
DORA: A Dynamic File Assignment Strategy with Replication

Jonathan Tjioe, Renata Widjaja, Abraham Lee, and Tao Xie
of Computer Science Department

San Diego State University
San Diego, USA

e-mail: jontjioe@gmail.com, renata_widjaja@yahoo.com, ajsonlee@gmail.com, xie@cs.sdsu.edu

Abstract—Compared with numerous static file assignment
algorithms proposed in the literature, very few investigations
on the dynamic file allocation problem have been
accomplished. Moreover, none of them has integrated file
replication techniques into file assignment algorithms in a
highly dynamic file system where files are created or deleted on
the fly and their access patterns varied over time. We argue
that file replication and file assignment can act in concert to
boost the performance of parallel disk systems. In this paper,
we propose a new dynamic file assignment strategy called
DORA (dynamic round robin with replication). The
advantages of DORA can be attributed to its two main
characteristics. First, it takes the dynamic nature of file access
patterns into account to adapt to a changing workload
condition. Second, it utilizes file replication techniques to
complement file assignment schemes so that system
performance can be further improved. Experimental results
demonstrate that DORA performs consistently better than
existing algorithms.

Keywords-file assignment problem; replication; dynamic;
heat; round robin

I. INTRODUCTION

To satisfy the QoS (Quality of Service) demanded by
end-users, prompt responses to user requests are essential for
many real-world applications. For example, a Web server
application that publishes significant amounts of data stored
in a back-end database must reply to end-users’ queries
instantly before they lose patience [1][10]. Another example
is an online stock broker system that facilitates the selling
and buying of shares based on dynamic stock market
information [18]. This real-time data service must provide
guarantees on transaction timeliness and data freshness.
Thus, quick response time is of paramount importance since
late information could result in the loss of significant
amounts of money. Obviously, the performance of these
data-intensive applications largely depends on the
performance of underlying parallel I/O systems, where disk
arrays serve arrival requests simultaneously. More precisely,
reducing mean response time of parallel disk storage systems
is a must for these applications.

Among a broad spectrum of ways to reduce mean
response time for parallel disk systems, file assignment,
allocating files onto disk arrays before they are accessed, is
an effective approach that can significantly affect the overall
performance of a parallel I/O system [11][15]. A file

assignment problem (FAP) can be summarized as follows.
Given a set of M files and N disks, find the file-disk
allocation that optimizes some cost functions or performance
metrics [5]. It is well-known that finding the optimal solution
for a cost function or a performance metric in the context of
file assignment on multiple disks is an NP-complete problem
[5]. Therefore, numerous heuristic algorithms have been
proposed.

File assignment algorithms can be generally divided into
two camps: static [6][11][20][21] and dynamic [2][15]. Static
file assignment algorithms require a complete knowledge of
workload characteristics including service time and arrival
rate of requests for each file. They might be impractical in
some applications because file systems are highly dynamic
where many files are created or deleted on the fly [15]. In
addition, the workload pattern of a file system might change
over time [14]. As such, dynamic file assignment algorithms
that can dynamically reorganize files to adapt to the varying
access patterns become indispensable [15].

However, in a completely dynamic environment where a
sub-set of files are extremely popular and receive a dominant
percentage of user requests, a dynamic file assignment
algorithm may no longer be helpful. The reason is that no
matter where it places these hot files the load imbalance
across the disks cannot be solved. In this situation, file
replication techniques [3][7][8][12] can be employed to
make replicas for these popular files and to distribute them
onto other disks. For example, in an online streaming video
service such as youtube, videos usually experience the
highest demand during the first several weeks after being
posted [22]. During this period, file replication techniques
can make copies of the hot files to several other disks, and
thus, balance the incoming requests. As a result, the response
time for user requests can be reduced. Once these videos are
no longer popular, their replicas can be then deleted and only
the original file is kept. Unfortunately, existing dynamic file
assignment algorithms [2][15] have typically overlooked the
power of file replication.

