
S. Aluru et al. (Eds.): HiPC 2007, LNCS 4873, pp. 35–46, 2007.
© Springer-Verlag Berlin Heidelberg 2007

No More Energy-Performance Trade-Off: A New Data
Placement Strategy for RAID-Structured Storage

Systems

Tao Xie and Yao Sun

Department of Computer Science, San Diego State University,
San Diego, CA 92182, USA

{xie, sun}@cs.sdsu.edu

Abstract. Many real-world applications like Video-On-Demand (VOD) and
Web servers require prompt responses to access requests. However, with an
explosive increase of data volume and the emerging of faster disks with higher
power requirements, energy consumption of disk based storage systems has
become a salient issue. To achieve energy-conservation and prompt responses
simultaneously, in this paper we propose a novel energy-saving data placement
strategy, called Striping-based Energy-Aware (SEA), which can be applied to
RAID-structured storage systems to noticeably save energy while providing
quick responses. Further, we implement two SEA-powered RAID-based data
placement algorithms, SEA0 and SEA5, by incorporating the SEA strategy into
RAID-0 and RAID-5, respectively. Extensive experimental results demonstrate
that compared with three well-known data placement algorithms Greedy, SP,
and HP, SEA0 and SEA5 reduce mean response time on average at least
52.15% and 48.04% while saving energy on average no less than 10.12% and
9.35%, respectively.

Keywords: Data placement, energy conservation, response time, RAID.

1 Introduction

Many real-world applications intensively read data stored in large-scale parallel disk
storage systems like RAID, Redundant Arrays of Inexpensive Disks. To guarantee the
quality of service demanded by end-users, prompt responses to read requests are
essential for these applications. For example, a Video-On-Demand (VOD) server has
to quickly respond access requests from multiple users so as to provide them with
continuous glitch-free video [6]. It is obvious that reducing mean response time of
parallel disk storage systems is a must for these applications.

There are a wide variety of ways of reducing the mean response time or improving
the system throughput for parallel I/O systems [1][6][10][12]. Data placement, or file
assignment, allocating of all the data onto a disk array before they are accessed, is one
of such avenues that can significantly affect the overall performance of a parallel I/O
system [1][12][19]. Generally, these algorithms place data onto a parallel disk array
so that a special cost function or performance metrics can be optimized. While

36 T. Xie and Y. Sun

common cost functions include communication costs, storage costs, and queuing
costs, popular performance metrics are mean response time and overall system
throughput [5]. It is well-known that finding the optimal solution for a cost function
or a performance metric in the context of data placement on multiple disks is an NP-
complete problem [5]. Thus, heuristics algorithms became practical solutions.

Energy consumption of disk based storage systems has become a salient issue that
not only raises the costs but also inversely affects our environment [18]. According to
a recent industry report [17], storage devices contribute for around 27% of the total
energy consumed by a data center. This problem will become much more severe with
an explosive increase of data volume and the emerging of faster disks with higher
power requirements. Therefore, energy-conservation and prompt response need to be
achieved simultaneously through intelligent data placement. Unfortunately, traditional
data placement algorithms such as Greedy [7], Sort Partition (SP) [12], and Hybrid
Partition (HP) [12], for parallel disk systems only pursue minimized mean response
times and normally ignore energy-conservation. Furthermore, most current energy-
saving techniques adversely affect system performance [4][16]. Thus, seeking a good
trade-off between energy-saving and graceful performance degradation becomes their
feasible goal. Now the question is: can we develop a new data placement strategy so
that energy-saving can be achieved without a trade-off of performance?

