
SAIL: Self-Adaptive File Reallocation
on Hybrid Disk Arrays

Tao Xie1 and Deepthi Madathil1

1 Department of Computer Science, San Diego State University,
San Diego, CA 92182, USA

xie@cs.sdsu.edu, madathil@rohan.sdsu.edu

Abstract. Flash-memory based solid state disks, though currently more
expensive and inadequate in write cycles, offer much faster read accesses while
consume much less energy compared with hard disk drives. In order to gain
complementary merits of hard disks and flash disks, we propose a hybrid disk
array based storage architecture for data-intensive server-class applications.
Further, on top of the proposed storage architecture, a self-adaptive file
reallocation strategy, called SAIL, which is able to adapt to dynamically
changed file access patterns, is developed. Comprehensive trace-driven
experiments demonstrate that compared with a very recent file placement
technique PB-PDC, which also employs the combined advantages of a hard
disk and a flash memory device, SAIL exhibits its strength in both performance
and energy consumption while maintains the reliability of flash disks by
confining their write cycles.

Keywords: File reallocation, flash disk, hybrid disk array, energy conservation.

1 Introduction

File assignment problem (FAP), the problem of allocating a set of files onto a disk
array before they are accessed so that some cost functions or performance metrics can
be optimized, have been extensively studied [9][16][20][22][23][24]. Typically, file
assignment algorithms reported in the literature can be categorized into two camps:
static [16][23][24] and dynamic [2][20][22]. While static file assignment algorithms
require a prior knowledge about the workload statistics, dynamic file assignment
strategies can adapt to varying access patterns without the prior information of the
characteristics of files. In this paper, we address the problem of dynamically assigning
and reallocating files in a hybrid disk array storage system where hard disks and flash
disks are structured in a RAID-0 fashion, respectively.

1.1 File Allocation and Reallocation

There have been many studies [16][23][24] over static file assignment problem where
the following two assumptions are held: (1) all files are to be allocated at the same

time; (2) the access frequency of each file is known as a priori and it does not change
over time. In reality, however, these two assumptions are largely unrealistic. This is
because file systems are highly dynamic, which implies that many files are created or
deleted on the fly [22]. Moreover, the access pattern of a file system might change
over a long-term period [19]. Therefore, dynamic file allocation and reallocation
algorithms, which are able to intelligently allocate files dynamically created and to
reorganize files to adapt to varying access pattern become indispensable.

Unfortunately, compared with numerous static file assignment algorithms
[16][23][24], only very few investigations on dynamic file allocation [22] and
reallocation problem [20] have been accomplished. Weikum et al. first proposed an
array of heuristic algorithms for the placement of dynamically created files on a hard
disk array [22]. Later on they extended their algorithms to accommodate dynamic
redistributions of the data when access patterns change [20]. However, all of their
algorithms bear the following three major limitations [20]. First, they assume that all
of the subrequests are uniformly distributed among the disks, which obviously
contradicts the fact that real workloads generally exhibit skewed access frequencies
[16][19]. Second, their approaches just assume that the relevant workload parameters
can be estimated with sufficient accuracy without actually implementing any dynamic
file access monitoring mechanisms. Finally, all their algorithms employ a file-specific
striping policy, which means the size of a stripe unit is file-dependent. The non-
uniform file striping method is not practical because it will impose a prohibitive
overhead on disk array controller. Therefore, a new dynamic file allocation and
reallocation strategy without the limitations mentioned above is needed to fully
address the challenging dynamic file assignment and reorganization problem. Besides,
the new strategy should be energy-aware as disk arrays contribute a significant
percentage of total energy consumption in a computing infrastructure.

1.2 Why Flash Disks?

Flash memory is useful for more than just consumer devices. Current flash memory
assisted hard disk storage systems are mainly proposed to be applied in mobile
platforms like personal laptops [6][15] or embedded systems [4]. Essentially, these
flash memory and hard disk mixed storage systems only take flash memory as an
extra layer of cache buffer [1] [15]. Very recently, Kim et al. extended the usage of
flash memory device by developing an energy-efficient file placement technique
named PB-PDC (pattern-based PDC), which adapts the existing PDC (Popular Data
Concentration) algorithm [17] by separating read and write I/O requests. More
precisely, PB-PDC locates all read-only data on a flash drive while puts all the rest of
data on a hard disk. Still, the PB-PDC technique only concentrated on one flash drive
with a single hard disk in a mobile laptop computing environment.

