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PCFTL: A Plane-Centric Flash Translation
Layer Utilizing Copy-Back Operations

Wei Wang, Student Member, IEEE and Tao Xie, Member, IEEE

Abstract—A software module named flash translation layer (FTL) running in the controller of a flash SSD exposes the linear flash
memory to the system as a block storage device. The effectiveness of an FTL significantly impacts the performance and durability of a
flash SSD. In this research, we propose a new FTL called PCFTL (Plane-Centric FTL), which fully exploits plane-level parallelism
supported by modern flash SSDs. Its basic idea is to allocate updates onto the same plane where their associated original data resides
on so that the write distribution among planes is balanced. Furthermore, it utilizes fast intra-plane copy-back operations to transfer valid
pages of a victim block when a garbage collection occurs. We largely extend a validated simulation environment called SSDsim to
implement PCFTL. Comprehensive experiments using realistic enterprise-scale workloads are performed to evaluate its performance
with respect to mean response time and durability in terms of standard deviation of writes per plane. Experimental results demonstrate

that compared with the well-known DFTL, PCFTL improves performance and durability by up to 47 and 80 percent, respectively.
Compared with its earlier version (called DLOOP), PCFTL enhances durability by up to 74 percent while delivering a similar 1/0

performance.

Index Terms—Flash translation layer, copy-back, merge operations, solid state disk, garbage collection

1 INTRODUCTION

ITH increasing capacity and decreasing price, NAND

flash memory based solid-state disk (hereafter, flash
SSD) is now considered a replacement for hard disk drive
(HDD) from personal computers to servers due to its desir-
able properties such as fast random access, enhanced dura-
bility, and low energy-consumption [2]. Fig. 1a shows major
components of a flash SSD. The flash controller is responsi-
ble for managing error correction, providing an interface
with flash memory, and serving host requests [1]. The flash
memory part of a flash SSD is composed by an array of iden-
tical packages. Each package contains several chips. Pack-
ages within the same group share one channel, which
connects them to the flash controller. Chips within one
package share the package’s 8/16-bit I/O bus but have sep-
arate chip enable and ready/busy control signals [7]. Each
chip consists of multiple dies as shown in Fig. 1b. Each die
has its own internal ready/busy signal, which is invisible to
users and will only be used by the advanced commands.
Furthermore, each die contains multiple planes with each
having thousands of blocks and one or two data/cache
registers as an 1/O buffer. Each block typically has 64 or
128 pages. The typical size of one page lies in the range
between 2 to 16 KB [7]. While a read operation and a
write operation are carried out at page-level, an erasure
operation can be conducted only at block granularity [4].
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The processing time of the three basic operations varies
significantly. Take a Micron’s NAND flash product
(MT29F8GOSMAAWC) [12] as an example, a random read
and write operation take 50 and 650 us, respectively,
whereas an erase operation needs 2 ms. In addition to the
three basic operations, flash manufacturers also provide
advanced commands like copy-back and interleave to further
improve performance [1], [7], [14]. Copy-back operation,
sometimes referred to as internal data move (IDM) opera-
tion [13], moves a page of data from one page to another in
the same plane. Since no external data operation occurs, an
intra-plane copy-back operation can be 30 percent faster
than a traditional inter-plane data operation [13]. Moreover,
copy-back operation can be viewed as a form of plane-level
parallelism as multiple copy-back operations can be per-
formed on different planes at the same time [1].

Although a flash SSD possesses some advantages over an
HDD, it also has some inherent limitations such as erase-
before-write and finite-erasure-cycles. A piece of data on flash
cannot be directly overwritten at the same place because
flash memory cells can only change their states in one direc-
tion (i.e., from “1” to “0”) [10]. As a result, an erase opera-
tion must be preformed on a block before it can serve write
requests. This erase-before-write limitation degrades the over-
all performance of flash memory. In addition, each flash
memory cell has a limited write endurance as it becomes
unreliable after a finite number of program/erase (P/E)
cycles. In order to combat these limitations, modern flash
SSD implements a software module called FTL running in
its controller. The major function of an FIL is to map each
logical block address (LBA) received from a file system to a
physical block address (PBA) in the flash memory [6]. FTL
solves the erase-before-write issue by using an out-of-place
update method: first, the update data is written to an erased
page; next, the page that contains the old data is invalidated;
finally, the logical-to-physical address mapping table is
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Fig. 1. (a) SSD block diagram; (b) chip internal structure.

modified to reflect this change [6]. The out-of-place update
method requires a garbage collector, which reclaims invalid
pages within a victim block. The garbage collector first relo-
cates all valid pages from the victim block to a new destina-
tion and then erases the entire block. The finite P/E cycles
limitation demands a wear-leveling scheme, which ensures
all blocks in a flash SSD wear out evenly [14]. Garbage col-
lection and wear-leveling are two other functions of an FTL.

The efficiency of an FTL is crucial because it significantly
impacts not only the performance but also the durability of
a flash SSD [6], [10], [14]. Intensive investigations on FTL
designs have been reported in the literature [6], [10], [14].
They either focus on improving the utilization of log blocks
(see Section 2) [10] or concentrate on employing the locality
exhibited in enterprise-scale workloads [6]. In this research,
we take a completely different approach to developing a
high-performance FTL by exploiting the internal parallelism
present in the architecture of contemporary flash SSDs. We
propose a new FTL called PCFTL (Plane-Centric FTL). The
meaning of “plane-centric” is two-fold: First, it employs a
cache-assisted write dispatch scheme (see Section 3.1) to dis-
patch new write requests onto all planes in a round-robin
manner and direct each update request to the plane where
its original data resides on. In this way, a balanced write dis-
tribution across all planes can be achieved in order to fully
exploit the plane-level parallelism. A balanced write distri-
bution can prolong the lifetime of an SSD as planes wear
out at a similar pace. Second, PCFTL uses a plane-level gar-
bage collection mechanism (see Section 3.3) so that fast
intra-plane copy-back operations can be utilized to relocate
valid pages in a victim block to improve the performance of
an SSD.

To evaluate the effectiveness of PCFTL, we largely extend
a validated flash SSD simulator called SSDsim [7] to imple-
ment both PCFTL and a state-of-the-art page-mapping FTL
named DFTL (Demand-based FTL)[6] as well as DLOOP
(Data Log On One Plane) [2], an earlier version of PCFTL.
Experimental results from realistic enterprise-scale work-
loads demonstrate that PCFTL lowers the standard deviation
of writes per plane by up to 80 and 74 percent compared with
DFTL [6] and DLOOP [2], respectively. Furthermore, PCFTL
consistently outperforms DFTL [6] in terms of 1/O perfor-
mance. For example, we observe an average 57.3 percent
improvement in mean response time on a 32 GB flash SSD
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compared with DFTL. Unlike most existing FTLs, PCFTL
achieves a higher performance and durability by exploiting
the internal plane-level parallelism provided by modern
flash SSDs. Hence, it encourages future research on develop-
ing FTLs by taking advantage of a flash SSD’s internal fea-
tures and their interplay. This paper is an extension of the
conference version appearing in [2].