In this paper we address the problem of energy-saving yet quick-response data
placement in a parallel disk storage system where data accesses exhibit Poisson
arrival rates and fixed service times. Each data can be viewed as a file, which will be
assigned onto an array of disks in a striping manner. We propose a novel energy-
saving data placement strategy, called Striping-based Energy-Aware (SEA), which
aims at minimizing mean response time and overall energy-consumption
simultaneously. The basic idea of SEA is to statically place popular data onto a subset
of the disks in the array and assign unpopular data onto the rest of disks. The rationale
behind this idea is that the distribution of web page requests generally follows a Zipf-
like distribution [12] where the relative probability of a request for the i’th most
popular page is proportional to 1/iα, with α typically varying between 0 and 1 [2][15].
Moreover, the request frequency and the file size are inversely correlated, i.e., the
most popular files are typically small in size, while the large files are relatively
unpopular [12]. Based on these workload characteristics, we divide all data into two
categories: popular and unpopular according to their popularity weights [15].
Similarly, we separate disks in a disk array into two zones: hot disk zone and cold disk
zone. Disks in hot disk zone are called hot disks with popular data, whereas disks in
cold disk zone are named cold disks with unpopular data. As a result, the overall load
balancing between two zones can be achieved, which improves the inter-request
parallelism. Next, we employ multi-speed disks in the disk array to save energy.
Specifically, hot disks are always running in a higher speed mode with more energy
consumption, while cold disks are continuously operating in a lower speed mode with
less energy dissipation. Although real multi-speed (more than 2 speeds) hard disks are
not widely available in the market yet, a few simple variations of multi-speed disks,
such as a two-speed Hitachi Deskstar 7K400 hard drive has recently been produced
[9]. For simplicity, in this study we only utilize 2-speed hard disks. Note that once a
disk was configured as a hot disk or a cold disk, its operation characteristics such as
transfer (read) speed and energy consumption rate is fixed and it cannot be

 No More Energy-Performance Trade-Off: A New Data Placement Strategy 37

dynamically switched to the other mode during the process of serving requests.
Further, to provide quick responses, we combine SEA with RAID structures so that
each data (file) is partitioned into multiple same size stripe blocks, which are then
allocated across an array of disks. This way all disks in the same zone can
simultaneously serve a request. The implication is that the response time of the
request can be dramatically decreased due to an enhanced intra-request parallelism.

The rest of the paper is organized as follows. In the next section we discuss the
related work and motivation. A system model and an energy consumption model were
built in Section 3 and Section 4, respectively. Section 5 presents the SEA strategy and
introduces three existing algorithms. In Section 6 we evaluate performance of our
algorithms based on synthetic benchmarks. Section 7 concludes the paper with
summary and future directions.

2 Related Work and Motivation

Very recently energy-saving for parallel disk storage systems began to draw much
attention from research community [3][4][8][10][16]. A multi-speed parallel disk
system that can modulate disk speed dynamically was proposed by Gurumurthi et al.
[8]. In [10] data replication was used to dynamically place copies of data in free
blocks according to the disk access patterns.

Comparing with the energy-efficient techniques mentioned above, data placement
shows its unique advantages. First, to save disk energy, it has no need to modify
applications. Next, no extra hardware such as cache is necessary. Last, the overhead
of data placement strategy is relatively low and it is easy to implement. Attracted by
these advantages, a research group led by Son proposed an array of energy-aware disk
layout algorithms very recently [18]. Based on our knowledge, their studies are the
only results of energy-aware data placement for parallel disk storage systems reported
in the literature so far. However, their techniques have some obvious limitations.
First, they are only dedicated for array-based scientific applications. Still, there are
many other types of disk I/O-intensive applications, where energy conservation and
quick response need to be realized simultaneously through data placement. Therefore,
a more general energy-response efficiency data placement scheme that can be applied
to a wide range of disk I/O-intensive applications is needed. Further, to apply their
algorithms, one has to modify compiler to make it be aware of disk layout
information. This requirement prevents them from being readily used because it
incurs an extra burden for system software programmers. Besides, to better exploit
existing power-saving capabilities, their disk layout algorithms need to be combined
with application code restructuring to increase length of idle periods. This strategy
demands modifications of application’s code, and thus brings users additional
overhead. As a result, the need of a new energy-response efficiency data placement
strategy that bridges the gap between the existing algorithms and the open problems is
greatly felt.

In this paper, we are proposing a static heuristic energy-aware strategy SEA, which
can be incorporated with RAID structures to generate energy-aware data placement
algorithms like SEA0 and SEA5. Our schemes are orthogonal to existing disk layout
strategies. First, there is no need to modifying any software using our methods.