We believe that the application of flash memory can go far beyond personal mobile
computing and embedded system domains because it is also well-suited for enterprise
level applications, where performance, energy conservation, and disk reliability need
to be taken into account simultaneously [4]. Compared with hard disk drives, flash
disks possess the following salient advantages [10][18]. First, they inherently
consume much less energy than mechanical mechanism based hard disks [4]. Second,

because of their solid state design they are free of mechanical movements, and thus,
their reliability are enhanced. Third, they offer much faster random access without
seek time delays and rotation latencies [13][14]. The main concern on current flash
disks is their considerably higher prices. Therefore, it is wise to integrate small
capacity flash disks with high capacity hard disk drives to form a hybrid disk array so
that their complementary merits can be benefited by enterprise applications.

1.3 Self-Adaptive File Reallocation

In this section we re-examine the dynamic file allocation and reallocation problem in
the context of a hybrid disk array. Flash disks, though energy-saving in nature, have
inferior performance in write speed compared to hard disks. Besides, they have
limited number of erasure cycles. To fully exploit the advantages of flash disks and
hard disks, we develop a self-adaptive file reallocation strategy named SAIL. SAIL
dynamically monitors the access patterns of each file. Files can be dynamically
created or deleted. In addition, the access pattern of each file could vary over time.
Initially, all files including newly created files are distributed across the hard disk
array in RAID-0 manner. At the end of each epoch, after obtaining statistics of each
file’s access pattern, SAIL first separates all files into three broad categories: write-
excessive, read-exclusive, and read-write. If the frequency of a file’s write accesses
exceeds the suggested flash disk write frequency threshold value (e.g., 1 million times
within 5 years), it will be defined as a write-excessive file and will stay on the hard
disk array. All rest files will be further divided into two groups: read-exclusive and
read-write. Files with both read and write accesses are in the read-write group,
whereas files with only read accesses go into the read-exclusive group. Next, SAIL
selects a set of files that are appropriate for being allocated on the flash disk array
from the read-exclusive and the read-write groups based on each file’s popularity,
performance gain pgi (Eq. 4), and energy gain egi (Eq. 5). And then SAIL reallocates
these files onto the flash disk array. When file access pattern changes, SAIL
redistributes files between the flash disk array and the hard disk array accordingly.

Based on the observations from some real-life traces [8][19], the popularity of a
piece of data normally does not change dramatically in a short period of time. Thus,
we argue that although the access pattern of a particular file may noticeably vary over
a long run it only smoothly changes within each epoch. Therefore, it is feasible for
SAIL to use the most recent access statistics of a file to predict its next epoch file
access pattern in a dynamic I/O workload scenario.

2 The Hybrid Storage Architecture

There are two main types of flash memory in the market: NAND flash memory and
NOR flash memory [4]. Since NAND flash memory is more appropriate for data
storage [4], we only consider NAND flash memory in this paper. Also, there are two
options when one implements a flash memory based storage system: emulating a flash
disk as a block-device like a hard disk or designing a brand new native file system
directly over flash disks. We adopt the first approach as it introduces little change of

an operating system running on a host machine. In order to integrate a flash disk into
an existing storage system, two important layers of software modules that sit between
the file system and the flash disk are indispensable [12]. They are MTD (memory
technology device) driver and FTL (flash translation layer) driver. Lower-level
functions of a storage medium such as read, write, and erase are provided by the MTD
driver. Supported by the underlying lower-level functions offered by the MTD driver,
the FTL driver implements higher-level algorithms like wear-leveling, garbage
collection, and physical/logical address translation [12]. With the assistance of the
FTL driver, the file system can access the flash disk as a hard disk without being
aware of the existence of the flash disk. How to design and implement these two
software layers of modules is out of the scope of this paper. We assume that MTD and
FTL drivers exist between file system and the flash disk.

Hybrid Disk Array Controller

Fig. 1. Overview of the hybrid disk array architecture.