The remainder of this paper is organized as follows. In the
next section, we briefly discuss the related work and motiva-
tion. In Section 3, we describe the design and implementation
of PCFTL. Simulator extension will be presented in Section 4.
In Section 5, we evaluate PCFTL. Section 6 concludes the
paper with a summary and a discussion of future work.

2 BACKGROUND AND RELATED WORK

2.1 Existing FTLs

Existing FTL schemes can be generally categorized into
three camps: (1) page-mapping FTL; (2) block-mapping
FTL; and (3) hybrid FTL [6]. In a page-mapping FTL, each
logical page can be mapped to any physical page in a flash
SSD, which is efficient in memory utilization. However, the
size of its mapping table increases linearly with the increas-
ing capacity of a flash SSD, and thus, generates an expensive
RAM cache overhead [6]. In a block-mapping FTL, each
LBA is translated into a physical block number, which
results in a much smaller mapping table. Nevertheless,
block-mapping FTLs demand extra operations to serve a
request, which degrades the performance [6]. Thus, they are
seldom employed in current flash SSDs. To make a good
trade-off between page-mapping and block-mapping,
hybrid FTLs logically divide all physical blocks into two
groups: data blocks and log blocks [10]. Majority of physical
blocks are tagged as data blocks, which are administered by
a block-mapping scheme. All rest physical blocks are desig-
nated as log blocks, which are page-mapped and invisible
to users [15]. Both block-mapping table and page-mapping
table are normally stored in an DRAM buffer within a flash
SSD. When a write (update) request arrives, a hybrid FTL
writes the new data in a log block, and then invalidates the
old version of the data that was stored in a data block.
Whenever there is no free log block, a garbage collection
process is invoked to merge the log block with the data
block, after which either the data block or the log block will
be erased to become a new free log block [6].

Hybrid FTLs are currently predominant FTLs as they can
offer decent performance with affordable cache overhead.
However, typical hybrid FTL schemes like FAST [10] still
suffer from inefficient garbage collections, and thus, fail to
deliver a high performance for enterprise-scale random-
write dominant workloads [6]. Recently, DFTL [6], an opti-
mized page-level mapping FTL, has been proposed. The
idea behind it is simple: since most enterprise-scale work-
loads exhibit significant temporal locality, DFTL uses the
on-flash limited DRAM to store the most popular mappings
while the rest are maintained either on the flash device itself
[6]. Experimental results show that DFTL [6] performs
noticeably better than the classic hybrid FTL scheme FAST
[10]. The main reason is that DFTL uses page-level map-
ping, and thus, can completely get rid of the costly full
merge operations [6].
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A page-level mapping FTL called DLOOP was devel-
oped in [2], which is an earlier version of PCFTL. DLOOP
has two weaknesses. It statically distributes write requests
based on their logical addresses. As a result, an uneven
write distribution across all planes could occur due to work-
load locality. The imbalanced write distribution shortens
the longevity of an SSD. PCFTL overcomes this drawback
by employing a cache-assisted write dispatch scheme to
evenly distribute write requests across all planes (see
Section 3.1). DLOOP also has the never-ending garbage col-
lection problem (see Section 3.4), which has been fixed in
PCFTL. In Section 5, we compare PCFTL with DLOOP
mainly in order to show the durability improvement of
PCFTL over its earlier version DLOOP.

2.2 Parallelism in Flash SSDs
Fig. 1b illustrates a hierarchical structure of a flash memory.
Several recent research reports on flash SSD architecture [1],
[4], [7], [13], [15] reveal that SSD internal features such as
advanced commands ( copy-back , multi-plane , and interleave
[1], [7], [14]) and multi-level parallelism could significantly
impact its overall performance. For example, Dirik and
Jacob discover that increasing the level of concurrency by
striping across the planes within the flash device could
increase throughput substantially [4]. Hu et al. [7] suggest
an optimal priority order of parallelism in flash SSD that
flash SSD architects should consider: channel-level — die-
level — plane-level — chip-level. They advocate that chan-
nel-level parallelism should be given the first priority [7].
However, after analyzing the benefits and the overhead
of the four levels of parallelism, we argue that the plane-
level parallelism is the first one that FTL designers should
take into account. The channel-level parallelism can offer
the best performance as two operations on two packages
belonging to two different channels can be executed
completely in parallel without any interleaving. Unfortu-
nately, it is also the most expensive solution as increasing
the number of channels substantially increases the hard-
ware cost of an SSD [7]. Chip-level parallelism does not
help too much in improving performance as it leads to mul-
tiple chips busy, and thus, could delay subsequent requests
[7]. Die-level parallelism and plane-level parallelism share
one advantage: utilizing them will not increase hardware
cost. In this work, we concentrate on exploiting plane-level
parallelism and leave exploring die-level parallelism in the
future work. The main reason is that exploiting plane-level
parallelism is relatively simpler as managing operations
across all planes in one die is more straightforward than
concatenating a group of various operations (e.g., read,
write, and erase) across multiple dies. This is because opera-
tions across all planes in one die can be managed by the die,
which is an independent unit that has its own internal
read/busy signal [15]. Besides, multiple copy-back opera-
tions can run in parallel, which provides another form of
plane-level parallelism that is not constrained to the serial
I/0 bus (see Fig. 6). The insights provided by [1], [4], [7],
[13], [15] on flash SSD internal features as well as our own
investigations on how to effectively employ the multi-level
parallelism in modern flash SSDs motivate us to develop an
optimized page-mapping FTL that can fully exploit plane-
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level parallelism to achieve high performance while main-
taining good durability.

2.3 Flash Aware Cache Management

The read and write performance are asymmetric in flash
memory [1]. Therefore, numerous cache management
schemes [19], [20], [21] dedicated for flash memory have
been proposed in the literature to enhance the poor random
write performance. CFLRU [20], a flash storage cache man-
agement scheme, judiciously chooses victim pages in cache
to avoid time-consuming write operations. Unlike conven-
tional cache management algorithms, CFLRU attempts to
choose a clean page rather than a dirty page as a victim so
that expensive write operations can be eliminated during
cache content refreshing. FAB [21] groups data that belong
to the same block, and then applies LRU (least recently
used) on these groups. FAB is very effective to the applica-
tions in which the majority of writes are sequential. Similar
to FAB, BPLRU [19] also manages an LRU list in groups.
However, the group size is the same as the erasable block
size in the flash memory. Thus, BPLRU is suitable for block-
level or hybrid FTLs, in which the block-level flushing mini-
mizes the log block attaching cost [19].

PCFTL utilizes an LRU-like write cache to keep popular
write data as long as possible to reduce the number of phys-
ical flash accesses. For new writes evicted by the write
cache, it distributes them across all planes in a round-robin
way. The cache-assisted write dispatch scheme prevents
planes within one SSD from wearing out unevenly.

3 DESIGN AND IMPLEMENTATION

In this section, we first introduce a cache-assisted write dis-
patch scheme and explain an intra-plane copy-back opera-
tion. Next, an example illustrates how a plane-level garbage
collection mechanism powered by copy-back operations
can enhance an SSD’s performance. Finally, a formal pre-
sentation of PCFTL is provided.

