11, the “sweet spot” for k-epsilon lies in the range 
between 10 and 20. Experimental results presented in this 
section verify the effectiveness of WECO in its ability to 
achieve a good balance between performance and wear-
leveling during GC operations. 

VI. CONCLUSIONS 
Flash memory has become ubiquitous in the commercial 

market, but it has still not become the de facto standard in 
enterprise-scale environments due to its inherent limitations 
such as out-of-place updates and coarse granularity of erase 
unit [1][6][18]. In particular, garbage collection can not only 
degrade performance due to its high overhead but also 
negatively affect flash SSD reliability due to an uneven 
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distribution of erasures it may cause. Unfortunately, current 
wear-leveling schemes [6][7][16] cannot solve the wear-out-
uneven problem as garbage collection mechanism and wear-
leveling scheme are two independent modules implemented 
in one FTL. Therefore, a wear-conscious garbage collection 
mechanism is much needed. In this research, we design and 
implement a new garbage collection mechanism called 
WECO, which can dynamically make good trade-offs 
between performance and wear-leveling during garbage 
collection depending on current wear conditions.  

In order to implement WECO into two mainstream FTLs 
(i.e., DFTL and PM), we extended the DiskSim3.0/FlashSim 
simulation environment considerably. We provided a 
portable virtual environment as well as a scripting 
framework for analysis of traces to assist other flash SSD 
researchers. Our comprehensive experimental results show 
that WECO-DFTL and WECO-PM far exceed the two 
original FTLs in terms of wear-leveling while maintaining a 
similar performance. The future work of this research is to 
transport WECO into a hardware prototype based on a 
development board.  
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