The hybrid disk array storage architecture is depicted in Fig. 1, where both hard
disks and flash disks are directly attached to the system bus. All hard disks are
organized in a RAID structure like RAID-0. Similarly, all flash disks are managed in
the same RAID organization as the hard disk array. Besides, the number of hard disks
is equal to the number of flash disks and each flash disk cooperates with a hard disk
through a dedicated high-bandwidth connection to compose a disk pair. The rationale
behind the disk pair configuration is three-fold. First, the equal number of the two
types of disks makes balancing load between the hard disk array and the flash disk
array easier. Second, it simplifies file reallocation between the two disk arrays. Last
but not least, the disk pair configuration obviously enhances storage system’s fault-
tolerance and reliability by reducing disk reconstruction time when a hard disk or a
flash disk fails. For example, when a hard disk fails, its partner flash disk can largely
help the recovery of the failed hard disk in two ways. First of all, since part of data
was on the flash disk, the replacement hard disk only needs to recover the data that
was originally on the failed hard disk. Second, during the hard disk reconstruction
process, the flash disk can still serve part of normal requests from outside clients,
which greatly alleviates the workload of the replacement hard disk, which in turn
speeds up the disk recovery process. Thus, the hard disk reconstruction time in the
proposed hybrid disk storage architecture is shorter than that of in a pure hard disk

 SAIL File Placement
Initializer

Redistribution
Table Generator

File
Re-Organizer

File Access
Monitor

Disk Space
Manager

array architecture. The SAIL strategy is implemented as a software component within
the hybrid disk array controller. It consists of the following five modules: file
placement initializer, file access monitor, redistribution table generator, file re-
organizer, and disk space manager. The five modules coordinate together to
dynamically allocate and reallocate files between the hard disk array and the flash
disk array (Fig. 2).

3 The SAIL Strategy

The methodology behind the SAIL strategy is to judiciously yet adaptively divide the
entire file set into a flash-preferred subset and a hard-preferred subset based on
dynamic I/O workload characteristics. Each subset of files is then allocated onto its
favorite disk array so that the complementary merits of flash disks and hard disks can
be mostly utilized while their respective disadvantages can be largely avoided.
Supported by the proposed hybrid disk storage architecture, the goal of SAIL is to
achieve a high performance, energy conservation, and desirable system reliability at
the same time.

3.1 Design Methodology

SAIL realizes its goal by exploiting two critical I/O workload characteristics: file
access locality and file access type. The presence of access locality in I/O workload
has long been recognized in the literature. For example, it is well-known that 10% of
files accessed on a web server account for 90% of the server requests and 90% of the
bytes transferred [1]. Similar workload locality has also been observed in OLTP
applications running in large financial institutions [11]. The implication of workload
locality is that the overall system performance can be noticeably improved if the I/O
requests on the small percentage popular files can be served more efficiently. File
access locality suggests us concentrate on the allocation and reallocation of the
minority popular files. The second important I/O workload characteristic is file access
type, namely, write-excessive, read-exclusive, and read-write. In an investigation of
file system workloads, Roselli et al. found that file access has a bimodal distribution
pattern within which some files are written excessively without being read while
others are almost exclusively read [19]. This observation confirms that it is feasible
for SAIL to separate files into the aforementioned three categories based on the type
of accesses that they received. It is easily understood that read-exclusive files are
suitable for flash disks as they don’t contribute any erasure cycles to flash disks.
Further, accessing these read-exclusive files on flash disk can significantly save
energy and gain potential performance enhancement due to no seek time and rotation
latency any more. Similarly, write-excessive files are more appropriate for hard disks
where erasure cycle limitation doesn’t apply. The most difficult task for a file
allocation and reallocation strategy is to decide where some read-write popular files
should go. Unlike existing conservative algorithms such as PB-PDC [15][17], which
immediately puts all read-write files onto hard disks to avoid any write cycles on flash

disk, SAIL adopts a more open attitude and makes a smart decision based on a good
trade-off between performance and energy saving.