3.1 A Cache-Assisted Write Dispatch Scheme

When PCFTL spreads write requests across all planes in a
flash SSD, the biggest challenge is how to avoid an uneven
write distribution among planes caused by workload local-
ity. In real-world workloads, different pieces of data may
have distinct access frequencies due to temporal and spatial
locality [3], [11]. As a result, the number of write requests
on each plane might vary greatly if they are simply distrib-
uted based on their LPNs. Planes that receive a larger num-
ber of writes could have a shorter lifetime due to their faster
wear-out [1], which degrades the durability of an SSD. In
order to achieve an even write distribution across all planes
in an SSD, PCFTL introduces a cache-assisted write dispatch
scheme as shown in Fig. 2. It improves the durability and
performance of an SSD from the following three aspects.
First, consecutive write requests are sent to different planes
in a round-robin manner so that all planes can work in par-
allel. In this way, plane-level parallelism can be largely
exploited. Second, some of the updates for popular data are
absorbed by the cache, which decreases the total number of
physical writes on an SSD as well as the mean response
time due to the low cache latency. A decreased number of
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Fig. 2. Cache-assisted write dispatch scheme.

writes on an SSD can improve its durability. Lastly, an LRU
cache can “cool down” the popularity degree of a piece of
popular data because it can absorb part of the data’s
accesses before the data is evicted. Hence, after passing
through an LRU cache, the discrepancy of popularity
degree between popular data and unpopular data is
decreased. The result is that the planes that store these data
will receive a close number of updates in the future, which
also leads to an even write distribution across planes.

The write dispatch scheme employs a write cache, which
is a part of the DRAM in an SSD (see Fig. 1a). The write cache
only accepts write requests and is organized as a linked list.
When a write request arrives, the write scheme first pushes it
into the head of the list. And then, a quick scan is performed
to check if an old version of the data has been in the cache. If
so, the write scheme deletes the old data from the list by
directly linking its two immediate neighbors. When the write
cache is full, the data at the tail will be evicted and then
flushed onto a plane. The write cache adopts an LRU-like
replacement scheme. If the evicted data is a new write, the
write dispatch scheme forwards it to a plane based on a plane
selection algorithm shown in Fig. 3. The algorithm takes an
integer foken as its input and returns a physical page number
(PPN) for the evicted write request. The initial value of the
token is set to 0 and it is increased monotonously. It first
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1: Input: roken

2: Output: PPN, token

3: Procedure get PPN for new writes (token)

4: begin

plane_number = token%total_plane_number
active_block_number = get_active_block (plane_number)
PPN = get_page_number (active_block_number)

token = token + 1

:end

R A A

Fig. 3. Plane selection algorithm for new writes.

calculates the new write request’s destination plane based
on the current value of foken in a round-robin way. Next, the
active_block_number is returned according to the plane num-
ber through the get_active_block function. An active block is
the block that is currently serving write requests arriving on
the plane. Finally, the PPN is retrieved via the get_page num-
ber function, which returns the page number of the active
block used to store the incoming write request. If the evicted
data is an update, it will be sent to the plane where its origi-
nal data resides on. The plane number can be retrieved from
the address mapping table.

Fig. 2 illustrates how the cache-assisted write dispatch
scheme works. The 4-digit number in each page is the LPN
of the corresponding data. The letter “I” in the parentheses
stands for a page of invalid data, whereas the letter “V” rep-
resents a page of valid data. The variable token in Fig. 3 is
shown as a “T” in Fig. 2. Suppose that an SSD only has four
planes and the current token value “T” is 4. Also, assume
that the three pages at the tail are evicted in a row and the
last request 4500 is a new write (see Fig. 2). In step 1, the
write dispatch scheme directs 4500 to the plane 0’s data reg-
ister according to the current value of the token (see line 5
in Fig. 3). After that, the data is written to a free page in
block 49 from plane 0’s data register in step 2. Assume that
the second request 3009 is also a new write. It is written to
plane 1 block 64 according to the dispatch scheme (step 3
and 4). For the request 4923, however, it is an update and its
old data is assumed in plane 3. Hence, the dispatch scheme
directly sends it to plane 3 (step 5) without calling the plane
selection algorithm. After the data is written into a new
page in plane 3 (step 6), the page that contains the old data
is marked as invalid (step 7).

Fig. 4 illustrates four typical scenarios in the write cache.
The letter “W” stands for write request and the “R” is short
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Fig. 4. Four scenarios of the write cache.
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for read request. Assume initially there is only one empty
page at the tail in the write cache as shown in the initial state
. In scenario (1), a new write request 5781 arrives. It is
inserted into the head. All other pages are pushed one page
down. In scenario (2), when an update request 9312 comes,
a quick search will be performed to check if its old data
exists in the cache. In this case the old data is found. In step
1, it is deleted and then all other pages above it are moved
one page down in step 2. In step 3, the update 9312 is
pushed into the head. Scenario (3) shows that a read request
comes and the data that it is looking for is found in the write
cache. The request can be directly served by the write cache
without accessing flash memory. In scenario (4), the cache is
full when a new write request 3349 comes. Data 4923 at the
tail will be selected as the victim page and then kicked out
in order to accommodate 3349. After that, 3349 is pushed
into the head as shown in Fig. 4(4). For the victim page
4923, if it is an update the write dispatch scheme first inva-
lidates the old page (not shown here) and then writes it
onto the active block (i.e., block number 49) on the same
plane. Otherwise, the plane selection algorithm shown in
Fig. 3 will be executed to select a plane for the new write
request. A suitable size of a write cache is discussed in
Section 5.6.

3.2 Intra-Plane Copy-Back Operation

Read operation and write operation are asymmetric in
flash memory. Typically, a read operation takes around
25 us to read a page from the flash media into a 4KB data
register [1]. Writing a page to the flash memory normally
requires 200 ps [1]. Transferring one page data between a
4KB data register and the flash controller usually takes
50 ws [4]. Note that transferring a read/write command
and address only takes 0.2 ps [4], which is negligible.
Fig. 5 shows the steps of moving a page of data from one
plane to another plane. Traditionally, an inter-plane copy
operation needs four steps to complete. In Step 1, page 1 of
block 25 is read into the 4-KB data register on plane 0. It is
then transferred into the flash controller in Step 2. Next,
the data of page 1 is transferred from the flash controller
to the 4-KB data register on plane 2. Finally, the data is
written into the page 2 of block 73 on plane 2. Totally, an
inter-plane copy operation takes around 325 us (25 us +
50 s + 50 ws + 200 ps) to complete as a page of data has
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to travel all the way up to the flash controller buffer and
then back to the destination plane, which is a long journey.
Even worse, it possesses the serial I/O bus shared by mul-
tiple dies twice and the external channel twice (see Fig. 1),
which prevents other operations from taking place. This
process is time-consuming and precludes other functions
in flash SSD, thus reducing performance.