38 T. Xie and Y. Sun

Second, our schemes are not dedicated for some particular applications. Thus, they
are more general in the sense that they can be applied in multiple application domains.
Without loss of generality, we assume that (1) each data is viewed as an independent
file; (2) each data is allocated in a striping manner across an array of disks; (3)
communication delays between any pair of disks are identical and negligibly small
[12]; (4) disk access (read) to each data is modelled as a Poisson process with a mean
access rate λi; (5) a fixed service time si for each data; for example, each read on a
data results in a sequential scan of the entire data. For large size data, this assumption
is valid because when the basic unit of data access is entire data, seek time, rotation
latency, and controller overhead are negligible in comparison with data transfer time.

3 System Model

Data placement algorithms such as Greedy, SP, HP, SEA0, and SEA5 allocate a set of
data (hereafter file) onto a group of 2-speed disks so that the mean response time can
be minimized. The set of files is represented as F = {f1, ..., fu, fv, …, fm}, which is
further categorized into a popular file set Fh = {f1, ..., fh, ..., fu} and au unpopular file
set Fc = {fv, ..., fc, ..., fm} (F = Fh ∪ Fc and Fh ∩ Fc = Ø). Since each file will be
allocated onto a set of disks in a striping manner, let sp denote the size of a stripe in
Mbyte and it is assumed to be a constant in the system. A file fi (fi ∈F) is modeled as
a set of rational parameters, e.g., fi = (si, λi), where si, λi are the file’s size in Mbyte
and its access rate. In this paper, requests to a file fu are modeled as a Poisson process
with a mean access rate λi. Also, we assume each access to file fi is a sequential read
of the entire file, which is a typical scenario in most file systems or WWW servers
[11]. Besides, we assume that the distribution of file access requests is a Zipf-like

distribution with a skew parameter θ = log 100
X /log 100

Y , where X percent of all

accesses were directed to Y percent of files [12]. The value of X:Y is called skew
degree (SD) in this paper and α =1- θ (see Section 1 for α). In addition, the file access
frequency is inversely correlated to the file size. The number of popular files in F is
defined as |Fh| = (1-θ) * m. Similarly, the number of unpopular files is |Fc| = θ * m.
Thus, the ratio between the number of popular files and the number of unpopular files
in F is defined as η

θ
θη −= 1 . (1)

A disk array storage system consists of a linked group D ={d1, ..., de, df, …, dn} of n
independent 2-speed disk drives, which can be divided into a hot disk zone Dh ={d1,
..., dh, …, de} and a cold disk zone Dc={df, ..., dc, ..., dn}(D = Dh ∪ Dc and Dh ∩ Dc =
Ø). Disks in the hot zone are all configured to their high speed modes, which always
run in the high transfer rate th (Mbyte/second) with the high active power
consumption rate ph (Joule/Mbyte) and the high idle power consumption rate ih
(Watt). Similarly, disks in cold zone are set to their low speed modes, which
continuously operate in the low transfer rate tl (Mbyte/second) with the low active
power consumption rate pl (Joule/Mbyte) and the low idle power consumption rate il
(Watt). In the system, a hot disk dh (dh ∈ Dh) is modeled as a tuple dh = (c, th, ph, ih)
where c is the capacity of dh in GByte. Similarly, a cold disk dc (dc ∈ Dc) is modeled

 No More Energy-Performance Trade-Off: A New Data Placement Strategy 39

as a tuple dc = (c, tl, pl, il) where c is the capacity of dc in GByte. Since we only
consider homogeneous disks, all disks have the same capacity c. We assume that
disks are always large enough to accommodate files to be assigned on them. Each
popular file fh ∈ Fh is partitioned in multiple units with the size of each unit equal to
sp. All units of fh will be allocated across the hot disks in a RAID-0 (striping without
parity) or a RAID-5 fashion (striping with parity). Similarly, each unpopular file fc ∈
Fc is also partitioned into multiple size sp units and then allocated across the cold
disks in a RAID-0 or a RAID-5 manner. Let svi be the expected service time of file fi
(fi ∈F). It can be computed by

⎪⎩

⎪
⎨
⎧

=
unpopular is if ,/

popuplar is if ,/

i
l

i

i
h

i

i
fts

fts
sv

(2)

Since the combination of λi and svi accurately gives the load of fi, we define the
load hi of fi as follows [12]:

hi = λi · svi. (3)

