
FIRE: A File Reunion Based Data Replication Strategy for Data Grids

Abdul Rahman Abdurrab
Department of Computer Science

San Diego State University
San Diego, USA

abdulrahman004@gmail.com

Tao Xie
Department of Computer Science

San Diego State University
San Diego, USA
xie@cs.sdsu.edu

Abstract—Data grids provide large-scale geographically
distributed data resources for data intensive applications such
as high energy physics and bioinformatics. Optimizing the use
of data resources to maximize the performance is critical for
data grids. In this paper, we propose a novel dynamic data
replication strategy called FIRE (file reunion), which is
motivated by the observations that a group of jobs in a site
tend to demand a common set of files distributed in a data
grid. The basic idea of FIRE is to reunite the file set through
data replication so that it resides with the job group on the
same site. Extensive experiments using a well-known data grid
simulator OptorSim and synthetic benchmarks demonstrate
that compared with two existing schemes, LRU (Least Recently
Used) and LFU (Least Frequently Used), FIRE performs
obviously better in most scenarios.

I. INTRODUCTION
All manuscripts Grid computing is an emerging

technology with the goal of providing geographically
distributed users with virtual organizations, which allow the
effective sharing of computation and storage resources
[10][29]. In particular, a data grid deals with the controlled
sharing and management of large amounts of data in the
form of files, which are distributed among geographically
diverse grid sites [1][4][7][10][12][29]. Typical data grid
applications like high energy physics [1][9], image
processing [17], bioinformatics [23], data mining [20], and
spatial processing [21] normally demand enormous
computational power as well as a vast amount of data in
terabyte or even petabyte scale[22][25][27].

Efficiently managing such huge and widely distributed
data in a data grid, however, is a great challenge [9][26]. To
solve this challenge, an array of techniques including
dynamic data transfer [15][21], data-driven job
scheduling[7][17][23], and data replication [1][6][9][11][18]
have been proposed in the literature. The major goal of these
techniques is to reduce the execution cost of a job, which
depends not only on the computational resource assignment
but also on the location of data files that are required by the
job [1]. Data replication has long been considered as an
important technique for improving performance in data grids
because it can noticeably reduce the network bandwidth
consumption and the access latency [2][6][7]. Besides, it can
effectively enhance data availability, fault tolerance, system
scalability, and load balancing by creating replicas and

dispersing them among multiple sites [9][18]. A data
replication process involves creating identical copies of a file
and placing them onto multiple sites so that they can be
accessed simultaneously from various locations. Three main
decisions need to be made by a replication mechanism:
which files to replicate, when to replicate, and where to
replicate [23]. If there are several existing replicas of a given
file, the replication mechanism also needs to determine the
best replica to import. One key principle for data replication
mechanisms is that a replica and the job that requires it
should be allocated onto the same site whenever the storage
element of the site can accommodate the replica. Otherwise,
the replica should be stored onto a nearby site [12][12].
Since the popularity of a file could change over time, the
replication service needs to replicate files with increasing
popularity and to delete the ones with reduced popularity [1]
[1]. More precisely, when the popularity of a file reaches a
predefined threshold value, replication or deletion of replicas
of the file has to be completed after analyzing the access
patterns of previous file requests [13][13].

File access pattern analysis has always been employed as
a powerful tool to design efficient dynamic data replication
schemes [17][21]. Most of existing dynamic data replication
mechanisms [6][9][13][24], however, mainly focus on
identifying popular files based on file access patterns
observed at application run times. We argue that file access
pattern can provide us with more useful information than the
popularity of files. For example, after analyzing a real data-
intensive grid application Coadd [21], Ko et al. found that a
significant number of files accessed by multiple tasks and a
large number of tasks access the same set of files during their
execution [17]. The important phenomenon was named
locality of interest [17] and it has also been noticed in many
other data-intensive grid applications like high energy
physics and bioinformatics [16]. The implication of locality
of interest is that a group of jobs has a strong correlation with
a set of files in many data-intensive grid applications.
Motivated by this critical observation, we propose a file
reunion based dynamic data replication strategy for data
grids.