An intra-plane copy-back operation, on the other hand,
is much simpler because it only requires two steps. Fig. 6
demonstrates the processes of two concurrent intra-plane
copy operations. Flash controller sends a copy-back com-
mand to plane 0 and plane 2 in Step 1 and Step 2, respec-
tively. In Step 3, a page of data is read into the 4KB data
register on each plane. In Step 4, the data is written into
the destination page on the same plane. So, an intra-plane
copy-back operation only takes 225 us (25 s+ 200 ws),
which saves time by 30.7 percent compared with a 325 us
inter-plane data copy operation. Considering that normally
multiple pages of data need to be moved during a garbage
collection process, using copy-back operation for more
pages can save even more time compared with traditional
inter-plane copy operation. Besides, intra-plane copy-back
operations only occur within a plane, and thus, do not use
external channel at all, which can let other operations to be
executed simultaneously. Multiple intra-plane copy-back
operations on different planes can be run at once, which
can be viewed as another form of plane-level parallelism.
An intra-plane copy-back operation, however, has one
restriction: moving data from an odd address page
(source page) to an even address page (destination page)
or vice versa is prohibited [17]. The addresses of a source
page and a destination page must be either both odd or
both even [7]. Consequently, one or multiple free pages
may have to be wasted in a copy-back operation in order
to follow the same-parity policy . For example, the copy-
back operation on plane 0 shown in Fig. 6 cannot move
data from page 1 (a source page with an odd page address)
of block 25 to page 2 (a destination page with an even page
address) of block 58 even if page 2 is the current free page
on block 58 to accept new data. Instead, it has to first inval-
idate page 2, and then, writes the data to page 3 of block
58. Fig. 7b in Section 3.3 shows a more detailed example of
how a page is wasted due to the same-parity restriction of
copy-back operations.
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Fig. 7. (a) An example of a conventional garbage collection; (b) an example of a plane-level garbage collection.

3.3 A Plane-level Garbage Collection Mechanism
A conventional garbage collection (GC) scheme typically is
invoked in two situations. The first situation is when an SSD
is idle. A GC will be launched to reclaim some used blocks
each with many invalid pages so that more free blocks can be
reserved for upcoming writes. The second case is when the
number of total free blocks is lower than a predefined thresh-
old. In this situation, all incoming requests will be tempo-
rally blocked and a GC is immediately invoked so that the
minimum number of free blocks can be guaranteed to serve
the next possible GC operation. The second situation always
happens when an SSD is used in a write intensive workload
[4]. Normally, the block with the most number of invalid
pages in an SSD is selected as a victim block, which will be
erased and then reclaimed into a free block pool. Before it is
erased, however, all valid pages on it, if any, need to be relo-
cated to either a free block grabbed from the free block pool
or an active block that has enough free pages to accommo-
date them [2]. Since the victim block could be anywhere on
an SSD, the free block pool is actually composed by an array
of erased blocks scattered across planes. Also, a traditional
FTL only maintains one active block pointer for each chip,
which points to the active block where the next write request
will be served in its first free page. Therefore, when a garbage
collection occurs, the victim block and the destination block
(i.e., either a free block or an active block) most likely sit on
different planes. As a result, the flash controller has to tem-
porarily block all incoming requests because it needs to work
as a data carrier to move all valid pages one by one from the
victim block to the destination block across the boundary of
planes [2]. The more valid pages exist in the victim block, the
more time the flash controller has to be dedicated to moving
data, and thus, the longer all incoming requests are blocked
[1]. Obviously, conventional garbage collection substantially
degrades an SSD’s performance because its data moving pro-
cess occupies the flash controller and data bus [2]. In addi-
tion, it uses an inter-plane data copy operation, which is
slower than an intra-plane copy back.

As illustrated in Section 3.2, an intra-plane copy-back
operation not only saves data moving time but also frees
external data bus so that the flash controller can serve

incoming requests while data moving is being performed in
a GC. Therefore, PCFTL adopts a novel plane-level garbage
collection (PGC) mechanism. When PCFTL detects that an
SSD is idle, it launches a PGC on each plane to reclaim used
blocks. For each plane, PCFTL maintains an active block
pointer that points to its current active block. Also, it pre-
serves a free block pool for each plane. In particular, PCFTL
keeps track of each planes current active block number and
current number of free blocks in a table called Plane Info ,
which is stored in the DRAM buffer of an SSD (see Fig. 1a).
Each entry of the table has three fields: (1) PlaneAddress in
the format of a concatenation of five segments Channel-
Package-Chip-Die-Plane, which indicates the address of a
particular plane (see Fig. 1); based on our experimental con-
figurations shown in Table 1, PlaneAddress takes 5 bytes of
memory as each segment needs at most 1 byte of memory;
(2) ActiveBlock records the current active block number of
the plane whose address is specified in PlaneAddress ; this
field needs 2 bytes of memory as each plane has 2,048 blocks
(see Table 1); (3) NumberOfFreeBlocks stores the number of
current free blocks on the plane whose address is given in
PlaneAddress ; this field requires 2 bytes of memory as well.
Hence, one entry of the Plane Info table demands 9 bytes of
memory. A typical configuration of an SSD shown in Fig. 1
totally has 256 planes (8 channels x 2 packages x 2 chips x
2 dies x 4 planes = 256 planes). Therefore, the RAM space
required by the Plane Info table is only 2.25 Kbytes, which
is trivial compared with the total capacity of the DARM
buffer in an SSD. Note that although both copy-back opera-
tions and PGCs are carried out at plane-level, a plane does
not have its own control mechanism as it can neither issue a
command nor keep track of its own usage information. It is
PCFTL who informs the controller to issue a copy-back
command to a particular plane as shown in Fig. 6. When the
number of free blocks in a plane is lower than a threshold,
PCFTL starts a PGC on the plane. Similar to a conventional
GC scheme, PGC chooses the block with the maximal num-
ber of invalid pages on the plane as the victim block. It then
moves all valid pages from the victim block to either the
active block or a new free block, which are all on the same
plane. Thus, copy-back operations can be used to carry out
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data moving, after which the victim is erased and then
reclaimed to the free block pool on the plane. PGC improves
garbage collection efficiency in three aspects: (1) data mov-
ing time in a garbage collection is reduced due to fast intra-
plane copy-back operations; (2) requests to the planes with-
out an ongoing GC can still be served; and (3) multiple data
moving processes belonging to different plane-level GCs
can be performed on distinct planes in an interleaving way.

Fig. 7 gives an example to compare a conventional GC
with a PGC. Assume that when a conventional GC happens
the current active block is block 58 on plane 1 and block 31
on plane 2 is select as a victim block (see Fig. 7a). Also assume
that write requests 4923 and 5680 arrive immediately after
the GC is launched. 6636 is the only valid page in the victim
block. Moving it to the current active block requires an inter-
plane copy operation, which consists of four steps (see
Fig. 7a). Since the controller and external bus are busy in
moving 6636 across the two planes, 4923 and 5680 will be
temporally blocked even though their destination planes are
idle. In the PGC scenario (see Fig. 7b), each plane has its own
active block. Assume that both plane 1 and plane 2 have to
perform a garbage collection. Block 25 on plane 1 and block
31 on plane 2 are respectively selected as a victim block. In
plane 1, two copy-back operations are issued to move 4720
and 3386 to the active block on plane 1 (step 1 to step 4 on
plane 1 in Fig. 7b). One copy-back operation is executed to
transfer 6636 to the active block on plane 2. Since the first free
page in the active block (i.e., block 73) has an even address
while the source page 6636’s address is an odd number, the
first page of the active block 73 has to be wasted by deliber-
ately invalidating it in step 1 to follow the same-parity policy.
Next, 6636 is moved to the second page of block 73 (step 2
and step 3 on plane 2 in Fig. 7b). In fact, the two PGCs are car-
ried out in an interleaving way: after the controller sequen-
tially issues copy-back operations to plane 1 and plane 2, the
intra-plane data moving processes on two planes can over-
lap. Since the controller is not involved in the data moving
processes, 4923 and 5680 can be respectively served by plane
0 and plane 3 concurrently. The number of GCs caused by
PGC s evaluated in Section 5.4.