In this paper, we propose a new dynamic file assignment
strategy called DORA (dynamic round robin with
replication), which integrates file replication techniques into
file assignment schemes for a user access pattern changing
environment. DORA first sorts all files according to file size.
Next, it assigns the files to disks in a round-robin fashion so
as to distribute the load of all files evenly across all disks.
Finally, DORA dynamically keeps track of the load of all

2009 International Conference on Parallel Processing

0190-3918/09 $25.00 © 2009 IEEE

DOI 10.1109/ICPP.2009.8

148

2009 International Conference on Parallel Processing

0190-3918/09 $25.00 © 2009 IEEE

DOI 10.1109/ICPP.2009.8

148

2009 International Conference on Parallel Processing

0190-3918/09 $25.00 © 2009 IEEE

DOI 10.1109/ICPP.2009.8

148

2009 International Conference on Parallel Processing

0190-3918/09 $25.00 © 2009 IEEE

DOI 10.1109/ICPP.2009.8

148

2009 International Conference on Parallel Processing

0190-3918/09 $26.00 © 2009 IEEE

DOI 10.1109/ICPP.2009.8

148

2009 International Conference on Parallel Processing

0190-3918/09 $26.00 © 2009 IEEE

DOI 10.1109/ICPP.2009.8

148

files and the load on each disk. For some extremely hot files,
it then creates replicas to effectively distribute request
accesses on these files across all disks in a disk array.

The rest of this paper is organized as follows. Section II
provides a brief summary of the related work and
motivation. Section III discusses the DORA strategy. Section
IV presents the experimental results. Conclusions and future
work are provided in Section V.

II. RELATED WORK AND MOTIVATION

Compared with numerous static file assignment
algorithms [6][11][20][21] in literature, very few dynamic
file assignment algorithms have been proposed so far
[2][15]. In a multi-user environment, several workloads on
one disk are concurrently active, which drives the disk head
to seek back and forth between their respective locations [2].
It is evident that frequent disk head seeking significantly
increases the response times of I/O requests. To address this
problem, Arnan et al. proposed a data reallocation scheme
that separates interfering workloads by moving one or
several of the workloads to other disks where they will cause
less interference [2]. Scheuermann et al. proposed an array of
heuristic algorithms for the placement of dynamically
created files [15]. Their algorithms are self-adaptive in the
sense that they can dynamically redistribute the data when
access patterns change [15]. In addition to minimizing the
queuing delays by distributing the load across the disks
evenly, their algorithms selectively redistribute the load by
means of “disk cooling” steps [15]. Among the algorithms
proposed in [15], Cool Vanilla (hereafter, C-V) exhibits the
best performance.

Essentially, C-V is a vanilla Greedy algorithm [11] with
additional disk cooling ability. In the original vanilla Greedy
algorithm [11], the load of each file is defined as the product
of the file access rate and the access service time [11]. This
metric is named as the heat of the file (2) [16]. When a new
file arrives, the vanilla Greedy algorithm greedily assigns the
file to the disk having the least accumulated heat.
Consequently, the heat of the target disk is incremented by
the heat of this new file. In addition to taking the greedy file
assignment steps above, the C-V algorithm dynamically
checks the heat imbalance of the disks in a disk array. If the
heat of a disk is higher than 1.1 of the average disk heat in a
disk array, C-V relocates the hottest files from the
overheated disk to the coolest disk so that the “temperature”
of the overheated disk can be lowered down [15].

Evidently, disk cooling can escalate system performance
by dynamically balancing the heat across the disks in a disk
array through file reallocation. However, its effectiveness
almost vanishes in a greatly dynamic environment where
access distribution on a set of files could be overly skewed
and the popularity of a file can dramatically change over
time. In the former case, a small sub-set of files receive
excessive accesses, and thus, the benefit of relocating these
extremely hot files to the coolest disk is negligible since the
coolest disk will immediately turn into a new overheated
disk after receiving these hot files. In the latter case, after a
hot file is migrated to the coolest disk it might quickly
become unpopular, which renders the disk cooling process

less than optimal. The inefficiency of the disk cooling
mechanism in a completely dynamic file system becomes
evident when hot file reallocation alone cannot evenly
redistribute the heat of some extremely hot files across disks.
By contrast, a dynamic algorithm that creates replicas for a
hot file can effectively even load distribution by splitting the
heat of the hot file across multiple disks. This motivates a
dynamic file assignment strategy that combines file
reallocation with file replication.