Initially, only one set of files known as master files exist
on a special site called data site, which normally only has a
storage element. None of the master files has a replica at this
moment. When a job submitted to a normal site (hereafter,
site) with both storage element and computing element

2010 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing

978-0-7695-4039-9/10 $26.00 © 2010 IEEE

DOI 10.1109/CCGRID.2010.12

215

requires a file that is not locally available, the file will be
replicated from the data site to the site. In this way replicas
of the master files are spread out randomly across the sites
after a period of time. After a site runs out of its storage
space, a job on the site has to remotely access files that
reside on other sites. Since they are copies of the master
files, files on a site could be deleted or moved away when
there is no enough storage space on the site to accommodate
new files. Each site maintains a file access table to keep track
of its local file access history. A site makes independent
decisions on whether or not deleting some old files to
accommodate new files if some benefits can be achieved. On
each site, the FIRE strategy analyzes the site’s file access
table. If on a site FIRE detects that a common set of files are
frequently accessed by a group of local jobs, in other words,
a strong correlation between a group of local jobs and a set
of distributed files exists, FIRE will reunite the set of files
onto the site by replication. Since files that belong to the
same set (or family) have been initially separated among
various sites, FIRE makes the file set reunion after the strong
correlation between the file set and the job group exhibits.
Section 3.1 provides an example to show the basic idea of
FIRE.

 Tier-0

Tier-1

 Tier-2

Tier-3

Fig. 1. The multi-tier architecture.

The rest of this paper is organized as follows. Section 2
gives a brief introduction of related work. Section 3 presents
an overview of the grid architecture, which will be used in
this work. Section 4 proposes the FIRE strategy with an
illustrative example. An extensive simulation study will be
discussed in Section 5. Finally, section 6 concludes the work
with some future directions.

II. RELATED WORK
Compared with transferring a file from one site to the

other in real time, data replication is a better technique as it
can reduce bandwidth consumption and access latency[9]
[9]. In addition, it improves data availability, data reliability,
and system scalability. Data replication algorithms for data
grids can be broadly classified into two camps: static and
dynamic [18][19][22][26]. Static replications create
algorithms based on a set of predefined rules, which requires
a complete and prior knowledge of workload characteristics
[9][12]. The implication is that they cannot adapt to the
changing network or access pattern, which is common in
data grids. Dynamic replication, on the other hand, makes
data replications based on real-time network condition and
access patterns, and thus, is more suitable for data grids
where resources and workload statistics are continuously
changing. In this section, we introduce some typical dynamic
data replication algorithms.

To ensure scalability of the distributed systems, a multi-
tier architecture has been proposed for data grids [26]. Fig. 1
shows its architecture. Each tier represents a different region.
For example, Tier-0 is stores the raw data generated by the
experiments in CERN [28] and Tier-1 processes the data
analysis by several regional centers. Leafs represent the
clients, and each client only accesses the replicas from its
ancestor. Two dynamic replication strategies, namely, SBU
(Simple Bottom Up) and ABU (Aggregate Bottom Up), were
developed in [26].

 In contrast to traditional data replication where a

complete file is replicated, Chang et al. proposed a new data
replication approach called fragmented replicas, which only
replicates needed partial contents of a file locally to save
storage space [8]. However, the problem of fragmented
replica updates is to be solved and it is challenging. Also,
their assumption that fragmented replicas are contiguous
may not always hold in data grids. Further, they developed a
job scheduling policy HCS (Hierarchical Cluster Scheduling)
and a dynamic data replication strategy HRS (Hierarchical
Replication Strategy) to improve the data access efficiencies
in a cluster grid [7]. The rationale behind the two
coordinated algorithms is that job scheduling in concert with
data replication can significantly reduce data access time and
the amount of inter-cluster-communications. In order to
design an effective data replication algorithm, file access
pattern analysis is frequently employed [6][9][13][24]. Sato
et al. model the replication problem as a combinatorial
optimization problem with constraints from the access time
threshold and various system parameters. The objective of
their algorithm is to minimize file replication costs by
dynamically monitoring and estimating inter-node link
throughputs and file access patterns of running applications
[24].

A very novel ant-like agent-based data replication
mechanism called ARMAP protocol (Ant-based Replication
and Mapping) has been developed by Forestiero et al. [15].
Agents travel a data grid through P2P interconnections and
replicate data whenever necessary. The protocol can enforce
the dissemination of descriptors related to high Quality of
Service (QoS) resources. One potential problem of this
approach is that security could become a concern when
agents themselves are infected by computer viruses.
Although improving performance in terms of reducing
access latency is always the goal of data replication
algorithms, data availability is also very important for the
users of a data grid. To maximize the data availability, Lei et
al. devised an on-line data replication optimizer algorithm
called MinDmr [19].

