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Abstract—A vast majority of smartphones use eMMC (embed-
ded multimedia card) devices as their storage subsystems. Recent
studies reveal that storage subsystem is a significant contributor
to the performance of smartphone applications. Nevertheless,
smartphone applications’ block-level I/O characteristics and their
implications on eMMC design are still poorly understood. In
this research, we collect and analyze block-level I/O traces from
18 common applications (e.g., Email and Twitter) on a Nexus
5 smartphone. We observe some I/O characteristics from which
several implications for eMMC design are derived. For example,
we find that in 15 out of the 18 traces majority requests (44.9%-
57.4%) are small single-page (4KB) requests. The implication is
that small requests should be served rapidly so that the overall
performance of an eMMC device can be boosted. Next, we
conduct a case study to demonstrate how to apply the implications
to optimize eMMC design. Inspired by two implications, we
propose a hybrid-page-size (HPS) eMMC. Experimental results
show that the HPS scheme can reduce mean response time by
up to 86% while improving space utilization by up to 24.2%.

I. INTRODUCTION

The storage subsystem of a smartphone normally uses
NAND flash memory through either a flash file system [1]
or a block file system like Ext4 [2]. Early Android-based
smartphones widely used YAFFS2 as their default file sys-
tem, which is a dedicated file system designed for storing
files on raw flash memory. After the release of Android 2.3
(Gingerbread) platform in 2010, the default file system of an
Android-based smartphone was switched to Ext4 [3] when the
underlying storage subsystem has been changed from raw flash
memory to an eMMC device. eMMC has a uniform protocol
and provides Ext4 with a conventional block device interface.
Its controller locally processes address mapping, wear-leveling,
and garbage collection, which largely relieves the burden
of the file system above. Fig. 1 shows the I/O stack of a
smartphone like Nexus 5. Most of smartphone applications’
files and data are managed by the SQLite library, which is the
default database management system (DBMS) for an Android-
base smartphone. Typically, one I/O activity of an application
result in multiple SQLite I/O requests that are served by the
virtual file system (VFS) at the kernel layer. Each SQLite
I/O request normally invokes a system call function provided
by a block file system like Ext4, which further generates I/O
requests and sends them to the block layer. The block layer is
responsible for scheduling these I/O requests, which are finally
dispatched to an eMMC driver. The eMMC driver translates
each I/O request into commands that are understood by an
eMMC controller, which executes all commands to fulfill the
1/O request.
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Fig. 1: Android I/O stack.

Similar to a flash memory based solid-state drive (SSD),
an eMMC device behaves like a traditional block device as
its own flash translation layer (FTL) hides all flash constraints
like erase-before-write. Due to a smartphone’s limitations in
space, power, and cost, an eMMC device has a simpler FTL
and architecture as well as a smaller RAM buffer compared to
an SSD. Thus, the performance of an eMMC device is much
lower than that of an SSD [4]. On the other hand, smartphone
technologies in both software and hardware have advanced
rapidly in recent years. Several mobile operating systems such
as Google Android, Apple iOS and Microsoft Windows Mobile
have been developed to improve the management of hardware
and the support for applications. On the hardware aspect, the
performance of an embedded multicore processor becomes
comparable to that of a personal computer CPU and gigabyte
scale RAM has been introduced [5][6]. These new advances
make an eMMC device become a performance bottleneck of
contemporary smartphones [7][8]. Obviously, the performance
of eMMC needs to be further improved.

To develop a high-performance eMMC device, a bet-
ter understanding of smartphone applications’ block-level
I/O characteristics is indispensable. Although a few studies
[O1[71[4]1[10] on the storage subsystems of smartphones have
been reported recently in the literature, none of them fo-
cuses on how to optimize storage subsystem design based
on smartphone applications’ I/O characteristics. To the best
of our knowledge, the only work close to this research is
[10], which analyzes the I/O behaviors of 14 Android ap-
plications on a Nexus S smartphone. Its major finding is
that the combined operations of SQLite and Ext4 generate
unnecessarily excessive write operations to the NAND-based
storage, which not only degrades I/O performance but also
significantly reduces the lifetime of the underlying NAND flash

IEEE
computer
® psouety



storage [10]. Thus, it suggests that SQLite and Ext4 need
to be optimized in an integrated manner so that redundant
efforts are eliminated. Instead of focusing on understanding
the interaction across software layers [10], in this research we
aim to utilize the implications of block-level I/O characteristics
to optimize eMMC design.

To achieve this goal, we first implement an I/O monitor
software tool, which enables us to collect 25 block-level I/O
traces from 18 applications (i.e., 18 individual traces) and their
combinations (i.e., 7 combo traces) on a Nexus 5 smartphone.
Next, we quantitatively analyze these traces and discover some
interesting smartphone applications’ I/O characteristics. For
example, we find that in 15 out of the 18 individual traces
majority requests (44.9%-57.4%) are small single-page (4KB)
requests. In addition, in most traces more than 80% requests
can be immediately served once they arrive. Further, several
important implications for eMMC design are derived based
on the I/O trace characteristics that we find. For instance, an
implication of the discovery that majority requests are small
requests is that these small requests should be served rapidly
so that the overall performance of an eMMC device can be
boosted. Finally, we conduct a case study to demonstrate
how to apply the implications to optimize eMMC design.
Inspired by two implications, we propose a hybrid-page-size
(HPS) eMMC scheme. Experimental results show that the
HPS scheme can reduce mean response time by up to 86%
compared with a conventional pure-4KB-page-size structure.
Compared with an existing pure-8KB-page-size architecture,
HPS can improve space utilization by up to 24.2%.