III. THE DORA STRATEGY

A. System Model

A parallel disk array can be represented by a linked
group D of n independent homogeneous disk drives: D = {d1,
..., dj , ..., dn}. The set of files with m files that will be placed
onto D can be represented by F = {f1, ..., fi, ..., fm}. For
simplicity, we do not consider file partitioning, and thus,
each file is allocated entirely onto one disk. This assumption
does not limit the generality of our model since if a file is
partitioned, each partition can be viewed as a stand alone
file. In fact, the majority of files in file systems and Web
servers are small files where file partitioning is not
necessary. A disk dj is modeled as dj = (cj, tj, lj), where cj is
the capacity in GByte, tj is the transfer rate in MByte/second,
and lj is the disk load (i.e., sum of the heat of all files on the
disk). We assume that cj is always larger than the total size of
all files assigned on dj. This assumption is reasonable as
current server-class hard disks may have a terabyte
magnitude of storage capacity. A file fi can be modeled as fi

= (si, λi, vi, hi), where si is the size of the file, λi is the mean
arrival rate of requests to the file, vi is the expected service
time, and hi is the heat of the file. In this paper, disk access to
a file fi is modeled as a Poisson process with a mean access
rate λi, which is also adopted by [11]. Also, we assume a
fixed service time vi for file fi. The reason why this
assumption is valid is two-fold. First of all, each access to
file fi could be a sequential read of the entire file, which is a
typical scenario in most file systems or WWW servers [9].
Second, for large files, when the access unit is the entire file,
the seek times and rotation latencies are negligible compared
with the file transfer time [11]. Thus, vi is determined by si

and tj if fi is allocated on dj

.

j

i
i

t

s
v

Since the product of λi and vi represents the load of fi, we
define it as the heat of fi as below

 .iii vh

Hence, the average disk load ρ can be calculated using
the following equation

m

i ih
n 1

1

149149149149149149

We use the First-Come-First-Serve (FCFS) scheduling
heuristic. Suppose there are totally u requests in the request
set, which is modeled as R = {r1, ..., rk, …, ru}. Each request
is modeled as rk = (fidk, ak), where fidk is the file identifier
targeted by the request and ak is the request’s arrival time. In
fact, the request set is a multi-class workload with each class
of requests having its fixed λi and vi. When a request arrives,
the FCFS scheduler finds its destination disk and then directs
it to the disk’s local scheduling queue. To calculate the
response time of a request rk, we need to know the start time
and the finish time of rk on a disk dj, which are denoted by
stj(rk) and ftj(rk), respectively. There are three situations when
rk arrives in Qj (1 ≤ j ≤ n), the local queue of disk dj. First, dj

is idle and Qj is empty. Second, dj is busy and Qj is empty.
Third, dj is busy and Qj is not empty. Thus, stj(rk) is
expressed as

otherwise,

emptyisandbusyisif,

emptyisandidleisif,

)(

, kpjp

p

aaQr
fidjk

jjjk

jjk

kj

tra

Qdra

Qda

rst

where rj is the remaining service time of the request
currently running on dj, and

 kpjp

p

aaQr
fidt

,

is the overall

service time of requests in Qj that have arrival times earlier
than that of rk. It then follows that ftj(rk) can be represented
by

kfidkjkj trstrft)()(

where
kfidt is the service time of the file that is targeted

by request rk. The response time of request rk can then be
calculated by

).()()(kjkjkj rstrftrrt

As a result, the mean response time of the entire request
set R is

.)(

1
)(

1,1

u

njk

kj rrt
u

Rmrt

B. Algorithm Description

Fig. 1 outlines the DORA strategy with three basic
stages: initial file assignment, dynamic replication and
replica allocation, and replica garbage collection.

Stage One: Initial File Assignment (step 1 – step 4 in
Fig. 1). It is well understood that an even distribution of
files’ heat across disks in a disk array is the key principle of
successful file assignment algorithms like sort partition (SP)
[11] and static round-robin (SOR) [20] whose goal is to
minimize the queuing delay. As such, DORA takes a similar
approach as SOR [20] in its initial file assignment stage.

First, DORA computes the average disk load (heat) ρ in step
1. In step 2 it sorts the file set F by file size so that files with
similar sizes can be allocated onto the same disk, a smart
idea used by SP [11] as well. Next, DORA separates the

Figure 1. The DORA strategy.