3.2 System Models

The set of files is represented as F = {f1, ..., fi, …, fm}. Also, the flash disk array is
modeled as FD ={fd1, ..., fdj, …, fdn}, whereas the hard disk array is denoted by HD
={hd1, ..., hdj, …, hdn}. Since each file will be allocated onto either a set of hard disks
or a set of flash disks in a striping manner, let sp denote the size of a stripe in Kbyte
and it is assumed to be a constant in the system. A file fi (fi ∈F) is modeled as a set of
rational parameters, e.g., fi = (si, ri, wi, bi), where si is the file’s size in Mbyte, ri is the
file’s read access rate (1/second), wi is the file’s write access rate (1/second), and bi is
the number of batches of the file, which is defined in Eq. 1. Assume that is the
starting disk of file fi’s striping distribution.

start
id

⎡ ⎤⎪⎩

⎪
⎨
⎧

+−−+

+−≤
=

otherwise/))1()((1

)1(if ,1

, ndn/sps

dn/sp s
b

start
ii

start
ii

i . (1)

 Each hard disk’s transfer rate (for both read and write) is th (Mbyte/second). For
both hard disks and flash disks, we only consider a two- level power model: active
mode and idle mode. In other words, a flash disk or a hard disk can only work in
either active mode when it reads/writes data or idle mode when no such read/write
activities occur. This assumption is valid for server-class applications because
intensive server-level workload does not allow hard disks to spin up/down to save
energy due to very slim time slots between requests. A hard disk’s active energy
consumption rate and idle energy consumption rate are ph (Watts) and ih (Watts),
respectively. Similarly, a flash disk is modeled as fdj = (rf, wf, pf, if), where rf is its read
rate (Mbyte/second), wf is its write rate (Mbyte/second), pf is its active energy
consumption rate (Watts), and if is its idle energy consumption rate (Watts). In
addition, SK denotes average seeking time of a hard disk and RT represents average
rotation latency of a hard disk. The time span of one epoch is denoted by Te (second).
Therefore, the mean service time of file fi served by a hard disk is

)/(h
i

h
i tspRTSKbmst ++= . (2)

However, if the file is served by a flash disk, its mean service time becomes

)/()//()/()]/()/([ii
f

i
f

ieii
f

iei
f

iei
f

i wrwwrrbiTwrwspbTwrspbTrmst ++=++= . (3)

Hence, the performance gain pgi in terms of mean service time reduction ratio of
file fi is defined in Eq. 4.

)///())(/(

/
f

i
f

iii
h

f
i

h
ii

wwrrwrtspRTSK

mstmstpg

++++=

= . (4)

For each read-write file, we need to decide where to store it. Thus, we need to

calculate its energy gain egi in one epoch in Eq. 5, where is the energy
consumption of file fi in one epoch if it is stored in the hard disk array, and is the
energy consumption of fi in one epoch if it is in the flash disk array.

h
iec

f
iec

)](/[)]([/ f
i

f
if

iih

h
f

i
h
ii w

w
r
rpwr

t
pececeg ++== .

(5)

Since in some situations it is desirable to trade performance for energy-saving,
SAIL employs a parameter named PDA (performance degradation allowed) to make
a good trade-off between performance and energy when it makes reallocation
decisions for read-write files. Essentially, PDA is a constant value set by system
administrator and it is in the range [0, 1). If the system administrator believes that
performance is the most important goal, he can set PDA as zero, which implies that
performance degradation caused by allocating a read-write file onto the flash disk
array is not permitted. If sacrificing some performance for energy-saving is desirable,
he can set PDA to a value larger than zero (e.g., 20%). In this case, if a read-write
file’s performance gain pgi (Eq. 4) is within the range [1-PDA, 1] and its energy gain
egi (Eq. 5) is larger than 1, the file will be reallocated onto the flash disk so that
energy-saving can be realized at the price of performance.

The total number of write cycles of a flash disk is a constant WC, which is assumed
to be 1 million in our simulation experiments. Besides, DY represents the duration
years of a flash disk and we set DY as 5 years. As a result, WCPS (write cycles per
second) that is allowed by a flash disk is defined in Eq. 6 as below.

)606024365/()/(∗∗∗= DYWCWCPS . (6)

For instance, the value of WCPS in our simulations is around 0.0063 (1/second).