The ratio between the number of hot disks and the number of cold disks is defined
as γ, which is decided by the ratio between the total load of popular files and the total
load of unpopular files as below

∑

∑

∈=

−

∈== m

Ffj
j

m

Ffi
i

cj

hi

h

h

*

,1

*)1(

,1
θ

θ

γ
(4)

We employ the First-Come-First-Serve (FCFS) scheduling heuristic to schedule
arrival requests. Suppose there are totally u requests in a request set, which visits a
file set that has been allocated on a disk array. The request set is designated as R =
{r1, ..., rk, …, rx}, which can be separated into a hot request set Rh ={rb, ..., rh, …, ro}
and a cold request set Rc={rp, ..., rc, ..., rs} (R = Rh ∪ Rc, Rh ∩ Rc = Ø). Each request is
modeled as rk = (fidk, ak), where fidk is the file identifier targeted by the request and ak
is the request’s arrival time. For each arrival request, the FCFS scheduler uses the
allocation scheme X generated in data placement stage to find the disks on which the
target file of the request resides. In fact, the request workload is an m-class workload
with each class of requests having its fixed λi.

To obtain the response time of a request rk, two important parameters, the earliest
start time and the latest finish time of rk must be computed. We denote the earliest
start time and the latest finish time of rk by est(rk) and lft(rk), respectively. In what
follows we present derivations leading to the final expressions for these two
parameters. Since each file is distributed across multiple disks in a striping manner,
we need to compute the start time and the finish time for each stripe of the file that
request rk is targeting on. Suppose rk is visiting file fi, which was distributed on a disk
set {da, ..., dg, …, dw} (a ≤ g ≤ w, 1 ≤ a, g, w ≤ e or f ≤ a, g, w ≤ n). The stripe set of
fi is represented as { 1

is , ..., k
is , …, z

is }, where
sp

s
z i= . Also, a disk dg has its own

local queue Qg in the set {Qa, ..., Qg, …, Qw}. There are three cases when rk arrives on

40 T. Xie and Y. Sun

disk dg. First, dg is idle and Qg is empty. Second, dg is busy but Qg is empty. Third, dg

is busy and Qg is not empty. Thus, the start time for a strip k
is on disk dg is

⎪
⎪

⎩

⎪
⎪

⎨

⎧

++

+=

∑
≤∈

otherwise ,

empty is busy, is if ,

empty is idle, is if ,

)(

, kpgp

p
aaQr

fidgk

gggk

ggk

k
k
g

tra

Qdra

Qda

rst

(5)

where rg represents the remaining service time of a request currently running on dg,
and ∑

≤∈ kpgp

p
aaQr

fidt
,

 is the overall service time of requests in Qg whose arrival times are

earlier than that of rk. Consequently, k
gft (rk) can be calculated by

)(k
k
g rft =)(k

k
g rst + tsi, (6)

where tsi is the service time of the stripe k
is on disk dg and it can be computed using

the following formula

⎪⎩

⎪
⎨
⎧

=
cold is if ,/

hot is if ,/

g
l

g
h

i
dtsp

dtsp
ts (7)

As a result, the earliest start time of request rk can be obtained by

est(rk)=min{)(1
kg rst ,.,)(k

k
g rst , .,)(k

z
g rst }. (8)

Consequently, the latest finish time of rk can be calculated by

lft(rk)=max{)(1
kg rft ,.,)(k

k
g rft ,.,)(k

z
g rft }. (9)

Hence, the response time of rk can be obtained

t(rk) = lft(rk) - est(rk). (10)

Thus, the mean response time of the request set R is expressed as below

xrrtRmrt
x

k
k∑

=
=

1

)()((11)

4 Energy Consumption Model

For a request rh in the hot request set Rh, assume it accesses a popular file fh in the
popular file set Fh, which is allocated in the hot disk zone. The energy consumed by rh
can be written as below

h
hactive

h p

s
e = (12)

 No More Energy-Performance Trade-Off: A New Data Placement Strategy 41

The service time for rh provided by a set of hot disks, where file fh were allocated
can be computed as follows

h
hactive

h t

s
at = (13)

Thus, the energy consumption of the whole hot request set can be derived by

∑
=

=
|R|

1

h

h

active
h

active
R ee

h
 (14)

