

Introduction

The floating-gate of a memory cell stores a number of electrons, which affects the cell's threshold voltage, V_{th} . The value of V_{th} is measured to determine the state of a cell. A retention error is caused by electron leakage and de-trapping phenomenon over time, which shift the V_{th} of a programmed cell to a lower level across its left reference voltage. Retention error has been identified as the dominant flash memory error. To compensate a cell's charge loss over time, and thus, correct its retention error, an intuitive solution is to inject an appropriate amount of electrons into a cell so that its V_{th} can be pushed back to its original level.

The PISO Approach

PISO exploits the first programming-and-verifying step in a programming operation by programming the data corresponding to the safe V_{th}.

Fig. 2 (a) A PISO operation; (b) before; (c) after PISO.

The safe threshold voltage

- ★ LSB page: data '1'
- \star MSB page: the data stored in its associated LSB page.

Fig. 3 Programming an MLC cell.

 \star MSB PISO cost is larger than LSB PISO cost.

Preventing the excessive use of PISO

(b) Injecting the same number of (a) Electrons leakage in real applications. electrons.

Reducing MLC Flash Memory Retention Errors through Programming Initial Step Only

The 31st International Conference on Massive Storage Systems and Technology (MSST 2015, Research Track) Wei Wang¹, Tao Xie², and , Antoine Khoueir³, and Youngpil Kim³

An Analytical Model

Threshold voltage distribution

$$f(x) = \sum_{s=0}^{3} \frac{1}{4\sqrt{2\pi}\delta_s} exp\{\frac{-(x-\mu_s)^2}{2\delta_s^2}\}$$

Voltage shift due to retention and a PISO operation

$$f(x) = \sum_{s=0}^{3} \frac{1}{4\sqrt{2\pi}\delta_s} exp\{\frac{-[x+m\Delta V_{th,S}^R] - (1-\alpha(t))\mu}{2\delta_s^2}$$

The number of PISO operations applied can be solved by the error minimization problem

Fig. 5 V_{th} distributions; (a) normal; (b) left shifted; (c) with inadequate number of PISOs; (d) over-programmed.

Testing Methodology

Variable Relaxation Aging

** Flash memory are supposed to be used in a 3 years @ 45 C environment.

***** Baking: 70.6 hours @100C

Retention acceleration

Programmed flash memory devices are stored under 40C for 3 months.

✤ Baking: 63 hours @ 70C.

Fig. 6 Variable relaxation cycling procedure.

	Flash A	Flash B
Page size	16 KB	16 KB
Pages per block	512	256
Blocks per plane	2,048	2,048
Plane per die	2	1
Dies per package	4	2
Read latency (μs)	47	47
LSB page write latency (μs)	471	566
MSB page write latency (μs)	1,353	1,870

Voltage shift due to retention

Conclusions

PISO is efficient and effective compared to other types of retention error reduction methods. It can be readily implemented in either the FTL of an SSD or in a flash file system. It is simple and do not require a prior knowledge of the original stored data.

Acknowledgement

This work was done when I was in Seagate as an intern. It was partially supported by the US National Science Foundation under Grant CNS-1320738.

References

[1] Y. Cai and E. Haratsch et al., "Error patterns in mlc nand flash memory: Measurement, characterization, and analysis," in DATE, 2012. [2] F. Sala et al, "Dynamic threshold schemes for multi-level non-volatile memories," IEEE TC, 2013. [3] W. Wang, T. Xie, and D. Zhou, "Understanding the impact of threshold voltage on mlc flash memory performance and reliability," in ACM ICS'14, 2014.

- Computational Science Research Center, SDSU
- 2. Computer Science Department, SDSU
- 3. Seagate Techonology.