Input: A parallel disk array D with n identical
disks, a collection of m files in a queue F, number
of hot files HOT_NUM, and number of epoch
EPOCH_NUM
Output: A file allocation matrix X (n, m) and a file
replication matrix R (HOT_NUM, n-2)
/* Initial File Assignment Process */
1. Use (3) to compute the average heat ρ
2. Sort all files in F in ascending order of vi

3. Assign files in F across n-1 disks in a round-
robin manner until the load of each disk reaches ρ
4. Assign all rest files in F to disk dn

/* Dynamic Replication and Replica Allocation */
5. Compute AVE_HOTFILE_HEAT (8),
HEAT_MAX, and HEAT_MIN
6. num_epoch=1
7. while num_epoch ≤ EPOCH_NUM do
8. fi = 1
9. while fi ≤ HOT_NUM do
10. if heat(fi) ≥ HEAT_MAX
11. num_replica is computed from (9)
12. end if
13. Check R to see if fi is already replicated
14. if YES
15. if more replicas are needed
16. Create the replicas
17. for each replica do
18. Assign it to the coolest disk among

the n-2 disks where no replica exists
19. Update the coolest disk’s heat and R
20. end for
21. end if
22. else
23. Create num_replica replicas for fi
24. for each replica do
25. Assign it to the coolest disk among

the n-2 disks
26. Update the coolest disk’s heat and R
27. end for
28. end if
29. fi = fi + 1
30. end while
/* Garbage Replica Collection */
31. for each file f in R do
32. if heat(f) ≤ HEAT_MIN
33. Delete all replicas of f
34. Update corresponding disks’ heat and R
35. end if
36. end for
37. num_epoch = num_epoch + 1
38. Update AVE_HOTFILE_HEAT, HEAT_MAX,

HEAT_MIN, FPT table
39. end while

150150150150150150

most popular files onto different disks by utilizing a round-
robin placement approach such that the heat of each of the n-
1 disks does not exceed ρ (step 3). Note that the round-robin
assignment of the sorted file set F only applies on the first n-
1 disks (step 3) because DORA reserves the last disk dn for
very large files. The rationale behind this is that confining
large files to a single disk could prevent them from
significantly delaying responses to the requests for small
files if both small files and large files are mixed together on
one disk [20]. The main advantage of a round-robin based
file assignment strategy is that files with higher load (heat)
values will be distributed onto distinct disks so that the
overall load balancing could be further improved [20].
Lastly, DORA allocates all the remaining files onto the disk
dn. In the initial file assignment stage, we assume that the
characteristics of each file fi such as its size si and its mean
request arrival rate λi are known a priori. However, these
parameters may vary after the initial file assignment stage.

Stage Two: Dynamic Replication and Replica
Allocation (step 5 – step 30 in Fig. 1). Static file assignment
algorithms such as Greedy [11], SP [11] and SOR [20]
assume that workload characteristics remain unchanged over
time, which is not realistic in some highly dynamic
applications. For example, Roselli et al. found that the access
pattern of a file system might change over a long-term period
[14]. In order to adapt to changing workload conditions,
DORA dynamically monitors each file’s popularity (i.e., λ),
during each epoch. During this fixed length of time, DORA
is able to make adjustments in file replication and replica
management. Several challenges arise from the dynamic
nature of DORA and from the use of file replication. First of
all, a File Popularity Table (FPT) needs to be constructed to
record each file’s mean request arrival rate in each epoch.
Second, DORA keeps a record of each replicated file in
matrix R, which includes its file identifier, number of
replicas, and the corresponding disks that its replicas reside
on. Third, at the end of each epoch, DORA needs to decide
1) if replicas should be created for a hot file; 2) if yes, how
many replicas to generate; and 3) and which disks these
replicas should be placed on. To answer these questions,
DORA uses an array of simple yet effective empirical
equations as follows.

1) Should replicas be created for a hot file? While load
balancing can be performed effectively by allocating copies
of hot files to multiple disks, creating replicas for hot files
introduces overhead. Therefore, DORA utilizes a simple
method to limit the number of hot files that are qualified to
have replicas. More precisely, at the end of each epoch, it
calculates the average heat of the hottest HOT_NUM files
(i.e., AVE_HOTFILE_HEAT) where HOT_NUM is an
integer input parameter provided by users (see Fig.1). For
each hot file belonging to the hottest HOT_NUM file group,
DORA uses (8) to determine whether it needs replicas (step
10).

 ,
otherwise

2/__if,
?

No,

HEATHOTFILEAVEhYes
replicas i

where
.