Apparently, appropriate use of an intra-plane copy-back
operation is always required to follow the same-parity pol-
icy. During a garbage collection, PGC may need to deliber-
ately waste some free pages in order to follow the policy. In
normal situations, it has to give up one free page in the des-
tination free block (see block 73 on plane 2 in Fig. 7b) when
the destination parity is different from that of the source
page in the victim block. In the worse scenario (assuming
that one block contains N pages), when m (1 <m < N)
valid pages scattered on a victim block happen to have the
same parity, PGC has to waste m free pages in the destina-
tion block if the address parity of the first free page is differ-
ent from that of valid pages in the victim block. However,
this extreme case rarely happens in our experiments. Sec-
tion 5.5 quantitatively analyzes the overhead of PCFTL in
terms of the number of wasted pages.

3.4 The Never-Ending GC Problem

Although PGC can noticeably improve an SSD’s perfor-
mance, it might lead to a never-ending garbage collection
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Fig. 8. An example of never-ending PGC problem.

problem when the following two conditions hold: (1) a
PGC is triggered on a plane because its number of free
blocks is lower than the threshold; (2) half pages on the
selected victim block are invalid and they all share the
same address parity. In this scenario, a PGC simply cannot
increase the number of free blocks. Even worse, the plane
is enforced to enter into an endless series of useless PGCs.
Once PCFTL notices that after a PGC there is still no space
on active block (see Fig. 7b) available to serve an arrival
request, it detects a never-ending GC problem. To solve it,
PCFTL immediately stops PGC and then launches a con-
ventional GC without copy-back operation. Typically, a
block has 64 pages. The chance for a victim block to have
exactly 32 invalid pages and all of them happen to share
the same address parity is extremely small. The never-end-
ing GC problem never happens in our experiments. Still,
PCFTL utilizes a detecting mechanism to solve it, which
will be detailed in the next section.

Fig. 8 shows an illustrative example of how a never-end-
ing GC problem could occur. Assume that each block only
consists of four pages. Also, assume that block 63 is just
fetched from the free block pool to serve the incoming write
requests and the number of free blocks in the pool becomes
lower than the threshold. A PGC will be launched to reclaim
a used block so that the number of free blocks can restore to
the threshold. Suppose that block 49 is selected as the victim
as it contains the largest number of invalid pages (i.e., two
pages) among all the blocks on plane 1. Moreover, all the
valid pages scattered in this block happen to have an even
parity address (see State 1). PCFIL issues two copy-back
operations to move the two valid pages (i.e., 9312 and 5538)
to the current active block 63. Due to the same-parity restric-
tion, PGC has to first invalidate the first free page in block
63 (see step 1 in State 2). Next, page 9312 can be moved to
the second page on block 63 in step 2. For the same reason,
page 5538 can only be placed on the last page of block 63
(see State 2). After all valid pages are moved out, block 49 is
erased and put back to the free block pool in step 5 of State
2. Therefore, the number of free blocks in free block pool is
increased by 1. Normally, a PGC will stop as the number of
free blocks reaches the threshold. However, in this scenario
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1: Input: LPN(request), size(request), type(request)

2: Output: NULL

3: while size(request) =0 do

4: if type(request) == write then

5: if request miss the WC (Write Cache) and size(request) >
free space in WC then

6 Select ve (victim entry) for eviction at the tail of WC list

7 PPN(ve) = MappingTable_loopup(LPN(ve))

8: if PPN(ve) does not exist then /* a new write */

9: Allocate a new free page using Alg.(1)

10: Write this victim entry to that new free page

11: Update MT (Mapping Table)

12: else /* this is an update request */

13: Allocate a new free page in the same plane

14: Write this victim entry to that new free page

15: Update MT

16: end

17: if the number of free blocks is less than threshold then

18: old_state = current_state;,

19: victim_blocks = select_victim_blocks()

20: Fetch a free block from the free block pool on the plane

21: for each vaild page in victim_blocks do

22: Read it into plane data register using copy-back

23: Write it back to active_free_block using copy-back

24: end

25: Erase and reclaim the victim block back to the pool

26: Update current_state

27: if old_state = current_state /* garbage deadlock */

28: Apply normal garbage collection

29: end

30: end

31: Erase the victim entry

32: end

33:  Write request to the WC

34: Move the data of this request to the head of the WC list

35: else /* this is a read request */

36:  if request hit this WC then

37: Read from the WC directly

38:  else /* request miss the WC */

39: Read from the flash

40: end

41: end

42: Decrementing size (request) by one

43: end

Fig. 9. The algorithm of PCFTL.

the current active block 63 immediately becomes full just
after serving the PGC in Sate 2. Therefore, another free block
has to be grabbed from the pool to serve as an active block.
For illustration purpose we assume that block 49 is selected
as the active block (see State 3). This reduces the number of
free blocks and immediately triggers a new PGC process on
the same plane. As block 63 still has the maximum number
of invalid pages, it is selected as a victim block in State 3. A
similar PGC process is preformed on plane 1 to reclaim
block 63 (see State 4), after which plane 1 re-enters State 1.
Obviously, plane 1 will repeat the path from State 1 to State
4 endlessly. A never-ending GC problem happens.

3.5 The Algorithm of PCFTL

Fig. 9 illustrates the algorithm of PCFTL. A multi-page
request is first broken down into multiple one-page-size
requests, which are stored in a current request queue
(line 3). If a request size is not exactly multiple times of a
page size, zero padding will be used. Next, each write
request is grabbed from the queue and then inserted into
the head of the write cache. A victim entry at the tail of the
cache, however, needs to be first flushed onto flash if the
cache is full (line 7 to 17). If PCFTL detects that the number
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of free blocks is lower than the threshold, a PGC is launched
(line 19). PCFTL first employs the select_victim_block() func-
tion to search for the block with the maximal number of
invalid pages on the plane, and then, designates it as the
victim block for the incoming GC (line 21). Next, it grabs a
free block from the free block pool on the plane, after which
intra-plane copy-back operations are employed to move all
valid pages from the victim block to the active block, which
is just fetched from the free block pool (line 22 to 25). If there
is still no active block available after current GC completes,
the never-ending GC problem occurs. To solve it, PCFTL
launches a conventional GC (line 27 to 29). For a read
request, the data will be directly returned from the cache if
a cache hit occurs. Otherwise, it will be served by flash (line
35 to 41). The process is repeated until the current request
queue is empty.