The rest of this paper is organized as follows. In the next
section, we present the details of trace collecting. Section III
analyzes the characteristics of the 25 traces in terms of size and
timing. The implications of these characteristics are provided
in section IV. Section V presents a case study to illustrate how
the implications can be exploited to optimize eMMC design.
We briefly summarize related work in section VI. Finally, we
conclude this research in section VIIL.

II. TRACE COLLECTING

In this section, we first introduce the environment setup
for trace collecting. Next, we present the design and imple-
mentation of an I/O monitor called BIOtracer (Block-level
I/O tracer), which collects 25 block-level 1/O traces. Finally,
we explain how we use the 18 common applications in both
individual and combined ways so that their block-level I/O
activities are recorded.

A. Environment Setup

We use a Nexus 5 as our mobile platform to collect all
the traces. Its storage subsystem is a 32 GB SanDisk INAND
eMMC 4.51 without an external SDcard. This smartphone
has Android v4.4 (KitKat). On the Nexus 5, our customized
kernel is installed and we use the default configurations. An
I/O record buffer is created to log I/O activities during each
trace collecting process and its size is set to 32 KB, which can
store about 300 request records. A log file is generated at the
beginning of each trace collecting process so that I/O records
stored in the I/O record buffer can be periodically flushed into
it. For each trace collecting process, the system is restarted
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Fig. 2: Workflow of the BIOtracer.

and the log file is cleared to minimize the disturbance from
other processes.

B. The BlOtracer

We implement a trace collector tool named BIOtracer in
the Linux kernel 3.4.0 to collect I/O information from both
the block layer and the eMMC driver layer (see Fig. 1). Its
architecture is shown in Fig. 2. For each request, it records
its starting time, logical address, request size, and access type
(read or write) at the block layer (see step 1 in Fig. 2). After
the request is created at the block layer, it is inserted into the
request queue in the block layer. The request is then fetched
by the eMMC request thread, which in turn issues it to the
pre-processing function after a series of status checking. The
pre-processing function transforms the block request into an
eMMC request. The packing function merges multiple write
requests into a large one if possible.

Finally, the packed request is sent to the eMMC device
if it is not busy. Otherwise, the eMMC request thread has to
wait until the device is in the free status. BIOtracer records
the request’s service start time when the request is indeed sent
to the device (see step 2 in Fig. 2). When the device driver
completes the request, BIOtracer records its finish time (see
step 3 in Fig. 2). The timestamps of the request are combined
into a record, which is stored into a 32 KB I/O record buffer
in the host’s RAM (see Fig. 2). When the buffer is full, all
records are flushed into a log file on the eMMC device.

C. BIOtracer Overhead Analysis

In this section, we analyze the overhead of the I/O monitor.
There are two parts of overhead introduced by the I/O monitor.
The first part is its code execution time, which consists of the
time for recording timestamps and the time spent for storing
them to the logging buffer in main memory. The timestamp
recording operations take place in three different layers as
shown in Fig. 2. However, at each layer, the I/O monitor only
executes a couple of lines of code without peripheral accessing,



TABLE I: Selected applications

Application Definition

Idle Smartphone in idle state

Callln Answering an incoming call

CallOut Making a phone call

Booting Smartphone booting process

Movie Watching a movie on the smartphone
Music Listening songs on the smartphone
AngryBirds Playing the AngryBirds game
CameraVideo Recording a video clip

GoogleMaps Road map and navigation

Messaging Receiving/sending/viewing messages
Twitter Reading and posting tweets

Email Receiving/sending/viewing emails
Facebook Viewing pictures/adding comments/etc.
Amazon Mobile online shopping

YouTube Watching videos on the YouTube
Radio Listening to online radio

Installing Installing applications from Google Play
WebBrowsing | Reading news on the TIME website

waiting, and thread switching. Thus, this part of CPU time can
be safely ignored because the amount of code for timestamp
recording is extremely trivial compared with thousands of lines
of code for request processing in the kernel.

The second part is the logging buffer flushing cost. In order
to obtain a stable I/O pattern, for each trace the I/O monitor
collects I/O data for a relatively long period of time including
application launching, running, and closing. As a result, the I[/O
monitor periodically flushes the buffer to the eMMC device. In
our trace collecting experiments, the buffer size is set to 32 KB,
which can accommodate the records of around 300 requests.
Whenever the buffer is full, all data in the buffer are stored
to the eMMC device. We observe that a flushing operation
always generates 5-7 extra I/O operations (e.g., synchronously
opening, appending, and closing the log file). Thus, the number
of extra I/O operations caused by the I/O monitor is on average
about 6, which is only 2% (i.e., 6/300 = 2%) of the number
of normal I/O requests.