Similarly, the total service time imposed by the whole hot request set Rh in the hot
disk zone is

∑
=

=
|R|

1

h

h

active
h

active
R atat

h
 (15)

In addition, we define rftk as the finish time of request rk. Then, we obtain the
analytical formula for the energy consumed by the hot disks when they are idle:

())max*|(|*
1

active
Rk

x

k
h

hidle
hot h

atrftDie −=
=

 (16)

Hence, the total energy consumed by the hot disk zone can be computed by

())max*|(|*
1

|R|

1

h
active
Rk

x

k
h

h

h

active
h

idle
hot

active
Rhot hh

atrftDieeee −+=+=
==

∑ (17)

Similarly, the total energy consumed by the cold disk zone can be obtained by

())max*|(|*
1

||R

1

c
active
Rck

x

k
c

l

c

active
c

idle
cold

active
Rcold atrftDieeee

c
−+=+=

==
∑ (18)

Therefore, the total energy consumption for the whole storage system is:

coldhottotal eee += (19)

5 The SEA Strategy

In this section, we first present a detailed description of the SEA strategy. Then we
briefly introduce the three baseline algorithms Greedy, SP, and HP.

Fig. 1 outlines SEA with some detailed explanations. Note that the input F has
been sorted in an ascending order in terms of popularity before it is fed into SEA. In
other words, file f1 is the most popular file with the smallest file size, whereas file fm is
the most unpopular one with the largest file size. First, SEA uses the skew parameter
θ to derive the number of popular files and the number of unpopular files in F based
on Eq. 1 (Step 1). Second, Step 2 calculates γ, the ratio between the number of hot
disks and the number of cold disks, based on Eq. 4, which in turn results in the
number of hot disks HD and the number of cold disks CD. Consequently, HD of n
disks are configured to their high speed modes and CD of n disks are set to their low

42 T. Xie and Y. Sun

speed modes (Step 4). Next, SEA assigns all popular files onto the hot disk zone in a
striping manner (Step 5–Step 16). Similarly, all unpopular files are allocated onto the
cold disk zone in a striping fashion (Step 17 – Step 28).

Input: A disk array D with n 2-speed disks, a collection of m files in the set F, and the
skew parameter

Output: A file allocation scheme X (m, k), where
sp
sk i

m

i 1
max

1. Use Eq. 1 to compute the number of popular files and number of unpopular files in F
2. Use Eq. 4 to compute
3. Hot disk number

1
nHD , cold disk number CD = n – HD, dh=1, dc=1

4. Configure HD of n disks to high speed mode and set CD of n disks to low speed mode
5. for each popular file fp Fh do
6. p = 1;
7. for each stripe spp of fp do
8. X(fp, p) = dh
9. p = p + 1
10. if dh = = HD
11. dh = 1
12. else
13. dh = dh + 1
14. end if
15. end for
16. end for
17. for each unpopular file fu Fc do
18. u = 1;
19. for each stripe spu of fu do
20. X(fu, u) = dc
21. u = u + 1
22. if dc = = CD
23. dc = 1
24. else
25. dc = dc + 1
26. end if
27. end for
28. end for

Fig. 1. The SEA strategy

The average disk load ρ can be obtained by the following equation:

∑ =
⋅= m

i ih
n 1

1ρ (20)

Note that all the three existing algorithms assign nonparitioned files onto a disk
array. In other words, each file must be allocated entirely onto one disk. In addition,
since they only pursue minimized mean response times, all disks in the disk array are
set to hot disks with high speed. The three algorithms are briefly described below.

 No More Energy-Performance Trade-Off: A New Data Placement Strategy 43

(1) Greedy: It first calculates the mean load of all files and then assigns a consecutive
set of files whose total load is equal to the mean load onto each disk.
(2) SP (Sort Partition): It first computes the average disk utilization using Eq. 13.
Next, it sorts all files into a list I in descending order of their service times. Finally, it
allocates each disk dj the next contiguous segment of I until its load loadj reaches the
maximum allowed threshold ρ. The remainder files (if any) after one round allocation
will be assigned to the last disk dn.
(3) HP (Hybrid Partition): For each batch, HP assigns files to disks in distinct
allocation intervals. It selects, for each allocation intervals l, a different disk dk as the
allocation target. It chooses the disk with the smallest accumulated load. A number of
files are allocated to dk until its load reaches the threshold Tk.