An off-shelf flash SSD usually has some extra blocks,
which are invisible to users. The majority part of the extra
blocks is reserved for garbage collection, whereas the rest
part is used for other memory management functions like
bad block replacement [16]. Assume that one plane has
2,048 data blocks plus four such extra blocks. Also, assume
that the garbage collection threshold is set to 3, which
means whenever the number of free blocks including the
extra blocks in the free block pool is lower than 3, a gar-
bage collection will occur to reclaim one block back. The
purpose of these extra blocks is two-fold. First, when all
2,048 data blocks on a plane are full and the four extra
blocks are in the free block pool, which is higher than the
garbage collection threshold, an extra block will be used to
continue to serve incoming requests just like a normal data
block does. Second, if the extra block becomes full, one
more extra block is needed, which will reduce the number
of blocks in the free block pool to 2. At this time, a garbage
collection process is invoked. PCFTL fetches an extra block
from the free block pool and uses it as the normal block to
accommodate valid pages from the victim block. The total
capacity of these extra blocks is not counted into the data-
sheet SSD capacity that a user can use. The number of
extra blocks is usually a fraction of the total number of
data blocks. The percentage of extra blocks in an SSD is
typically in the range from 3 to 30 percent [9]. It affects
performance because garbage collection is triggered at dif-
ferent times when the percentage of extra blocks varies. In
PCFTL, the free block pool of a plane is purely composed
by all extra blocks on the plane. Besides, GC threshold is
set to the number of extra blocks in the pool in all our
experiments. We examine the impact of the number of
extra blocks on performance and durability in Section 5.3.

4 THE SIMULATOR

4.1 Simulation Environment

Since there is no publicly available hardware flash SSD pro-
totype on which various FTL schemes can be tested, new
FTL development projects [6], [5], [10] usually use various
simulators to evaluate their FTL schemes. We choose
SSDsim [7] as our experimental platform in this research.
SSDsim is a single-threaded program with well-defined
structures including buffer management and request alloca-
tion layer, FTL layer, and hardware module layer [7]. It
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TABLE 1 TABLE 2

Simulation Parameters Real-World Trace Statistics
Parameter Default Value - (Varied) Finl Fin2 Exchange Build TPC-C
Page Size (KB) 2-(2,4,8,16) Write (%) 76.8 17.7 69.2 58 35.4
Pages per Block 64 Update (%) 78 55 34 39 35
Blocks per Plane 2,048 Access rate (reqs/s) 122 90.2 90 45 3,635
Planes per Die 4 Ave. size (KB) 3 4 8 12 8
Dies per Chip 2 Duration (min) 728 684 15 15 2
Chips per Channel 2
Number of Channels 2
Write Cache Size (MB) 2-(0.25,05,1,2,4)

Percentage of Extra Blocks 3-(3,10,20,30)

Block Erase Time (u.s) 2,000
Page Write Time (us) 200
Page Read Time (us) 20
Command Write Time (us) 0.2
Register Write Time (i) 25

supports multiple advanced commands including copy-
back and is easy to extend. Our cache-assisted write dis-
patch scheme can be readily implemented in its buffer
management module. We largely extended the SSDsim sim-
ulator. PCFTL and its earlier version DLOOP as well as
DFTL are all implemented into this simulator.

4.2 Simulator Extensions

SSDsim supports four levels of parallelism and common
advanced commands such as two-plane read/write and
copy-back operation, which can be directly used by PCFTL.
The plane structure in SSDsim is revised to support a num-
ber of extra blocks. A plane-level garbage collection mecha-
nism is added into SSDsim. The garbage collection function
is redesigned so that every plane is able to invoke a garbage
collection individually. For the buffer management module,
the default management scheme is replaced with our write
dispatch scheme and a write cache is integrated. Totally,
around 1,000 lines of C code have been added into the
SSDsim source files.

The timing parameters and hardware structure configu-
ration used by the simulator are summarized in Table 1.
The simulated flash SSD in the experiments supports two
channels. On each channel, two separate chips are con-
nected. Each chip contains two dies with each of them hav-
ing four planes. 2,048 blocks are grouped on each plane and
each block has 64 pages. Since flash manufacturers are mov-
ing to deliver chips with larger page sizes, the size of one
page used in the experiments varies from 2 to 16 KB. The
percentage of extra blocks and the size of DRAM used for
the write cache are also configurable so that their impact on
the performance of PCFTL can be measured.

5 PERFORMANCE EVALUATION

In this section, we evaluate the performance and durability
of PCFTL along with DFTL [6] and DLOOP [2]. All of these
three FTLs are page-mapping FTLs.

5.1 Experiment Setup

We use five realistic traces to study the impacts of different
flash memory configurations on FILs’ performance and
durability. Table 2 presents main features of our workloads.

The selection of traces has been done so that different types
of workloads are included. Finl [15] and Fin2 [15] were col-
lected from an OLTP (online transaction processing) appli-
cation running at a financial institution. While Fin1 is write-
dominant, Fin2 is read-dominant. The Build trace [3] is gen-
erated from the activities on a Microsoft Build server. In this
trace, writes and reads are almost evenly distributed. Most
of writes are new writes. The Exchange trace [3] is collected
from a Microsoft Exchange server and is write intensive.
Both Build and Exchange are collected from a server where
a disk array is employed. For each of these two traces we
only use requests targeting on one device in our simula-
tions. Although the TPC-C trace [18] is also an OLTP work-
load, its intensity is much higher than that of Finl and Fin2.
It has multiple transaction types ranging from simple trans-
actions that are comparable to simple credit-debit work-
loads, to medium complexity transactions that have two to
fifty times the number of calls of the simple transactions
[11]. It is a very intensive workload and its requests are
mostly random.

The configurations of SSDsim are shown in Table 1. All
experiments run on a Dell PowerEdge 1900 server with two
quad core Intel Xeon E5310 1.60 GHz processors and a 8GB
FB-DIMM memory. The operating system is Linux Ubuntu
10 with 3.0.0 version kernel.

We evaluate both the performance and durability. The
number of writes that a plane receives is a good indicator of
its wear-out degree because a larger number of writes nor-
mally result in more erase operations. Thus, we use stan-
dard deviation of writes per plane (hereafter, SDWPP) to
measure the durability of a flash SSD. A low SDWPP value
implies an even write distribution across planes, which in
turn indicates a better durability of an SSD. We notice that
the value of SDWPP is largely affected by the number of
total requests in a trace. Generally, a trace with a larger
number of write requests gives a bigger value of SDWPP. In
order to clearly see the differences between PCFTL and the
other two existing FTLs, all SDWPP values in experimental
results shown in Sections 5.2 and 5.3 have been normalized
to that of DFTL SDWPP values in 2 KB page size. Since
mean response time is a commonly used performance met-
ric for evaluating an FTL’s performance, we measure it
throughout our experiments.