D. Application Selection

Among a large number of smartphone applications, we
select 14 frequently-used applications. In addition, we collect
I/O activities for 4 system functions including Callln, CallOut,
Idle, and Booting. For simplicity, the four system functions
are called applications as well. Table I summarizes the 18
applications and Table II shows how these 18 applications are
used to generate the 25 traces. The background services of
the Nexus 5 smartphone include email and message receiving
services and some basic smartphone functions like network
connection. Except the Callln and CallOut applications, all
these background services are enabled when an application is
running for trace collecting.

III. TRACE ANALYZING

In this section, we analyze the 25 traces including 18
individual traces and 7 combo traces. While each individual
trace comes from a particular application, a combo trace
(e.g., Music/WB) is generated by two concurrently running
applications such as Music and WebBrowsing. In order to fully
understand I/O patterns, we not only study request size, request
type, and request locality but also investigate request response

TABLE II: Trace collecting details

Idle (10pm - 6am): 1dle status.

Booting (30 seconds): Launching the smartphone.

Callln,CallOut (/ hour): Mimicking a phone interview including answering,
talking, listening, and hanging out.

CameraVideo, AngryBrid, GoogleMaps (0.5 - I hour): Recording a video,
[playing games, driving navigating.

[Facebook, Twitter, Amazon, Email, Messaging (/0 - 20 minutes): Viewing
comments, searching people or items, viewing pictures, and composing replies.
\WebBrowsing, YouTube, Radio, Music (/ - 1.5 hours): Reading news, watching
online videos, listening radio, and listening music.

Movie, Installing (/0 minutes): Watching locally stored movie, installing game
lapplications via WIFI connection.

Combo traces except FB/Msg (10 minutes to half an hour): Using Facebook,
IMessaging, or Browsing online news while listening Radio or Music.

IFB/Msg (12 minutes): Using Facebook, switching to read message whenever a new
imassage comes, continuing to use Facebook after replying it.

time, service time, and inter-arrival time. In addition, we also
analyze the degree of request parallelism.

A. Throughput of eMMC
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Fig. 3: The impact of request size on throughput.

Fig. 3 shows that request size significantly impacts the
performance of eMMC in terms of throughput. In this figure,
the throughput of a particular request size is obtained by
calculating the average access rate of requests with that size
in all traces. In the 25 traces that are collected, the largest
size of a read request is 256 KB, whereas the largest size of
a write request is 16 MB. That is why the read throughput
curve terminates at about 100 MB/s (see Fig. 3). Fig. 3 shows
that the read throughput changes from 13.94 MB/s to 99.65
MB/s, whereas the write throughput varies from 5.18 MB/s
to 56.15 MB/s when request size increases from 4 KB to
16 MB. When the request size is 256 KB, read throughput
achieves its maximum value (i.e., 99.65 MB/s) while write
throughput is only 19 MB/s. This is because reading a page in
flash memory is much faster than writing a page. We also find
that larger size requests (e.g., above 1 MB) result in a higher
throughput in both read and write, which is attributed to the
packing command at the eMMC driver layer. In addition, Fig.
3 also confirms that the performance of eMMC is obviously
lower than that of an SSD, which can achieve 550 MB/s and
520 MB/s on sequential read and write, respectively [11].

B. Size-Related Analysis

The request size-related characteristics of the 25 collected
traces are showed in Table III. Fig. 4 illustrates request size
distributions of the 18 individual traces. In Table III, the
Data Size column and the Number of Regs. column store the



TABLE III: Size-related statistics of the 25 traces

Application Data Number Max
Name Size  of Regs. Size

(KB) (KB)
Idle 123,220 6,932 1,536
Callln 27,300 1,491 1,536
CallOut 27,364 1,569 1,536
Booting 982,200 18,417 20,816
Movie 130,420 4,781 512
Music 240,060 6,913 940
AngryBrid 94,684 3,215 3,940
CameraVideo 2,283,184 9,348 10,104
GoogleMaps 197,808 12,603 8,174
Messaging 63,668 5,702 128
Twitter 187,540 13,807 2,216
Email 59,276 2,906 388
Facebook 97,436 3,897 2,680
Amazon 67,412 3,272 1,392
YouTube 28,692 2,080 1,536
Radio 115,972 5820 11,164
Installing 1,653,900 17,952 22,144
‘WebBrowsing 95,908 4,090 1,536
Music/WB 289,280 12,603 1,544
Radio/WB 269,932 5,702 2,716
Music/FB 442,388 13,807 2,424
Radio/FB 153,776 2,906 1,368
Music/Msg 234,000 3,897 472
Radio/Msg 150,344 3,272 1,536
FB/Msg 182,632 2,080 732