_

1
__

_

1

NUMHOT

i

ih
NUMHOT

HEATHOTFILEAVE

If the file’s heat is no less than half of
AVE_HOTFILE_HEAT, DORA will create replicas for it.
Otherwise, no replicas will be made for this file. The
maximum number of hot files that may have replicas is
confined to HOT_NUM. Thus, the overhead caused by
replication can be controlled by users. After all, in a Zipf-like
file popularity distribution [4][11], only a very small
percentage of files are popular. Furthermore, they are
typically small in size [11]. We define two threshold values
HEAT_MAX and HEAT_MIN as a half of
AVE_HOTFILE_HEAT and a quarter of
AVE_HOTFILE_HEAT, respectively. A file with heat no less
than HEAT_MAX is considered an extremely hot file that
needs replicas. By contrast, a file with heat no more than
HEAT_MIN is viewed as a cold file and all its replicas if any
need to be removed.

2) How many replicas should be generated? It is worth
noting that the replicas of a hot file will be allocated only on
n-2 disks. As mentioned before, DORA reserves disk dn for
very large files. Also, the disk where the original file is
stored should not be assigned a replica as there is no benefit
in having two copies of the same file on the same disk.
DORA decides the number of replicas for an extremely hot
file using (9) as below (step 11).

 num _ replica min(floor (h i /HEAT _ MAX), n 2)

As we can see from (9), the maximum number of replicas
of a hot file is n-2.

3) Where should the replicas be placed? For each replica
of a hot file, DORA assigns it to the coolest disk (i.e., the
disk with lowest heat) among the n-2 disks where no replica
has been stored (step 17 – step 20). This enables DORA to
effectively distribute the heat of extremely hot files across
disks in a disk array. In what follows, we give an example to
illustrate how DORA balances the heat of extremely hot files
by using replication. Assume that there are 40 files in disk dj

(1 ≤ j ≤ n) and their heat follows a Zipfian distribution [4].
Before file replication, when HOT_NUM is set to 20 the
value of AVE_HOTFILE_HEAT is 0.1799 based on (8) (Fig.
2a). Therefore, HEAT_MAX is 0.0899 and HEAT_MIN is
0.0450. Also, based on (8), the first 11 files will be
replicated. Fig. 2b shows an updated heat distribution after
using replication for the 11 extremely hot files. Comparing
Fig. 2a with Fig. 2b, one can notice that each file’s heat is
now below HEAT_MAX because for each replicated file, the
original heat has been divided by the number of replicas plus
1. Consequently, the load of disk dj is largely relieved as
replicas of its hottest files have been allocated on other disks,
which results in a substantially improved heat distribution
across all disks in a disk array.

151151151151151151

Stage Three: Replica Garbage Collection (step 31 – step
36 in Fig. 1). Since file access pattern can change overtime,
files that were formerly extremely hot might become
unpopular after a period of time. As a result, the replicas of
these once-hot-now-cold files must be removed. This
requires a replica garbage collection mechanism to reclaim
the disk space and update the heat on each disk. DORA
employs (10) to decide which once-hot file’s replicas should
be deleted (step 32)

 .
otherwise

4/__if,
?_

No,

HEATHOTFILEAVEhYes
replicasdelete i

Once the heat of a file fi becomes no more than the
threshold value HEAT_MIN (i.e., a quarter of
AVE_HOTFILE_HEAT), all replicas of the file should be
deleted and the heat of each disk involved must to be
updated (step 33 – step 34).

IV. PERFORMANCE EVALUATION

In this section, using extensive simulations, we evaluate
the performance of DORA by comparing it with one of the
best existing dynamic file assignment algorithms, C-V. The
advantage of using simulation is that we can easily vary all
key parameters to understand their individual impact on
system performance. We first introduce experimental
settings in Section IV.A. Sections IV.B ~ IV.E present
experimental results with detailed analysis.

A. Simulation Setup

We have developed an execution-driven simulator that
models an array of Cheetah ST39205LC hard disks. The
performance metrics by which we evaluate system
performance are mean response time and mean disk
utilization. Mean response time is the average response time
of all file access requests submitted to the simulated parallel
disk array, and it can be derived from (7). Since the response
time rapidly grows by more than one order of magnitude as
the aggregate access rate increases, the mean response times
are normalized in the scale [0, 1] for all graphs in subsequent
sections. Mean disk utilization is defined as the average ratio
between a disk’s total service time and its total operation
time. The operation time is defined as the time period
between the arrival time of the first file access request and
the completion time of the latest finished file access request.