5.2 Page Size

The granularity of read/write operations for flash memory
is one page. The size of one page affects the performance
largely because a request with a fixed size may be processed
in different number of read/write operations when the page
size varies. In this section, we investigate the impact of page
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Fig. 10. The impacts of page size.

size on the three FTLs. To include most current page size
configurations, the page size is varied from 2 to 16 KB while
the total capacity of an SSD remains unchanged. From
Fig. 10, it is clear that the general trend for all three FTLs
under the five workloads is that mean response time
decreases when the page size increases. Intuitively, an SSD
with a larger page size can serve more requests per read/
write operation. Furthermore, as the number of write
requests decreases fewer garbage collections are trigged,
which results in a decreased mean response time. Fig. 10
also shows that for each page size PCFTL and DLOOP out-
perform DFTL consistently. Compared with DFTL, on aver-
age PCFTL and DLOOP reduce the mean response time by
47 and 45 percent, respectively. The differences of mean
response time between DLOOP and PCFTL are small. In
almost all cases except 2 KB page in TPC-C, PCFTL outper-
forms DLOOP by around 2 percent. For 2 KB page in TPC-
C, PCFTL is worse than DLOOP by 1 percent. The main rea-
son behind it is that PCFTL uses a write cache, which
reduces the mean response time because some requests are
directly served by it.

While the average performance improvement of PCFTL
over DFTL is 55.1 percent in the write-dominant Finl,
PCFTL only outperforms DFTL by 24.2 percent on average
in the read-dominant Fin2. In Finl 78 percent of writes are
updates, which leads to a larger number of garbage collec-
tions compared with that in Fin2. PCFTL employs a plane-
level garbage collection mechanism that uses fast copy-
back operations, which can greatly reduce the overhead of
garbage collections. For the TPC-C trace, in the 2 and 4 KB
page size cases DFTL exhibits a worse performance than it
is in the 8 and 16 KB scenarios. The increased mean
response time is due to the fact that a larger number of
requests need to be processed when page sizes are smaller.
TPC-C is data-intensive as more than 3,000 requests arrive
per second. Further, the average request size of TPC-C is 8
KB (see Table 2). Obviously, multiple requests can be
served in one operation if page size is larger than 8 KB,
which reduces the total number of requests that need to be
served. Compared with DFTL, DLOOP and PCFTL
decrease the mean response time by 69.6 and 69.5 percent
on average in the TPC-C workload. As the plane-level gar-
bage collection mechanism does not block the incoming
requests when a garbage collection is performed, the mean

response time decreases significantly in data-intensive
workloads like TPC-C.

Fig. 10 illustrates that PCFTL has a more even write
request distribution compared to DFTL and DLOOP. Com-
pared with DFTL and DLOOP, on average PCFTL decreases
SDWPP by 80 and 74 percent, respectively. Among the five
workloads, PCFTL achieves the lowest SDWPP values in
Finl, which is the most write-intensive trace. Note that the
durability of an SSD is mainly affected by two factors: the
total amount of data written to it and its total capacity. Since
when page size is increased from 2 to 16 KB, the total capac-
ity of an SSD remains unchanged. In the meantime, the
amount of data written to an SSD from a particular trace is
unchanged. That is why there almost no change in each
FTLs durability when we increase page size. In fact, a larger
page size can only reduce the number of writes because
multiple small-size write requests can be accommodated
into one page, and thus, performance can be improved.
However, a larger page size setting cannot reduce the total
amount of data written to an SSD.

5.3 Extra Blocks

Extra blocks are mainly used to support update and merge
operations during a garbage collection process. Besides, a
small portion of extra blocks is reserved for other purposes
like replacing bad blocks. Increasing the percentage of extra
blocks in an SSD is a new trend because it can achieve an
enhanced performance and reliability [9]. In our experi-
ments, while the user-visible capacity remains unchanged
(see Table 1), the number of extra blocks increases from 3 to
30 percent [9]. Note that PCFTL only uses 80 percent of extra
blocks for GC purpose. When each plane has user-visible
2,048 blocks and the percentage of extra blocks is 3 percent,
the number of extra blocks on each plane is 62 (i.e., ceiling
(2048 * 3%) = 62 ), among which 50 (i.e., ceiling(62 * 80%) =
50 ) are used for GC. Fig. 11 shows that PCFTL and DLOOP
outperform DFTL under all traces. When the number of
extra blocks increases, the mean response times of the three
FTLs all decrease. The reason is that the number of GCs is
decreased as more extra blocks are available to serve write
requests. PCFTL improves its performance by 21.4 percent
under Fin2 when the percentage of extra blocks is increased
from 3 to 30 percent. This is the largest performance
improvement of PCFTL among all the traces because the
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Fig. 11. The impacts of number of extra blocks.

number of GCs decreases by 26.8 percent, which is the larg-
est GC reduction among all the traces.

Fig. 11 shows that for all traces PCFTL has the most even
write request distribution. With 3 percent of extra blocks, on
average the SDWPP improvement of PCFTL over DFTL and
DLOOP are 80 and 73 percent, respectively. As the percent-
age of extra blocks enlarges, the SDWPP values of DFTL
and DLOQOP decrease. This is because the reduced number
of GCs decreases the number of writes on each plane, which
in turn lowers the SDWPP values. For PCFTL, its SDWPP
value fluctuates as the extra blocks increases. In fact, PCFTL
has much smaller SDWPP values. For example, under TPC-
C when the percentage of extra blocks is 3 percent, the
SDWPP values of DFTL, DLOOP, and PCFTL are 5083,
4961, and 661, respectively. PCFTL already evenly distrib-
utes writes across planes. Thus, any further small change of
the number of writes on a plane causes an observable
SDWPP value variance.

5.4 Number of GCs

A garbage collection generally consists of an erase operation
and a number of data moving processes, which affect the
performance and durability of an SSD. Thus, the number of
garbage collections is a metric to evaluate the effectiveness
of an FTL. We measure the number of GCs of the three FTLs
in the five workloads under the default SSD configuration
(see Table 1). Fig. 12 illustrates the number GCs generated
by the three FTLs.

Three observations can be obtained immediately. First,
under different workloads the numbers of garbage collec-
tion occurrences of the three FTLs are similar. Compared
with DFTL, on average PCFTL and DLOOP generate more
garbage collections by 2.4 and 3.7 percent, respectively.
Second, DFTL consistently has the smallest number of GCs.

<16 E DFTL
>12 @ DLOOP
Q

23 O PCFTL
(5}

S 4

20

Finl Fin2
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Exchange TPC-C

Fig. 12. Number of garbage collections.

Unlike DLOOP and PCFTL, DFTL does not need to deliber-
ately invalidate free pages during GCs because it does not
use copy-back operations. Thus, it leaves more free pages,
which results in a fewer number of GCs. Thirdly, the num-
ber of GCs of PCFTL is lower than that of DLOOP by 1.3 per-
cent on average. In PCFTL, a write cache is used, which
absorbs some frequent updates. Hence, the total number of
writes served by flash memory in PCFTL is smaller than
that of DLOOP, which leads to a fewer number of GCs in
PCFTL. It is clear that the plane-level garbage collection
mechanism introduced in Section 3.3 only slightly increases
the number of garbage collections.