Ave. Ave. R Ave. W Write Write
Size Size Size Reqgs. Size
(KB) (KB) (KB)  Pct.(%)  Pct.(%)
17.5 39.5 15.0 88.94 75.41
18.0 12.0 18.0 99.93 99.96
17.0 10.0 17.5 98.92 99.37
53.0 61.0 375 33.07 23.26
27.0 27.5 17.0 5.40 3.37
345 62.5 9.5 52.80 14.48
29.0 51.0 25.0 84.51 73.12
244.0 38.5 736.5 29.46 88.85
15.5 28.5 13.5 86.78 75.90
11.0 23.0 10.5 97.30 94.38
13.5 35.5 10.5 88.48 69.86
20.0 14.5 225 70.37 78.62
25.0 28.5 235 74.42 70.70
20.5 24.5 18.0 63.02 55.07
13.5 19.5 13.5 97.50 96.46
19.5 36.0 19.5 98.68 97.59
92.0 22.0 93.0 98.26 99.58
23.0 21.5 235 80.71 81.95
21.5 50.5 15.0 81.68 57.36
22.5 29.0 19.5 72.02 63.65
12,5 38.0 8.5 87.67 62.34
14.5 23.0 13.5 91.68 86.92
14.0 56.0 11.5 94.43 77.96
13.5 17.5 13.0 98.15 97.55
11.5 21.5 9.5 84.72 71.72

total size of data accessed and the total number of requests,
respectively. The Max Size column records the largest request
size found in a trace. The Write Regs. Pct. column records
the percentage of write requests in each trace while Write Size
Pct. shows the percentage of written data amount to the total
size of data accessed.

Due to the packaging command, the largest requests in
most traces are larger than 512 KB, which is the largest
allowed size for a request in Linux kernel. In addition, the
Ave. Size field shows that data- intensive applications (e.g.,
CameraVideo and Installing) have a much larger average
request size than others. Most of the 18 individual applications
have an average request size from 11 KB to 34.5 KB.

The values in the last two columns in Table III indicate that
most of the traces are write-dominate except Booting, Movie,
and Music. During booting, many read requests are issued to
load the program and configuration files so that a smartphone
is initialized. Music and Movie also need to fetch media data
from the eMMC device and thus generate a great number of
read operations. Callln and CallOut generate very few read
operations (less than 1% and 2%, respectively). This is due to
the fact that when a user is calling somebody all other activities
will be in a pending status except a few logging file updates.
AngryBrid continuously updates its logs and playing statuses,
which generates a great deal of write operations. In addition,
CameraVideo has a 88.85% of data written while its write
request percentage is only 29.46% because it mainly issues
large and sequential requests, which may further be packaged
at driver level. Online applications such as Email mainly fetch
data from the Internet. In order to update logs and cache the
data to the eMMC device, these applications normally issue a
large amount of write operations.

Characteristic 1: Most smartphone applications are write-
dominant. The percentages of write requests in 15 out of the
18 individual traces vary from 52.8% to 99.9%, among which
6 of them exceed 90%.

The request size distributions of the 18 applications are
shown in Fig. 4. Requests are categorized into different ranges
(e.g., smaller than or equal to 4 KB) based on their sizes.
Although a range represents a continuous region, the possible
sizes can only be multiples of four because all the request sizes
are aligned to flash page size (i.e., 4 KB) at file system level.
Fig. 4 shows that small requests take major part of the total
requests in 16 out of the 18 individual traces except Movie and
Booting. Still, applications like Booting and Movie generate a
significant number of large requests. The general trend is that
small requests are majority and the numbers of large requests
are generally few. Applications related to the Internet (i.e., the
last 10 applications in Fig. 4) show similar distributions and
generally follow the same trend. We find that data-intensive
traces have their unique request size distributions while others
share a similar pattern. For example, Movie has a large mount
of requests with sizes between 16 KB and 64 KB.

Characteristic 2: Small size requests take a significant
percentage of the total number of requests in most applications.
In 15 out of the 18 individual traces, majority requests (44.9%-
57.4% ) are small requests (i.e., 4 KB).

C. Timing-Related Analysis

In this section, timing-related I/O characteristics of the 18
applications are summarized in Table IV, Fig. 5, and Fig. 6.
In Table 1V, the values in the Recording Duration field are
measured from the start time to the finish time of each trace.
The duration of Booting is decided by system performance,
whereas the duration times of other applications are determined
by a user. Although the I/O pattern of an application can be
largely impacted by a user’s habits, we ensure that for each
application its duration time is long enough so that a stable
1/O pattern can be recorded.