Therefore, the reliability loss rli of file fi if it is stored on the flash disk array can be
computed by

⎩
⎨
⎧ ≥

=
otherwise0

if ,1
,

WCPS w
rl i

i
. (7)

The request set is designated as R = {r1, ..., rk, …, rx}. Each request is modeled as rk

= (fidk, ak, tk), where fidk is the file ID that is accessed by the request rk, ak is the

arrival time of request rk, tk is the type of the request rk and it can be “r”, “w”, “c”, and
“d” representing “read”, “write”, “create”, and “delete”, respectively.

3.3 Implementations

The SAIL strategy consists of five modules (Fig. 2) that coordinate with each other
via five data structures (Fig. 3): file position and popularity table, file re-distribution
table, free flash space queue, free hard space queue, and deleted file queue.

Fig. 2. The SAIL strategy; modules in the dotted rectangle execute once per epoch.

At the beginning, all files are striped across the hard disk array in a RAID-0
fashion. Dynamically created files are also distributed initially across the hard disk
array. SAIL first starts the file placement initializer, which creates some important
data structures such as file position and popularity table for later use (Fig. 3). After
the hybrid disk array begins to serve I/O requests, SAIL launches the file access
monitor to record each file’s popularity in terms of number of accesses within one
epoch in the file position and popularity table. The file position and popularity table,
which contains the latest popularity information of each file, will be used later by the
redistribution table generator to generate the file re-distribution table. After labeling
all popular files, the redistribution table generator generates the file re-distribution
table, which lists all files that need to be reallocated between the hard disk array and
the flash disk array. Guided by the file re-distribution table, the file re-organizer
reallocates all files in the file re-distribution table to their preferred destinations.
During the file reallocation process, the file re-organizer consults to the disk space
manager, which is responsible for managing disk space for both hard disk array and
flash disk array.

File Position and
Popularity Table

Free Flash Space
Queue

Redistribution Table
Generator

File
Re-Organizer

Deleted File
Queue

File Access
Monitor

 I/O Requests

File Redistribution
Table

Disk Space
Manager

Free Hard Space
Queue

Fig. 3. Major data structures for the SAIL strategy.

Obviously, file reorganization is achieved at the cost of both performance
degradation and extra energy consumption. Fortunately, SAIL only needs to re-
organize a small portion of popular files at the end of each epoch due to the smooth
changes in file access pattern. Also, to reduce the overhead associated with file re-
organization, SAIL confines the time span of each epoch so that frequent file
reallocation can be avoided.

4 Performance Evaluation

This section presents results of a comprehensive experimental study comparing the
proposed SAIL strategy with the PB-PDC algorithm. To the best of our knowledge,
PB-PDC is the only existing data placement algorithm that partitions data between a
hard disk and a flash memory device. This is largely because how to combine newly
manufactured flash disks with traditional hard disk drives to form efficient storage
systems for data-intensive applications is a brand new research topic. Note that one of
the most significant differences between SAIL and PB-PDC is that SAIL is integrated
with RAID structures on top of a hybrid disk array for enterprise applications,
whereas PB-PDC in its current status merely employs one hard disk with one flash
memory device in a personal laptop computing environment. In this section, we first
introduce experimental setup including performance metrics, the real trace, hard disk
and flash disk characteristics, and simulation parameters that we used. Next, in
Sections 4.2 we analyze experimental results.

(b) A sample FRD table. (d) A sample free hard space queue (FHS queue).

 (c) A sample free flash space queue (FFS queue).

(a) A sample file position and popularity table (FPP table).

10_210_1 10_3 10_4 11_1 11_2

4_44_3 6_2

60_357_4 60_4 61_1 61_2 61_4 61_3

7_47_3 8_1 8_48_3

… … ……

4.1 Experimental Setup

We developed an execution-driven simulator that models a hybrid disk array, which
has one hard disk array and one flash disk array (see Fig. 1). The main characteristics
of the hard disk and the flash disk used in simulations are shown in Table 1. The
performance metrics by which we evaluate system performance include:
 Mean response time: average response time of all access requests submitted to the
simulated hybrid disk array storage system.
 Energy consumption: energy consumed by the hybrid disk array during the process
of serving the entire request set.
 Write cycles: the maximal number of write on one flash disk during one epoch.