TABLE I. SYSTEM PARAMETERS

Parameter Value (Fixed) – (Varied)

Number of files (5000)

File load (heat)
Each file has heat
defined as hi = λi * ti

Number of disks (20) – (8, 12, 16, 20, 24)

Aggregate access rate (1/second)
(200) – (25, 50, 100,
200, 300)

Base file size (KB)
(30) – (15, 20, 25, 30,
35)

Skew degree
(70:30) – (50:50, 60:40,
70:30, 80:20, 90:10)

Table 1 summarizes the configurations of the synthetic
workload used by experiments. Since in some real-world
traces [9][13] one can observe that popular files are typically
small in size while large files are relatively unpopular, we
assume that the distributions of access rates across the files
and file sizes were inversely correlated [11]. Disk accesses to
each file are modeled as a Poisson process with a mean
access rate λi. Because workload characteristics directly
influence the performance of a file assignment algorithm we
discuss the following three key parameters of the synthetic
trace: aggregate access rate, skew degree, and file size
distribution.

Aggregate access rate: Each file access represents a
sequential read of the entire file. Hence, the service time of a
file access request is proportional to the file’s size. We
assume that each file has a fixed request arrival rate λi during
stage one (initial file assignment process) and the arrival
interval times are exponentially distributed. Note that the
value of λi might change after the first epoch starts. The
aggregate access rate of the entire disk system is defined as

m

i i1
 . The value of m is set to 5,000.

Skew degree: Since the frequency of file access usually
exhibits a Zipf-like distribution [11], we assume that the
distribution of file access requests is a Zipf-like distribution
with a skew parameter θ = log

100
X /log

100
Y , where X percent

of all accesses were directed to Y percent of files. The value
of X:Y is defined as skew degree in this paper. In our
simulations, we tested five values of skew degree (X:Y)
changing from 50:50 to 90:10.

(a) (b)

Figure 2. An example of heat distribution before and after file replication.

152152152152152152

File size distribution: The distribution of access rates
across the files and the distribution of file sizes were
inversely correlated with the same skew parameter θ. Section
4.E. measures the performance results assuming a Zipf-like
file size distribution. The parameter file size base is defined
as the smallest file size in file set F based on a Zipf-like
distribution.

B. Overall Performance Comparison

Aggregate access rate is a critical workload parameter
because it indicates the intensity of the access load imposed
on the disk array where m files have been assigned. To
evaluate the performance of DORA in different levels of
workload intensity, we compare it with C-V when aggregate
access rate increases from 25 to 300 in this section. The
results from Fig. 3 clearly show that the mean response time
quickly escalates as the aggregate access rate increases. This
consequence is expected as a higher aggregate access rate
results in a much longer queuing delay. However, the
improvement in mean response time of DORA over C-V
becomes more significant with an increasing aggregate
access rate (Fig. 3a). The reason behind is that when
aggregate access rate increases DORA starts to fully exhibit
its strength through its hot file replication and replica
allocation steps, which effectively reshape an overly skewed
heat distribution to a more even one. An improved heat
distribution leads to a shorter mean response time. Compared
with C-V, on average DORA reduces mean response time by
31.7%. As the workload becomes more intensive, the mean
disk utilization of DORA quickly arises to 1 when aggregate
access rate is larger than 25 (Fig. 3b). Meanwhile, C-V keeps
its mean disk utilization around 91%, which indicates some
disks still have idle times although the system workload is

already very heavy. This is expected because when aggregate
access rate increases, the heat distribution becomes overly
skewed since many more requests concentrate on a small
percentage of extremely hot files. In this situation, the disk
cooling method used by C-V loses its efficiency as simply
moving these extremely hot files to other disks cannot solve
the uneven heat distribution problem.

C. Scalability

To investigate the scalability of the two algorithms, we
scale the number of disks in the system from 8 to 24. The
aggregate access rate is configured to 200. The skew degree
is still set to 70:30. Fig. 4 plots the performance of the two
algorithms as functions of the number of disks.

