
Illustrative examples

DLOOP: A Flash Translation Layer
Exploiting Plane-Level Parallelism

 The 27th IEEE Int’l Parallel and Distributed Processing Symposium (IPDPS 2013 Best Paper)
Abdul Abdurrab, Tao Xie, and Wei Wang, San Diego State University, San Diego, CA 92182

Introduction
A flash translation layer (FTL) is a software layer running in the flash
controller of a NAND flash memory solid-state disk (SSD) . It translates
logical addresses received from a file system to physical addresses in
SSD so that the linear flash memory appears to the system like a block
storage device. Several recent research reports on SSD architecture
reveal that SSD internal features such as advanced commands and multi-
level parallelism could significantly impact the performance largely. By
the insights provided in these research as well as our own investigation
on how to effectively employ the multi-level parallelism present in flash
SSD motivate us to develop an optimized page-mapping FTL named
DLOOP (data log on one plane) that can exploit plane-level parallelism
to achieve high performance while maintaining good durability.
Experimental results show that DLOOP consistently outperforms a
classical hybrid FTL named FAST and a modern page-mapping FTL
called DFTL.

DLOOP employs the plane-level parallelism in two aspects:

First of all, DLOOP always splits a multi-page sequential read/write
request into multiple one-page requests and then disperses them
across multiple planes to reduce waiting time by exploiting inter-
plane parallelism;

Secondly, it allocates logs (updates) onto the same plane where their
associated original data resides so that intra-plane copy-back
operation employed garbage collection can be carried out
concurrently at plane level.

The simulator

Performance evaluation

In order to spread requests evenly across all planes in a SSD without
increasing the overhead of flash controller, following equation is used
to calculate the plane number of an incoming request.

We assume that an
SSD only has four
planes and the page
size is 4KB. Fig. 1
illustrates how DLOOP
processes a 14-KB new
write request with
starting logical page
number (LPN) 4204.
Since DLOOP always
aligns each request on
page boundary, the
request will be divided

After a period of time, assume that the 14-KB
write request with starting logical page
number 4204 comes again. DLOOP splits it
into four individual one-page update requests
and then directs them to their destination
plane where their associated original data
resides. DLOOP first writes the new data into
the page where is pointed by the current page
pointer, and then invalidates the original page
in the same block (see Fig. 2).

We wrote almost 2000 lines of code to largely extend a validated open-source flash SSD
simulator named FlashSim, which was built by extending DiskSim3.0. Since FlashSim has a
modular architecture, newly developed FTLs can be readily integrated into it. Fig. 4 shows a
simple view of the simulation architecture, which explains how requests are processed in our
new DiskSim/FlashSim simulation environment.

In terms of mean response time, on average, DLOOP performs 70% and
90% better than DFTL and FAST, respectively. As SSD capacity
increases, we see as their mean response times all reduce noticeably.

In this research we propose an optimized page-mapping FTL called DLOOP, which
fully exploits plane-level parallelism including the fast intra-plane copy-back
operations to achieve high performance while maintaining good durability by evenly
distributing requests across all planes. Although FTLs developed by flash SSD
manufacturers might also exploit the internal parallelism, they are normally
commercial secrets, and thus, are unknown to the public domain. Therefore,
developing a high-performance FTL exploiting plane-level parallelism and the
quantified analysis of the promising experimental results remain valuable to research
communities.

[1] N. Agrawal, V. Prabhakaran, T. Wobber, J. Davis, M. Manasse, and R. Panigrahy,
“Design Tradeoffs for SSD Performance,” in Proc. USENIX Annual Technical
Conference, pp.57-70, 2008.
[2] Y. Hu, H. Jiang, D. Feng, L. Tian, H. Luo, and S. Zhang, “Performance impact and
interplay of SSD parallelism through advanced commands, allocation strategy and data
granularity,” in Proc. Int’l Conf. Supercomputing (ICS’11), pp. 96-107, 2011.

References

Conclusions

Acknowledgement
This work was supported by the US National Science Foundation under Grant CNS-
0834466 and CNS(CAREER)-0845105.

𝑝𝑝𝑝𝑝𝑝_𝑝𝑛 = 𝐿𝐿𝐿 𝑟𝑝𝑟𝑟𝑝𝑟𝑟 %𝑟𝑛𝑟𝑝𝑝_𝑝𝑟𝑛_𝑛𝑜_𝑝𝑝𝑝𝑝𝑝

Instead of global garbage collection,
DLOOP uses plane-level copy-back
employed garbage collection. It exploits
plane-level parallelism, because of which
overall performance is improved. Fig. 3
demonstrates this idea. Garbage
collection is processing on plane1 and
plane2. Meanwhile, plane0 and plane3
are still accommodating the upcoming
request since copy-back operation
doesn’t occupy the bus and controller.

Figure 4. Architecture of the extended simulator.

Figure 1. An illustrative example of four new writes.

 new write requests

into four individual one-page write requests: DLPN = 4204, DLPN = 4205, DLPN =4206, and
DLPN = 4207. Also, assume that the SSD has never been accessed before this 14-KB write
request comes. Based on the equation, DLOOP directs these four individual one-page write
requests onto the data registers of plane 0, plane 1, plane 2, and plane 3, respectively.

 update requests

Figure 2. An illustrative example of four updates.

4679(V)
7206(V)
3348(I)
2579(V)

Block 48

3348(V)
9312(V)
4923(V)

Block 49

4K Register

Plane 0

5922(I)
4720(V)
3386(V)
8562(I)

Block 25

1130(V)
4720(V)
3386(V)

Block 58

4K Register

Plane 1

7224(I)
4655(I)
6322(I)
6636(V)

Block 31

(I)
6636(V)

Block 73

4K Register

Plane 2

2801(V)
6954(V)
7320(V)
3351(V)

Block 62

2801(V)
9325(I)
9325(V)
5680(V)

Block 63

4K Register

Plane 3

①

②

③

④

①

②
③

DLPN=4923 DLPN=5680

 copy-back employed plane-level garbage collection

Figure 3. An illustrative example of garbage collection.

There are three situations when a GC occurs: 1) no data move is needed if the victim block
has no valid page at all, 2) current free block still has enough room to accommodate valid
pages from the victim block (shown in Fig. 3 plane1), and 3) DLOOP has to use a new free
block as illustrated in Fig. 3 plane 2. Meanwhile, it also shows that DLOOP wastes a free
page in the current free block in order to make sure the source page address and the
destination page address share the same parity.

Mean response time decreases when the page size increases. It also shows
that for every page size DLOOP performs better than DFTL and FAST.

DLOOP performs better than DFTL and FAST in all cases. As more
extra blocks are available, FAST improves performance but DLOOP
remains almost the same.

	Slide Number 1