While the arrival rate is taken as the number of requests
arrived per second, the data access rate is defined as the
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Fig. 4: Request size distributions.
TABLE IV: Timing-related statistics of the 25 traces
Application Recording Arrival Access  NoWait ~ Mean.  Mean. Spatial ~ Temporal
Name Duration Rate Rate Req. Serv. Resp.  Locality Locality
(second) (Reqs./s) (KB/s) Ratio (ms) (ms) (%) (%)
Idle 29,363 0.24 420 89 7.42 9.24 2532 34.22
Callln 3,767 0.40 7.25 98 5.61 6.18 29.59 31.00
CallOut 3,700 0.42 7.40 94 5.57 6.07 27.29 35.14
Booting 40 460.40  24,555.00 58 1.65 4.93 28.19 19.70
Movie 998 4.79 130.68 23 2.13 6.28 17.25 1.72
Music 3,801 1.82 63.16 64 2.38 3.45 21.51 31.86
AngryBrid 2,023 1.59 46.80 84 3.44 4.06 30.08 26.07
CameraVideo 3,417 2.74 668.18 47 8.07 11.61 20.34 16.30
GoogleMaps 1,720 7.33 117.76 85 1.40 2.23 21.10 42.78
Messaging 589 9.68 108.10 86 1.68 1.88 28.85 50.82
Twitter 856 16.13 219.09 84 1.72 2.07 26.57 52.90
Email 740 3.93 80.10 63 3.01 4.09 14.49 34.87
Facebook 1,112 3.50 87.62 69 2.99 4.08 19.89 34.21
Amazon 819 3.90 84.29 73 1.45 4.70 17.79 26.38
YouTube 4,690 0.44 6.12 96 6.90 7.19 47.61 16.35
Radio 4,454 1.31 26.04 82 3.54 6.62 23.90 29.18
Installing 977 18.37 1,692.84 80 3.64 10.04 2259 49.57
WebBrowsing 4,901 0.83 19.57 79 433 5.20 23.77 30.83
Music/WB 2,165 6.10 133.62 65 1.70 3.61 18.40 38.40
Radio/WB 1,227 9.78 219.99 69 1.86 3.30 18.66 28.48
Music/FB 2,026 17.34 218.36 70 1.13 2.09 14.19 60.50
Radio/FB 900 11.66 170.86 78 1.64 2.58 19.12 52.70
Music/Msg 926 17.82 252.70 74 1.36 2.19 20.68 53.84
Radio/Msg 660 16.82 227.79 89 1.63 2.04 27.25 49.48
FB/Msg 699 22.32 261.28 72 1.23 1.90 15.80 54.04

average data amount accessed (i.e., both read and write) per
second. The Callln, CallOut, Idle, and YouTube show a very
low request arrival rate (e.g., fewer than one request per
second) and data access rate (e.g., less than 10 KB/s). Booting
only lasts 40 seconds. Still, it generates a large number of
read requests. It has the highest request access rate and data
access rate. The Installing trace also shows a high request
arrival rate and data access rate because an installing process
incurs software downloading and installing. Together with the
average size in Table III, we can find that the applications
with higher data access rates (e.g., Booting, CameraVideo,
and Installing) also have larger request sizes. Further more,
we find that 15 out of the 18 individual traces have an arrival
rate less than 10 requests per second. The NoWait Req. Ratio
represents the percentage of requests that do not need to wait
when they arrive. The implication is that these requests can be
immediately served because there is no ongoing request that
is being served. Table IV shows that at least 63% of requests

in 15 out of the 18 individual traces belongs to this category
and 10 out of the 18 individual traces have more than 80%
requests that can be served immediately.

Characteristic 3: Most of requests can be served imme-
diately once they arrive. In other words, there are very few
simultaneously arriving requests.

The data in Mean Serv. (i.e., mean service time) and Mean
Resp. (i.e., mean response time) in Table IV indicate that the
requests from Booting, Movie, Amazon, and Installing have
a longer request queue for they have a higher ratio of mean
response time to mean service time. Combined with the fact
that Amazon is not a data-intensive application (see Table
IIT), we can conclude that Amazon has a different I/O pattern
from others. In addition, we notice that the request arrival
rates of Idle, Callln, CallOut, YouTube, and WebBrowsing
are lower than 1 request per second. They also have higher
mean response times and mean service times compared to
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Fig. 6: Request inter-arrival time distributions.

others (e.g., Music, Email, Facebook). This is because that
the eMMC device will enter into a low-power mode when no
request arrives for a certain period of time. Consequently, a
relatively long warm-up time is needed for the eMMC device
to serve a newly arrived request. In most of other traces, the
values of mean response time are about two times of mean
service times. This fact together with the high NoWait Req.
Ratio values imply that the time spent at the software layer is
significant and thus should be further optimized.

Characteristic 4: An eMMC device will enter into a low-
power mode if the request inter-arrival time is longer than its
power-saving threshold. Thus, in some applications periodic
mode switching may happen. Frequent mode switching, how-
ever, increases request mean response times.

The last two columns record the localities of the 18
individual traces. Spatial locality is defined as the percentage of
sequential request accesses over the total number of requests in
a trace. A sequential request access happens when the starting
address of the current request is next to the ending address
of its predecessor. Temporal locality is the percentage of the
number of address hits out of the total number of requests.

The number of address hits is increased by one when an
address is re-accessed. In terms of spatial locality, 16 out of 18
individual traces have a spatial locality lower than 30% and all
the 18 traces have spatial localities lower than 48%. Compared
to spatial locality, the temporal locality are slightly better in
general (e.g., 11 out of the 18 traces have a temporal locality
ranging from 30.83% to 52.9%). However, all these localities
are relatively low compared to the 20/80 rule of locality that
has been observed in some server-class applications.

Characteristic 5: The localities of the 18 applications are
generally weak. In addition, the spatial localities are lower than
temporal localities.

Fig. 5 provides some information about response time that
cannot be observed from Table IV. The overall trend in Fig.
5 is that most requests can be completed within 2 ms. In
addition, a vast majority of requests can be processed within
16 ms. There are few long-response-time (i.e., above 128 ms)
requests existed in the 18 traces. We find that the response
time distributions are strongly correlated to the request size
distributions. The high correlation indicates that the response
time of a request is largely determined by its size, which
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Fig. 7: 1/O patterns of the 7 combo traces.

further implies that there are few requests waiting in the
request queue. For instance, Movie shows a high percentage
(i.e., over 65%) of requests whose sizes are between 16 and
64 KB. It has nearly 70% response times in the range from 4
ms to 8 ms.