5.5 Wasted Pages

As illustrated in Fig. 7b, a portion of free pages may be
wasted during copy-back operations within a garbage collec-
tion if the addresses of a destination page and a source page
do not have the same parity [7]. In this section, we examine
the number of wasted pages in PCFTL. The page size in a
flash SSD is an essential parameter since it will largely affect
the overall performance. Usually, under the same workload
the number of writes on a flash SSD with a small page size is
larger than that of on an SSD with a large page size. This is
because a large request has to be divided into multiple small
one-page-size sub-requests. Besides, under the same work-
load, SSD with a smaller page size will receive a larger
number of writes, which results in a noticeable number of
copy-back operations during a garbage collection. In this
experiment, the page size is configured to 2 KB. Based on the
parameters shown in Table 1, the total number of pages in an
SSD is 4,194,304 (2 channels x 2 chips x 2 dies x 4 planes x
2048 blocks x 64 pages).

We measure the percentage of wasted pages to the total
number of pages in an SSD and the average percentage of
valid pages in a victim block during a GC. Fig. 13 clearly
shows that the total number of wasted pages is very small
compared to the total number of pages in an SSD. Among
five workloads, Exchange has the largest number of wasted
pages, which is only 1.18 percent of total pages. Fin2
wastes less than 0.09 percent of total pages, which is small-
est value among the five workloads. The number of wasted
pages in all workloads is very small compared with the
total number of pages in an SSD. Hence, the impact of



WANG AND XIE: PCFTL: A PLANE-CENTRIC FLASH TRANSLATION LAYER UTILIZING COPY-BACK OPERATIONS

w
(=

A Valid pages = Wasted pages
A A
A

N3
(=

Percentage of valid
pages in a victim block

—_
(=}

Percentage of
wasted pages (%)

(=]

Build

Exchange TPC-C Finl Fin2

Fig. 13. Percentage of wasted pages and valid pages.

wasted pages on the capacity and performance of an SSD
can be safely ignored.

The average percentage of valid pages in a victim block
during a GC is also shown in Fig. 13. On average, 17.7 (Fin1)
to 24.0 percent (Build) pages in a victim block are valid
pages and thus need to be relocated. Considering that each
page moving process in PCFTL uses a fast intra-plane copy-
back operation, its overall performance can be improved
substantially.

5.6 Write Cache

PCFTL employs a cache to temporally store write requests
before distributing them to flash in order to improve the
performance and durability of an SSD. Its impact on mean
response time and SDWPP are measured and then illus-
trated in Figs. 14 and 15, respectively. While the size of write
cache varies from 256 KB to 4 MB, all the other parameters
are set to their default values (see Table 1) throughout the
experiments.

Fig. 14 manifests how PCFTL responses to an increas-
ingly large write cache. For each trace, all its mean
response time values are normalized to its mean response
time when the cache size is 256 KB. Therefore, for each
trace Fig. 14 only discloses its change of mean response
time when the size of write cache increases. The general
trend is that when the size of write cache increases mean
response time decreases. In Fin2, PCFIL reduces mean
response time mostly among the five traces when cache
size is enlarged. For example, PCFTL improves its perfor-
mance by 12.1 percent when cache size increases from
256 KB to 4 MB. This is because Fin2 has a significant spa-
tial locality [8]. For the two most write-intensive workloads
Exchange and Finl, however, mean response time unex-
pectedly goes up when cache size increases from 1 to
2 MB. The reason behind this “abnormality” is that the
benefits of an increased cache hit rate gained from a larger
cache size (i.e,, 2 MB) cannot compensate the increased
cache search cost due to their weak locality.

In addition to performance, the write cache can also
improve durability by evenly distributing write requests
across planes (see Section 3.1). Fig. 15 shows that SDWPP
decreases when cache size increases. For each trace, all its
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Fig. 14. Impact of cache size on performance.
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SDWPP values are normalized to its SDWPP value when
the size of write cache is 256 KB. Therefore, similar to
Fig. 14, a comparison between two traces’” SDWPP values
in Fig. 15 is meaningless. In Finl and Exchange, when the
cache size is increased from 256 KB to 4 MB PCFTL
reduces SDWPP by 29 and 27 percent, respectively. When
the size of write cache becomes larger the discrepancy in
popularity of two successive victim requests is reduced.
And thus, the popularity discrepancy of two planes that
receive the two requests is also decreased. An even write
distribution across planes prolongs the lifetime of an SSD.
Fig. 15 also shows that for most traces when cache size is
larger than 2 MB the improvement of SDWPP is not signifi-
cant. In fact, different workloads (i.e., traces) exhibit dis-
tinct I/O characteristics in terms of degree of locality,
read/write ratio, average request size, and request arrival
rate. All such workload characteristics combined together
decide an appropriate cache size for a particular workload.
Therefore, it is usually hard to find an appropriate cache
size that can fit various workloads. Still, from our experi-
mental results shown in Figs. 14 and 15, we can see that a
2 MB write cache fits most of traces in terms mean
response time and SDWPP. More than that is unnecessary.
The cost of a 2 MB cache is acceptable for most modern
SSDs normally have more than 64 MB DRAM buffer [7].

6 CONCLUSIONS

SSD manufactures normally view their internal structure
designs and FTL algorithms as commercial secrets, and
thus, are unwilling to disclose them to the public domain.
The “hidden mysteries” of the off-the-shelf flash SSDs make
it difficult for researchers to deepen their understanding on
SSDs’ architectures, and thus, prevent them from further
enhancing an FTL. Fortunately, a couple of cutting-edge
studies [1], [7], [13], [14] on SSD internal structures unfold
some of these secretes. Inspired by the insights they pro-
vided as well as our own investigations on multi-level par-
allelism presented in modern flash SSDs, in this research we
propose a plane-centric page-mapping FTL called PCFTL,
which fully exploits plane-level parallelism in the following
two ways: (1) It employs a cache-assisted write dispatch
scheme to achieve an even write distribution across all
planes in a flash SSD, which leads to a better performance
and durability; (2) it adopts a plane-level garbage collection
mechanism so that valid page relocations can be carried out
by fast intra-plane copy-back operations, which noticeably
improves performance. Further, we quantitatively analyze
the extra costs of PCFTL in terms of wasted pages (see
Section 5.5) and the size of the write cache (see Section 5.6),
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which is either trivial or acceptable. The experimental
results show that PCFTL greatly improves durability while
delivering a comparable level of performance compared
with its earlier version DLOOP. We argue that in addition
to developing a new FTL the most important contribution
of this paper is that it encourages future research on FTLs to
take advantage of abundant opportunities provided by flash
SSD internal features and their interplay.

Although PCFTL utilizes a round-robin dispatch mecha-
nism to try its best to assign write requests evenly across all
planes, it is still possible that some planes receive more
updates than others due to the workload locality. Consider-
ing that the memory size in a plane is relatively small, GC
could happen more frequently on these planes, and thus,
they wear out faster. To overcome this issue, in the future
work, we will investigate other levels of parallelism such as
die-level and chip-level so that a multi-level-parallelism-
aware FTL can be developed. Furthermore, we will build a
hardware FPGA platform to emulate the FTL and evaluate
its effectiveness.
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