Results from Fig. 4 demonstrate that both algorithms
deliver better performance in mean response time and mean
disk utilization when the number of disks increases. This is
because each disk is assigned fewer files when the system is
scaled up. One important observation is that DORA
consistently outperforms C-V in all cases. Especially, when
the number of disks is only 8, the improvement in mean
response time of DORA over C-V is as high as 56.2% (Fig.
4a). The implication of this observation is that DORA is
suitable for a parallel I/O system where the number of disks
is not sufficient. Again, in terms of mean disk utilization,
DORA keeps all disks busy to serve arrival requests at full
speed (Fig. 4b). On the contrary, C-V can do so only when
more disks are available so that some extremely hot files can
be effectively migrated on to disks with lower heat (Fig. 4b).

D. Impact of Skew Degree

To verify the performance impact of the skew parameter
θ, we evaluate the performance as functions of skew degree.
When the skew degree increases from 50:50 to 90:10, both

(a) (b)

Figure 3. Performance Impact of aggregate access rate.

(a) (b)

Figure 4. Performance Impact of number of disk.

153153153153153153

algorithms perform considerably better in terms of mean
response time (Fig. 5a). This expected since with an
increasingly uneven heat distribution due to an enlarged
skew degree, both disk cooling and file replication can
effectively redistribute heat across disks. Still, DORA
outperforms than C-V in both performance metrics.

In particular, when skew degree is 50:50, which means
the access requests were evenly distributed across all files
without any skew, DORA significantly improves mean
response time by 49.5% (Fig. 5a). On the other hand, C-V
cannot achieve good performance in this scenario because an
even distribution of requests does not give any opportunity
for C-V to further even the heat distribution. In terms of
mean disk utilization, DORA keeps a constant value of 1
while C-V decreases its mean disk utilization after reaching
the highest utilization level of 91.4% when skew degree is
70:30 (Fig. 5b). This is because C-V can no longer
effectively even the heat distribution when the workload
exhibits an overly skewed heat distribution.

E. Impact of File Size

We examine the performance impact of file size when
base file size varies from 15 Kbytes to 35 Kbytes. Note that
base file size is the size of the smallest file in a file set F and
sizes of all other files can be generated based on the inverse
Zipf-like distribution. Intuitively, when the size of files is
enlarged, mean response time correspondingly increases as
well (Fig. 6a). Nevertheless, DORA shows substantially
better performance than C-V in all tested scenarios. On
average, DORA decreases mean response time by 21.7%. In
terms of mean disk utilization, DORA can fully utilize all
disks during the simulation period, which results in a higher
disk utilization (Fig. 6b).

V. CONCLUSIONS

The file assignment problem, the problem of allocating a
set of files onto a disk array so that some cost functions or
performance metrics can be optimized, has been studied
extensively [2][5][11][15][16][19][20][21]. Conventional
dynamic file assignment approaches [2][15][16] solely rely
on disk cooling, a file reallocation technique that migrates
some hot files from an overheated disk to the disk with least
load, to balance the load across disks. However, file
reallocation alone cannot realize load balancing in a highly
dynamic file system where file popularity can dynamically
change. To solve this problem, we developed a dynamic file

assignment strategy called DORA (dynamic round robin
with replication). DORA integrates file replication
techniques into a dynamic file assignment scheme so that
load balancing can be achieved in an environment where
user access patterns change significantly. Experimental
results demonstrate that DORA consistently outperforms C-
V, one of the best existing dynamic file assignment
algorithms.

In this research DORA only considers read-dominant
workload like Web search where read bandwidth is
prevailing while write bandwidth is minimal. For example,
99.98% of the total number of operations are read requests in
a Web search workload analyzed in [17]. In addition, the size
of files in Web search applications tends to be small [1],
which limits the overhead of file replication, and thus, makes
DORA practical. However, DORA is not likely to work well
under write-dominant workload as the overhead of
maintaining data consistency among all replicas of a hot file
could be prohibitive. Our future work is to extend DORA to
write-dominant workloads.

ACKNOWLEDGMENT

This work was supported by the US National Science
Foundation under grant number CNS-0834466 and CCF-
0702781.

REFERENCES

[1] M. Arlitt and C. Williamson, “Web server workload characterization:
the search for invariants,” Proc. ACM SIGMETRICS Conf., pp. 126-
137, May 1996.

[2] R. Arnan, E. Bachmat, T.K. Lam, and R. Michel, “Dynamic data
reallocation in disk arrays,” ACM Trans. on Storage, Vol. 3, Issue 1,
No.2, March 2007.