We evaluate the SAIL and the PB-PDC algorithms by running trace-driven
simulations over the Auspex trace originated from Berkeley [8], which has been
widely used in the literature. Since the simulation times in our experiments are much
shorter compared with the time span of the trace, we only choose the first 1100,000
I/O requests from the trace in our experiments. We examined the impacts of flash disk
capacity on system performance by controlling the parameter.

Table 1. Hard disk and flash disk parameters.

Hard disk Seagate
Cheetah 15K.4 Flash disk Adtron Flashpak

Model number ST373454FC Model number A25FB-20
Capacity (GB) 73.4 Capacity (GB) 4, 8, 16, 24, 32
Spindle speed (RPM) 15 K Access time (ms) 0.272
Ave. seek time (ms) 3.5 Seek time 0
Ave. latency (ms) 2.0 Read (Mbytes/sec) 78
Transfer rate (Mbytes/sec) 77 Write (Mbytes/sec) 47

Active power (watts) 17 Read/write power
(watts) 3.43

Idle power (watts) 11.4 Idle power (watts) 1.91

4.2 Impact of Flash Disk Capacity

The first group of experiments was conducted to study the impact of flash disk
capacity on the performance of the two algorithms (Fig. 4). An average improvement
of 24.2% in mean response time and 28.2% in energy consumption were observed by
SAIL over PB-PDC (Fig. 4).

With an increased capacity of each flash disk, it is easy to understand that both
SAIL and PB-PDC can improve their performance in terms of mean response time
(Fig. 4). Meanwhile, energy consumption of both algorithms is reduced (Fig. 4). This
is because more popular files can be placed on flash disks when more flash disk space
is available. In terms of the maximal write cycles on one flash disk during an epoch,
SAIL results in only 35 write cycles within one epoch (1000 seconds) when the
capacity of a flash disk is 16 GB. Considering the huge capacity of a flash disk and
the relatively very small number of total write cycles on it, the write cycles per block

within one epoch caused by SAIL is far from a flash disk’s write cycle threshold
value WCPS (see Eq. 6). Besides, modern flash disks normally have built-in wear-
leveling techniques [21]. Thus, we believe that the impact of SAIL on flash disk
reliability can be safely omitted.

Fig. 4. An overall comparison of the two algorithms with respect to flash disk capacity.

5 Conclusions

In this paper, we address dynamic file allocation and reallocation problem in the
context of a hybrid disk array. A new disk array architecture was proposed to replace
traditional pure hard disk based disk arrays in server-class data-intensive applications.
Powered by the proposed storage architecture, we further designed and implemented a
novel self-adaptive dynamic file allocation and reallocation strategy SAIL, which
judiciously separate files between one hard disk array and one flash disk array based
their access patterns. Thus, the complementary merits of hard disk and flash disk can
be mostly utilized while their respective shortcomings can be avoided.
Comprehensive simulation experiments demonstrate that SAIL consistently
outperforms an existing dynamic file assignment algorithm PB-PDC, which also
employs both hard disk and flash device. Specifically, our trace-driven experimental
results show that the SAIL strategy results in an average 24.2% and 28.2%
performance and energy consumption improvement compared with PB-PDC.
Meanwhile, in terms of write cycles, SAIL guarantees that its impact on flash disk
reliability is trivial and can be safely ignored.

Acknowledgments. This work is partially supported by the US National Science
Foundation under grants CNS-0834466 and CCF-0742187.

References

1. Arlitt, M., Williamson, C.: Web server workload characterization: the search for invariants.
In: ACM SIGMETRICS Conference, pp. 126--137, ACM Press, New York (1996)

2. Arnan, R., Bachmat, E., Lam, T.K., Michel, R.: Dynamic data reallocation in disk arrays.
ACM Transactions on Storage, Vol. 3, No. 1, 2 (2007)

3. Bisson, T., Brandt, S.: Reducing energy consumption with a non-volatile storage cache. In:
International Workshop on Software Support for Portable Storage, New York (2005)

4. Cash, K.: Flash Solid State Disks - Inferior Technology or Closet Superstar? BiTMICRO
Networks, http://www.storagesearch.com/bitmicro-art1.html