Fig. 6 offers the details of the inter-arrival time distribu-
tions. Large inter-arrival times in Callln and CallOut indicate
that there are fewer I/O activities during a phone call process.
WebBrowsing, YouTube, and Radio also show that they do
not heavily stress the eMMC device as they have larger inter-
arrival times. In addition, most inter-arrival times are smaller
than 1 ms when watching a movie (see Fig. 6). This figure
further supports the claim that Internet-related applications
have similar I/O patterns as they show a similar distribution
of inter-arrival times. Local applications (e.g., Booting, Movie,
Music, CameraVideo) exhibit smaller inter-arrival times com-
pared with online applications like YouTube and Radio.

Characteristic 6: The average request inter-arrival times
are long in most applications. 13 out of the 18 applications
have an average request inter-arrival time at least 200 ms. In
10 out of the 18 traces, more than 20% inter-arrival times are
larger than 16 ms.

D. I/O Patterns of Concurrent Applications

In most cases, a smartphone user normally runs one ap-
plication (e.g., YouTube) at a time with background services
enabled. Still, it is not uncommon for a user to launch multiple
applications concurrently. For example, a user could read news
on a website (i.e., WebBrowsing) while listening to music (i.e.,
Music). Another example is that while a user is using Facebook
(i.e., Facebook) he may suddenly switch to read an incoming
message (i.e., Messaging). And then he could continue to
use Facebook after he replies the message. Therefore, in
addition to collecting the 18 individual traces, each from one
of the 18 applications, we also gather 7 combo traces from 7
common application combinations in order to understand their
I/O patterns. The 7 application combinations include {Music,
Radio} x {Facebook (FB), Message (Msg), WebBrowsing
(WB)} as well as task switching between Facebook and Mes-
saging (i.e., FB/Msg). Music and Radio are selected because
they are popular companions of other applications such as
WebBrowsing. Fig. 7 shows the characteristics of the 7 combo

traces in terms of request size and timing. Fig. 7a illustrates
that Music-included combo traces have a higher percentage
of 4 KB size requests compared to Radio-included combo
traces. However, the overall request size distributions of the 7
combo traces are similar to that of the 15 individual traces(see
Fig. 4). On the other hand, Fig. 7b indicates that the response
times of a combo trace do not obviously increase compared
with an individual application case (see Fig. 5). For example,
Music/WB has an average response time of 3.61 ms while
Music alone has a 3.45 ms and WebBrowsing has a 5.2 ms
average response time. In addition, the inter-arrival times of
the 7 combo traces are generally large as all of them have
more than 20% of inter-arrival times longer than 4 ms except
Music/FB (see Fig. 7c¢).

The average inter-arrival times of the 7 combo traces range
from 44.8 ms to 164 ms. After comparing data under request
arrival rate and data access rate (see Table IV columns 3 and
4), one can find that generally a combo trace exhibits a higher
value in these two items than the sum of the two individual
traces due to limited shared resources like memory buffer.
For example, while the access rate of Music/FB is 218.36
KB/s, the sum of access rates of Music (i.e., 63.16 KB/s) and
Facebook (i.e., 87.62 KB/s) is only 150.78 KB/s. However,
the high values of NoWaitReq.Ratio (see Table IV column
5) hints that a parallel processing mechanism for multiple
requests that arrive at the same time is still not necessary for
concurrent applications. In summary, the 7 combo traces from
application combinations confirm that the I/O characteristics
of smartphone applications are generally stable even when
multiple applications are running simultaneously.

IV. IMPLICATIONS FOR EMMC DESIGN

Based on the 6 characteristics, we are in a position to
provide eMMC designers with the following implications:

Implication 1: More than 80% requests can be immedi-
ately served once they arrive in most traces, which implies
that very few requests arrive simultaneously (characteristic
3). The implication is that enhancing parallelism on device
level (e.g., using an external SDcard) or providing parallel
request queues at OS layer does not help for performance
improvement. This is because the performance of an external
SDcard on a smartphone is obviously lower than that of



an internal eMMC device. For example, we observe that
the performance of the eMMC on the Nexus 5 is roughly
triple of the best performance tested in [7] from 8 SDcards
provided by main stream manufacturers. For most traces,
using an external SDcard could unexpectedly degrade overall
performance because the slower external SDcard negatively
affect the overall performance when the internal eMMC device
alone can process most requests in time. Reducing large-size
requests’ service times can significantly improve the overall
performance. Further, Characteristic 3 also implies that the
response time of a request is mainly decided by its service
time. This fact indicates that large-size requests have longer
response times because existing eMMC devices normally have
a very limited number of channels. For example, the latest
eMMC product from SanDisk only provides two channels
[12]. As a result, multiple sub-requests (e.g., more than 2 sub-
requests) split from a large-size request cannot be processed
in a complete parallel manner.