[3] S. Bucholz and T. Bucholz, “Replica Placement in adaptive content
distribution network”, ACM Symp. Applied Computing, pp.1705-
1710, 2004.

[4] C. Cunha, A. Bestavros and M. Crovella, “Characteristics of WWW
Client-based Traces,” Technical Report, 1995-010, Boston
University, 1995.

[5] L.W. Dowdy and D.V. Foster, “Comparative Models of the File
Assignment Problem,” ACM Computing Surveys, Vol. 14, No. 2,
pp.287-313, 1982.

[6] R.L. Graham, “Bounds on Multiprocessing Timing Anomalies”,
SIAM Journal Applied Math, Vol. 7, No. 2, pp. 416 - 429, 1969.

(a) (b)

Figure 5. Performance Impact of file size.

154154154154154154

[7] H. Huang, W. Hung, and K.G. Shin, “FS2: dynamic data replication
in free disk space for improving disk performance and energy
consumption”, Proc. 12th ACM SOSP, pp. 263-276, 2005.

[8] M. Karlsson and C. Karamanolis, “Choosing replica placement
heuristics for wide-area systems”, Proc. 24th ICDCS, pp. 350-359,
2004.

[9] T. Kwan, R. Mcgrath, and D. Reed, “Ncsas World Wide Web Server
Design and Performance,” Computer, vol. 28, no. 11, pp. 67 - 74,
Nov.1995.

[10] P. Merialdo, P. Atzeni, and G. Mecca, “Design and development of
data-intensive web sites: The Araneus approach,” ACM Transactions
on Internet Technology, Vol. 3, Issue 1, pp. 49-92, Feb. 2003.

[11] L.W. Lee, P. Scheuermann and R. Vingralek, “File assignment in
parallel I/O systems with Minimal Variance of Service Time,” IEEE
Trans. Computers, Vol. 49, No. 2, pp. 127-140, Feb. 2000.

[12] T. Loukopoulos, P. Lampsas, and I. Ahmad, “Continuous Replica
Placement Schemes in Distributed Systems,” Proc. 19th ACM Annual
International Conference on Supercomputing, pp.284-292, 2005.

[13] J. Ousterhout, H. Da Costa, D. Harrison, J. Kunze, M. Kupfer, and J.
Thompson, “A Trace-Driven Analysis of the UNIX 4.2BSD File
System,” Technical Report CSD-85-230, Univ. of California at
Berkeley, 1985.

[14] D. Roselli, J.R. Lorch, and T.E. Anderson, “A Comparison of File
System Workloads,” Proc. USENIX Technical Conference, pp. 44-54,
June, 2000.

[15] P. Scheuermann, G. Weikum, and P. Zabback, “Dynamic File
Allocation in Disk Arrays,” ACM SIGMOD Record, Vol. 20, Issue 2,
pp.406-415, 1991.

[16] P. Scheuermann, G. Weikum, and P. Zabback, “Data Partitioning and
Load Balancing in Parallel Disk Systems,” Journal of VLDB, pp. 48-
66, 1998.

[17] P. G. Sikalinda, L. Walters and P. S. Kritzinger, “A Storage System
Workload Analyzer,” Technical Report CS06-02-00, University of
Cape Town, 2006.

[18] S.H. Son and K. Kang, “QoS Management in Web-based Real-Time
Data Services”, Proc. 4th IEEE International Workshop on Advanced
Issues of E-Commerce and Web-based Information Systems, 2002.

[19] P. Triantafillou, S. Christodoulakis, and C. Georgiadis, “Optimal data
placement on disks: a comprehensive solution for different
technologies,” IEEE Trans. Knowledge Data Eng., Vol. 12, pp. 324-
330, 2000.

[20] T. Xie, “SOR: A Static File Assignment Strategy Immune to
Workload Characteristic Assumptions in Parallel I/O Systems”, Proc.
ICPP, 2007.

[21] T. Xie, "SEA: A Striping-based Energy-aware Strategy for Data
Placement in RAID-Structured Storage Systems," IEEE Trans.
Computers, Vol. 57, No. 6, pp. 748-761, June 2008.

[22] H. Yu, D. Zheng, B.Y. Zhao, W. Zheng, “Understanding user
behavior in large-scale video-on-demand systems,” ACM EuroSys,
pp. 333-344, 2006.

155155155155155155