5. Chang, L.P., Kuo, T.W.: Efficient management for large-scale flash-memory storage systems
with resource conservation. ACM Transactions on Storage, Vol. 1, 4, pp. 381--418 (2005)

6. Cheetah 15K.4 Mainstream enterprise disc drive storage,
http://www.seagate.com/content/docs/pdf/marketing/Seagate_Cheetah_15K-4.pdf

7. Chen, F., Jiang, S., Zhang, X.: SmartSaver: Turning Flash Drive into a Disk Energy Saver
for Mobile Computers. In: International Symposium on Low Power Electronics and Design.
pp. 412--417, IEEE Press, New York (2006)

8. Dahlin, M.D., Wang, R.Y., Anderson, T.E., Patterson, D.A.: Cooperative caching: using
remote client memory to improve file system performance. In: USENIX Operating Systems
Design and Implementation, Vol. 1, Article No. 19 (1994)

9. Dowdy, W., Foster, D.: Comparative Models of the File Assignment Problem. ACM
Computing Surveys, Vol. 14, No. 2, pp. 287--313, ACM Press, New York (1982)

10. Fitzgerald, A.: Flash Disk Reliability Begins at the IC Level. COTS Journal,
http://www.cotsjournalonline.com/home/article.php?id=100053

11. Goyal, P., Jadav, D., Modha, D.S. Tewari, R.: CacheCOW: providing QoS for storage
system caches. In: SIGMETRICS Conference, pp. 306--307, ACM Press, New York (2003)

12. Hsieh, J.W., Kuo, T.W., Chang, L.P.: Efficient Identification of Hot Data for Flash Memory
Storage Systems. ACM Transactions on Storage, Vol. 2, No. 1, pp. 22--40 (2006)

13. Kawaguchi, A., Nishioka, S., Andmotoda, H.: A flash-memory-based file system. In:
USENIX Technical Conference, pp. 155--164 (1995)

14. Kim, H., Lee, S.G.: A new flash-memory management for flash storage system. In: The
23rd International Computer Software and Applications Conference, pp. 284--289 (1999)

15. Kim, Y.J., Kwon, K.T., Kim, J.: Energy-efficient file placement techniques for
heterogeneous mobile storage systems. In: The 6th ACM & IEEE International Conference
on Embedded Software, pp. 171--177 (2006)

16. Lee, L.W., Scheuermann, P., Vingralek, R.: File assignment in parallel I/O systems with
Minimal Variance of Service Time. IEEE Transactions on Computers, Vol. 49, No. 2, pp.
127--140, IEEE Press, New York (2000)

17. Pinheiro, E., Bianchini, R.: Energy Conservation Techniques for Disk Array-Based Servers.
In: International Conference for High Performance computing, Networking, Storage and
Analysis (Supercomputing 2004), pp. 88--95 (2004)

18. Product Specification, Adtron A25FB-20 Flashpak Data Storage,
http://www.adtron.com/pdf/A25FB-20-sum052908.pdf

19. Roselli, D., Lorch, J.R., Anderson, T.E.: A Comparison of File System Workloads. In:
USENIX Technical Conference, pp. 44--54 (2000)

20. Scheuermann, P., Weikum, G., Zabback, P.: Data partitioning and load balancing in parallel
disk systems. The International Journal on Very Large Data Bases, 7, 1, pp. 48--66 (1998)

21. Storage Products, A25FB-20-R2spec101507.pdf.
22. Weikum, G., Zabback, P., Scheuermann, P.: Dynamic file allocation in disk arrays. In:

ACM SIGMOD, Vol. 20, No. 2, pp. 406—415, ACM Press, New York (1991)
23. Xie, T.: SOR: A Static File Assignment Strategy Immune to Workload Characteristic

Assumptions in Parallel I/O Systems. In: The 36th International Conference on Parallel
Processing, IEEE Press, New York (2007)

24. Xie, T., Sun, Y.: No More Energy-Performance Trade-Off: A New Data Placement Strategy
for RAID-Structured Storage Systems. In: The 14th Annual IEEE International Conference
on High Performance Computing, pp.35--46, Springer Press (2007)