Implication 2: FTL in eMMC needs to be tailored to match
the I/O characteristics of smartphones (from characteristics
3 and 6). We find that 13 of 18 traces have an average
request inter-arrival time more than 200 milliseconds, which
is long enough for a garbage collection process to complete.
Thus, garbage collection mechanism in the FTL should be
redesigned so that garbage collections are launched during
the execution of these non-data-intensive applications. In this
way, users cannot perceive performance degradation due to
garbage collection. In an SSD FTL, a garbage collection is
normally triggered when the number of free blocks reaches
a predefined threshold. FTL for eMMC should not adopt the
same strategy as there are plenty of opportunities to carry out
garbage collections before the number of free blocks becomes
significantly low.

Implication 3: We observe that both the temporal local-
ity and spatial locality are weak in almost all traces (from
characteristic 5). For instance, the spatial localities are less
than 30% and the temporal localities are less than 40% in
most traces (see Table IV). Therefore, a large size RAM buffer
inside an eMMC device may not be beneficial for performance
optimization because of a low hit rate.

Implication 4: From characteristic 5, we also notice that 14
of 18 traces have a temporal locality under 40% and the spatial
locality of 16 traces is below 30% (see Table IV). The low
localities indicate that I/O requests at the eMMC device level
tend to access different locations on flash memory. Therefore,
we argue that a simple wear-leveling strategy is sufficient for
an eMMC device.

Implication 5: Characteristic 2 discloses that in 15 out
of the 18 traces majority requests (44.9%-57.4%) are small
single-page (4 KB) requests. The implication is that serving
the large amounts of small requests quickly could improve the
overall performance of an eMMC device. One feasible way
to better serve these small requests is to use SLC (single-
level cell) flash, which has a better read/write performance and
higher price than that of MLC flash. Fortunately, an MLC flash
cell can work in the SLC mode by selectively using its fast
pages, and thus, obtains an SLC-like performance [13][14].
Thus, the performance gain is achieved at the cost of 50%
capacity loss.

V. CASE STUDY

In this section, we conduct a case study to demonstrate how
to utilize the insights provided by the implications to optimize
the design of an eMMC device. Implication 1 suggests that
speeding up large-size requests service times can significantly
improve the overall performance of an eMMC device. Clearly,
an eMMC device with a large page size is desirable as it
can efficiently process large-size requests. In fact, modern
SSDs tend to use a larger flash page size [15]. On the other
hand, implication 5 suggests that small-size requests should be
also quickly served because they are major requests in most
smartphone applications. However, an eMMC device with a
large page size is inappropriate to process small-size requests
as it may degrade both the performance and lifetime of an
eMMC device. For example, when majority requests in a trace
are random 4 KB writes the performance of a large page size
(e.g., 8 KB) eMMC could be lower than that of a small page
size (e.g., 4 KB) eMMC because writing a 4 KB data to an
8 KB page takes a longer time than writing it to a 4 KB
page. Besides, when the two eMMC devices have the same
total capacity (e.g., both 32 GB) the 8KB-page-size eMMC
has a much fewer number of pages compared with the 4KB-
page-size eMMC. Thus, it will have more garbage collection
(GC) operations after its limited number of free pages are
quickly consumed by the small random write requests. More
GC operations further lowers the performance and shrinks the
lifetime of the device. Therefore, a small-page-size eMMC
device is needed for processing small-size requests. Thus, the
Implication 1 together with the Implication 5 motivate us to
propose a hybrid-page-size (HPS) eMMC to effectively serve
both small-size and large-size requests simultaneously. The
basic idea of HPS is that all blocks in an eMMC have the
same number of pages (e.g., 1,024 in our experiments) and all
pages in a block have the same size (e.g., 4 KB). However,
page size may vary across different blocks in a die (see Fig. 1).
To the best of our knowledge, an HPS eMMC device does not
exist. Therefore, simulation becomes the only way to verify
its effectiveness.

TABLE V: Configurations of the three eMMC devices

4PS 8PS HPS

Page read latency (us) 160 244 N/A
Page write latency (us) 1,385 1,491 N/A
Block erase latency (us) 3,800 3,800 3,800
Channel X chipxdiexplane | 2X1Xx2Xx2 | 2XxX1x2x2 2X1IX2x2
Blocks per plane 1,024 512 |, 2;2 gggigzgz E:i;

Pages per block 1,024 1,024 1024

Total capacity 32 GB 32 GB 32 GB

A. Simulation Setup

Due to its cost limit, an eMMC device normally has no
more than two channels. One or multiple MLC flash chips
are attached on each channel. Each chip consists of multiple
dies and each die has thousands of blocks. Each block have
hundreds of pages. Since an eMMC device can viewed as a
light-weight SSD, we use a validated SSD simulator called
SSDsim [16] to mimic an eMMC device. SSDsim is an event-
driven and highly accurate simulator. We implement the HPS
scheme in SSDsim so that it can support different page-size
blocks in one die. We configure several hybrid-page-size chips
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Fig. 9: Space utilization comparisons between 8PS and HPS.

in an eMMC device and a new request distributor is developed
to dispatch a read/write request into an appropriate page. In
the HPS scheme, two sizes of pages are used (i.e., 4 KB and
8 KB). Latency-related parameters are obtained from Micron
datasheets [17][18].

