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Introduction 
A flash translation layer (FTL) is a software layer running in the flash 
controller of a NAND flash memory solid-state disk (SSD) . It translates 
logical addresses received from a file system to physical addresses in 
SSD so that the linear flash memory appears to the system like a block 
storage device. Several recent research reports on SSD architecture 
reveal that SSD internal features such as advanced commands and multi-
level parallelism could significantly impact the performance largely. By 
the insights provided in these research as well as our own investigation 
on how to effectively employ the multi-level parallelism present in flash 
SSD motivate us to develop an optimized page-mapping FTL named 
DLOOP (data log on one plane) that can exploit plane-level parallelism 
to achieve high performance while maintaining good durability. 
Experimental results show that DLOOP consistently outperforms a 
classical hybrid FTL named FAST and a modern page-mapping FTL 
called DFTL. 
 
DLOOP employs the plane-level parallelism in two aspects: 
 

First of all, DLOOP always splits a multi-page sequential read/write 
request into multiple one-page requests and then disperses them 
across multiple planes to reduce waiting time by exploiting inter-
plane parallelism; 
 
Secondly, it allocates logs (updates) onto the same plane where their 
associated original data resides so that intra-plane copy-back 
operation employed garbage collection can be carried out 
concurrently at plane level. 

The simulator 

Performance evaluation 

In order to spread requests evenly across all planes in a SSD without 
increasing the overhead of flash controller, following equation is used 
to calculate the plane number of an incoming request. 

We assume that an 
SSD only has four 
planes and the page 
size is 4KB. Fig. 1 
illustrates how DLOOP 
processes a 14-KB new 
write request with 
starting logical page 
number (LPN) 4204. 
Since DLOOP always 
aligns each request on 
page boundary, the 
request will be divided 

After a period of time, assume that the 14-KB 
write request with starting logical page 
number 4204 comes again. DLOOP splits it 
into four individual one-page update requests 
and then directs them to their destination 
plane where their associated original data 
resides. DLOOP first writes the new data into 
the page where is pointed by the current page 
pointer, and then invalidates the original page 
in the same block (see Fig. 2).  

We wrote almost 2000 lines of code to largely extend a validated open-source flash SSD 
simulator named FlashSim, which was built by extending DiskSim3.0. Since FlashSim has a 
modular architecture, newly developed FTLs can be readily integrated into it. Fig. 4 shows a 
simple view of the simulation architecture, which explains how requests are processed in our 
new DiskSim/FlashSim simulation environment. 

In terms of mean response time, on average, DLOOP performs 70% and 
90% better than DFTL and FAST, respectively. As SSD capacity 
increases, we see as their mean response times all reduce noticeably. 

In this research we propose an optimized page-mapping FTL called DLOOP, which 
fully exploits plane-level parallelism including the fast intra-plane copy-back 
operations to achieve high performance while maintaining good durability by evenly 
distributing requests across all planes. Although FTLs developed by flash SSD 
manufacturers might also exploit the internal parallelism, they are normally 
commercial secrets, and thus, are unknown to the public domain. Therefore, 
developing a high-performance FTL exploiting plane-level parallelism and the 
quantified analysis of the promising experimental results remain valuable to research 
communities. 
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Instead of global garbage collection, 
DLOOP uses plane-level copy-back 
employed garbage collection. It exploits 
plane-level parallelism, because of which 
overall performance is improved. Fig. 3 
demonstrates this idea. Garbage 
collection is processing on plane1 and 
plane2. Meanwhile, plane0 and plane3 
are still accommodating the upcoming 
request since copy-back operation 
doesn’t occupy the bus and controller. 

Figure 4. Architecture of the extended simulator. 

Figure 1. An illustrative example of four new writes. 

 new write requests 

into four individual one-page write requests: DLPN = 4204, DLPN = 4205, DLPN =4206, and 
DLPN = 4207. Also, assume that the SSD has never been accessed before this 14-KB write 
request comes. Based on the equation, DLOOP directs these four individual one-page write 
requests onto the data registers of plane 0, plane 1, plane 2, and plane 3, respectively. 

 update requests 

Figure 2. An illustrative example of four updates. 
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 copy-back employed plane-level garbage collection 

Figure 3. An illustrative example of garbage collection. 

There are three situations when a GC occurs: 1) no data move is needed if the victim block 
has no valid page at all, 2) current free block still has enough room to accommodate valid 
pages from the victim block (shown in Fig. 3 plane1), and 3) DLOOP has to use a new free 
block as illustrated in Fig. 3 plane 2. Meanwhile, it also shows that DLOOP wastes a free 
page in the current free block in order to make sure the source page address and the 
destination page address share the same parity.  

Mean response time decreases when the page size increases. It also shows 
that for every page size DLOOP performs better than DFTL and FAST. 

DLOOP performs better than DFTL and FAST in all cases. As more 
extra blocks are available, FAST improves performance but DLOOP 
remains almost the same. 
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