6 Performance Evaluation

6.1 Simulation Setup

We adopt the same strategy used in [16] to derive corresponding low speed mode disk
statistics from parameters of a conventional Cheetah disk. The main characteristics of
the 2-speed disk are shown in Table 1. The performance metrics by which we
evaluate system performance include:

(1) Mean response time: Average response time of all file access request submitted to
the simulated parallel disk storage system. Note that the mean response times are
normalized in the scale [0, 1].
(2) Energy consumption: Energy (in Joules) consumed by the disk systems during the
process of serving the entire request set.
(3) Mean slowdown: The ratio between average request turnaround time and average
request service time.

Table 1 summarizes the configuration parameters of a simulated parallel disk array
system used in our experiments and characteristics of the synthetic workload. All
synthetic workload used were created by our trace generator.

Table 1. Characteristics of system parameters

Parameter Value
Transfer rate in low mode 9.3 Mbytes/second
Idle power at low mode 2.17 Watts
Active energy at low mode (8-KB read) 43 mJoules
Transfer rate in high mode 31 Mbytes/second
Idle power at high mode 5.26 Watts
Active energy at high mode (8-KB read) 61 mJoules
Number of files (5000)
Simulation duration (1000) seconds
Aggregate access rate (35) – (21~45) (1/second)
γ 3:13 ~ 10:6

44 T. Xie and Y. Sun

6.2 Overall Performance Comparison

The goal of this experiment is to compare the proposed SEA0 and SEA5 algorithms
against the three well-known file assignment schemes, and to understand the
sensitivity of the five heuristics to the aggregate access rate in a parallel disk storage
system, where an array of 2-speed disk drives serve requests simultaneously. The
aggregate access rate varies from 21 (1/second) to 45 (1/second). The file sizes were
generated according to a Zipf-like distribution with skew degree 70:30 and file size
base is set to 1 Mbyte.

(b) (c) (a)

Fig. 2. Impact of aggregate access rate

Fig. 2 shows the simulation results for the five algorithms on a parallel disk array
with 16 disk drives, where 5 of them are hot disks and 11 of them are cold disks. We
observe from Fig. 2a that SEA0 and SEA5 consistently outperform the three exiting
approaches in terms of mean response time. This is because they employ a striping-
based data placement scheme, where intra-request parallelism is very high. Compared
with the SP algorithm, SEA0 and SEA5 can reduce mean response time on average by
52.15% and 48.04%, while saving energy on average no less than 10.12% and
9.35%, respectively (see Fig. 2b). Although we only test a relatively light physical
read workload (in the range [21, 45] 1/second), the actual system workload can be 10
times heavier (in the range [210, 450] 1/sccond) because of very low miss rates (less
than 10%) provided by the high speed buffers on the data servers. The implication is
that both SEA0 and SEA5 can be applied in applications where system workload is
heavy. One example of such applications is OLTP (Online Transaction Processing).

7 Summary and Future Work

In this paper, we developed a new energy-saving strategy, called striping-based
energy-aware (SEA), to generate optimized file allocation schemes. SEA0 and SEA5,
two SEA-powered RAID-based data placement algorithms are implemented to

 No More Energy-Performance Trade-Off: A New Data Placement Strategy 45

evaluate the effectiveness and practicality of SEA. Comprehensive experimental
results show that both SEA0 and SEA5 consistently improve the performance of
parallel disk storage systems in terms of mean response time and save energy over
three well-known data placement algorithms. Normally, there are two inherent
drawbacks of current multi-speed disk based energy-saving approaches. First, disk
speed mode transitions bring extra overhead in terms of transition time and transition
energy [16], which is against their original goals. Second, frequent disk speed mode
transitions are detrimental to the lifetime of hard disks [3]. SEA0 and SEA5 avoid
these two shortcomings by statically configuring all disks to one of the multiple
modes prior to serving requests. Furthermore, there is no speed mode transition
during the process of serving the requests.