For the HPS scheme, we assume that page size varies
among different blocks inside a plane. For example, in the
simulator configuration, we assume that there are 512 4KB
blocks and 256 8KB blocks inside a plane (see Fig. 10). We
also configure a pure 4 KB page scheme (4PS) and a pure
8 KB page scheme (8PS) as two baseline eMMC devices.
The detailed configurations of HPS and two pure schemes are
shown in Table V. Notice that all three schemes have same
number of channels, chips, dies, and planes so that internal
parallelism will have same effects to the performance of the
three schemes. Based on the configurations, the total capacities
of three schemes are also the same (see Table V).

The request distributor splits a request into multiple pages.
For a read request, data is retrieved based on a mapping table
maintained by the eMMC controller. For a write request, it
will be processed in different ways depending on its size. For
example, when the size of a write request is 20 KB, it will be
divided into two 8-KB sub-requests and one 4-KB sub-request.
On a single-page-sized eMMC device, some flash space is
wasted. For example, if we use a 8KB-page-size chip, then
3 sub-requests (totally 24 KB) are needed to complete the 20
KB write request. As a result, 4 KB flash space is wasted. The
space utilization of the write request is defined as 20/24, which
is equal to 83.3%. The space utilization of a trace is defined
as the ratio of its total amount of data written to total amount
of flash space consumed. Obviously, a higher space utilization
indicates a longer lifetime of an eMMC device.
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Fig. 10: The structure of an HPS die.

B. Experimental Results

We measure the performance of each scheme in terms of
mean response time (MRT) and space utilization. All traces
are replayed on a simulated brand new eMMC device. The
RAM buffer layer of the simulator is disabled to eliminate
its performance impact. Fig. 8 demonstrates that the HPS
scheme outperforms 4PS for all the 18 traces. Since MRTs
of Booting, CameraVideo, Amazon, and Installing are much
higher than that of others, their results are represented in a log
scale and separated in Fig. 8b. The rest 14 results are shown
in Fig. 8a. Compared to 4PS, HPS obtains its most significant
improvement (86%) in terms of MRT in Booting. Even in
the worst case, the Movie trace, HPS can still reduce MRT
by 24.0%. On average, HPS can achieve 61.9% performance
improvement. The 8PS scheme has a very similar performance
to HPS in terms of MRT as expected.

Fig. 9 shows the space utilization of the two schemes.
We use 4PS as the baseline scheme. The results of HPS and
8PS are all normalized to that of 4PS. Since the HPS scheme
always achieves same space utilization as 4PS does, we ignore
the results of 4PS in Fig. 9. Compared with the 8PS, HPS



obtains the most significant improvement in terms of space
utilization in the Music trace, which is 24.2%. On average, the
HPS scheme achieves 13.1% improvement in terms of space
utilization compared to 8PS.

VI. RELATED WORK

As smartphones have become more and more popular,
understanding the relationship between their storage subsys-
tems and system performance started to draw attention from
both industry and academia recently. As of September 2010,
Android-based smartphone sales numbered 200,000 per day
versus 80,000 per day for iPhone iOS due to the fact that
Android is an open-source operating system [19]. Thus, almost
all existing work on smartphone storage subsystems has been
carried out on Android-based platforms. However, to the best
of our knowledge, there are only a few studies investigated
Android-based storage subsystems. Kim et. al. found that
storage performance does affect the performance of several
common applications such as Web browsing, GoogleMaps,
application install, email, and Facebook [7]. They observed
that just by varying the underlying flash storage, performance
over WiFi can typically vary between 100% and 300% across
applications. Kim and Shin confirmed the conclusion of [7]
after investigating the internal features of eMMC. In particular,
they studied the effects of LSB backup, packed command, and
flex group on Android-based smartphones. They concluded
that storage subsystem like eMMC device needs further op-
timizations [4]. Kim and Ramachandran re-examined the OS
storage software stack of smartphone to improve the storage
performance [8]. They implemented a framework called Fjord
that can provide a fine-grained control mechanism to trade-off
reliability for performance. None of [7][8] and [4] focuses on
analyzing eMMC level /O traces and their implications.

Lee and Won analyzed the I/O behaviors of a total of 14
Android applications from six different categories [10]. They
focused on the interaction across software layers: applications,
Android OS, filesystem, and underlying storage device [10].
They discovered that the operations of SQLite and Ext4 greatly
burden the storage as they generate unnecessarily excessive
write operations [9]. Although they also analyzed some I/O
features like I/O size and randomness as well as their impact
on storage device, their main focus lies in understanding I/O
activities generated by applications and OS layer, and then,
how to optimize these software layers. On the contrary, we
concentrate on how to apply the implications derived from
I/O characteristics for eMMC design.

VII. CONCLUSIONS

The performance of an eMMC device noticeably impacts
the performance of smartphone applications [7][8]. Unfor-
tunately, little research has been done in quantitatively an-
alyzing block-level smartphone I/O characteristics and their
implications on eMMC design. To understand the smartphone
applications’ I/O patterns, we implement an I/O monitor tool
called BIOtracer and integrate it into Android kernel 3.4 on
a Nexus 5. Next, we conduct a comprehensive analysis on
25 traces. Six I/O characteristics have been observed. Next,
5 implications for eMMC design are derived based on the
characteristics. Finally, we conduct a case study to demonstrate
how to apply the implications to optimize eMMC design.
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