In summary, the SEA strategy realizes energy-saving not at the cost of
performance degradation. Rather, it delivers much shorter mean response times
compared with existing non-energy-aware data placement algorithms. Besides, it can
provide fault-tolerance because of the RAID structures that it relies on. We will
extend our scheme to a fully dynamic environment, where file access characteristics
are not known in advance and may vary over time. As a result, a dynamic energy-
saving data placement strategy is mandatory so that dynamically arrived files can be
re-allocated by migrating files from one disk to another. File migration, however,
incurs a relatively heavy overhead. How to make a good trade-off between migration
cost and algorithm efficiency is a problem that needs to be solved.

Acknowledgments. This work was supported by the National Science Foundation
under grant number CCF-0702781.

References

1. Akyürek, S., Salem, K.: Adaptive block rearrangement. ACM Trans. on Computer
Systems 13(2), 89–121 (1995)

2. Breslau, L., Cao, P., Fan, L., Phillips, G., Shenker, S.: Web Caching and Zip-like
Distributions: Evidence and Implications. In: Proc. IEEE INFOCOM, pp. 126–134 (1999)

3. Carrera, E.V., Pinheiro, E., Bianchini, R.: Conserving disk energy in network servers. In:
Proc. 17th Supercomputing, pp. 86–97 (2003)

4. Colarelli, D., Grunwald, D.: Massive arrays of idle disks for storage archives. In: Proc.
16th Annual Int’l Conf. Supercomputing, pp. 1–11 (2002)

5. Dowdy, W., Foster, D.: Comparative Models of the File Assignment Problem. ACM
Computing Surveys 14(2), 287–313 (1982)

6. Ghandeharizadeh, S., Kim, S.H., Shababi, C.: On disk scheduling and data placement for
video servers. Sigmetrics Performance Evaluation 23(1), 37–46 (1995)

7. Graham, R.L.: Bounds on Multiprocessing Timing Anomalies. SIAM Journal Applied
Math. 7(2), 416–429 (1969)

8. Gurumurthi, S., Sivasubramaniam, A., Kandemir, M., Franke, H.: DRPM: Dynamic speed
control for power management in server class disks. In: Proc. Int’l Symp. Computer
Architecture, pp. 169–179 (2003)

9. Hitachi Corp.: Hitachi Power & Acoustic Management – quietly cool. White paper (2004)

46 T. Xie and Y. Sun

10. Huang, H., Hung, W., Shin, K.G.: FS2: dynamic data replication in free disk space for
improving disk performance and energy consumption. In: Proc. 12th ACM SOSP, pp.
263–276 (2005)

11. Kwan, T., Mcgrath, R., Reed, D.: Ncsas World Wide Web Server Design and
Performance. Computer 28(11), 67–74 (1995)

12. Lee, L.W., Scheuermann, P., Vingralek, R.: File assignment in parallel I/O systems with
minimal variance of service time. IEEE Trans. Computers 49(2), 127–140 (2000)

13. Merialdo, P., Atzeni, P., Mecca, G.: Design and development of data-intensive web sites:
The Araneus approach. ACM Trans. Internet Technology 3(1), 49–92 (2003)

14. Narris, M., Obal, J.: Performance Analysis of the Linux Buffer Cache While Running an
Oracle OLTP Workload. Worcester Polytechnic Institute (2002)

15. Nishikawa, N., Hosokawa, T., Mori, Y., Yoshida, K., Tsuji, H.: Memory-based
architecture for distributed WWW caching proxy. In: Proc. 7th Int’l Conf. World Wide
Web, pp. 205–214 (1998)

16. Pinheiro, E., Bianchini, R.: Energy conservation techniques for disk array-based servers.
In: Proc. 18th Supercomputing, pp. 68–78 (2004)

17. Power, heat, and sledgehammer (2002), http://www.max-t.com/downloads/whitepapers/
SledgehammerPowerHeat20411.pdf

18. Son, S.W., Chen, G., Kandemir, M.: Disk layout optimization for reducing energy
consumption. In: Proc. 19th Supercomputing, pp. 274–283 (2005)

19. Triantafillou, P., Christodoulakis, S., Georgiadis, C.: Optimal data placement on disks: a
comprehensive solution for different technologies. IEEE Trans. Knowledge and Data
Engineering 12(2), 324–330 (2000)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