A comprehensive investigation on dynamic data
replication strategies for high-performance data grids has
been conducted by Ranganathan and Foster [22]. They
developed a simulation framework, which enables
comparative studies of alternative dynamic replication
strategies including No Replication or Caching, Best Client,
Cascading Replication, Plain Caching, Caching plus
Cascading Replication, and Fast Spread. The performance of

216

the six replication strategies was evaluated under three
distinct types of access patterns: random access pattern with
no locality, a small amount of temporal locality, and a small
amount of geographical and temporal locality [22]. Their
simulation results show that significant savings in latency
and bandwidth can be obtained when the access patterns
contain a small degree of geographical locality, which
indicates that files recently accessed by a client are likely to
be accessed by nearby clients. We view this crucial finding
as a strong evidence that a group of geographically close jobs
(e.g., staying on one site) tend to access a common set of
files, which justifies the fundamental assumption on access
patterns used in this research.

III. ARCHITECTURE OVERVIEW
 The architecture of the data grids simulated by the

OptorSim simulator [2][3][4] is shown in Fig. 2. We adopt
this architecture as it has been widely used for studying
various file replication algorithms in conjunction with
different job scheduling algorithms in data grid
environments [1][3][9]. OptorSim provides a framework to
simulate real-world data grids by considering an array of
parameters and scenarios found in reality. It was developed
by the European Data Grid Project [28]. One data grid
consists of several sites. Each site has either a computing
element (CE) or a storage element (SE) or both (Fig. 2).
Geographically distributed sites are connected by the
internet. End users use a machine running the user interface
(UI) software to interact with the grid system (Fig. 2). More
precisely, end-user uses the machine to submit jobs to the
grid system and retrieve output of the completed jobs. The
user interface may be also used to monitor the execution of
jobs after submission. All submitted jobs will then be
forwarded to a resource broker (RB), which matches the
jobs' requirements to the available resources at the various
sites within the grid and dispatches them [4].

A CE is composed by a gatekeeper machine and a number
of worker nodes [4] (Fig. 2). A gatekeeper is the front-end
of a computing element. It accepts jobs and then dispatches
them for execution on the worker nodes. Finally, it returns
the results to RB. This way the gatekeeper provides a
uniform interface to the computational resources that it
controls. The SE provides uniform access to large storage
spaces [2]. The storage element may control large disk
arrays or mass storage systems. SE hides the details of the
backend storage systems and provides a uniform interface to
the grid users. At each site, there is a software component
called replica manager (RM), which manages the data flow
between sites. Within a replica manager, there is a
subcomponent called replica optimizer (RO), whose major
duty is to create file replicas and to destroy them whenever
necessary [1]. The replica manager possesses the knowledge
of the local file access patterns as well as the access history
of files that were requested by remote jobs. Various
dynamic data replication algorithms like FIRE can be
integrated into the replica manager as a replica optimizer.
Therefore, their performance can be studied and compared
in a fair manner.

A data grid is a highly dynamic environment for the
status of its resources can change during the execution of its
jobs [29]. Hence, optimizations are needed in every stage
from job submission to data replication [13]. The first
optimization phase occurs when the RB determines the CE
on which a job should run. This process is called scheduling
optimization as the RB has to select a CE from many
available ones. The scheduling algorithm mainly considers
parameters like a job’s access cost, which is the sum of the
costs that are incurred in bringing all the files required by
the job. Besides, the scheduling algorithm also takes the
job’s execution time on a CE into account. Moreover, it
needs to consider the existing load on a site to avoid load
imbalance. Only after the CE finishes its ongoing jobs will

CE
Site 3

SE

Worker
Nodes

Internet

CE

Site 2

User Interface

SE

Worker
Nodes

CE
Site 4

SE

Worker
Nodes

Job Submission
Resource Broker

Worker
Nodes

CE

Site 1
SE

Replica
Manager

Replica
Manager

Replica
Optimizer

Replica
OptimizerJob Dispatch Job Dispatch

Replication Optimization

(FIRE) (FIRE)

Replica
Manager

Replica
Manager

Replica
Optimizer

Replica
Optimizer

(FIRE) (FIRE)

Fig. 2. The data grid architecture.

217

it be able to process newly arrived jobs. The waiting cost is
called queuing time. In addition to scheduling optimization,
data optimization is needed as well. This optimization task
is accomplished by the RO where a dynamic data replication
strategy like FIRE is implemented (Fig. 2). For example,
when a RM selects a replica from multiple available ones, it
should bring the one that will incur the least cost in terms of
latency and network bandwidth. Thus, the replica optimizer
has to weigh the cost of each replica and informs the RM
the best replica to fetch. Note that the RO is the “brain” of
the RM, which is an interface to send/receive replicas.
Further data replication optimization can be done by the
RO. For instance, FIRE within the RO can reunite a set of
distributed files onto one site after a strong correlation
between the set of files and a group of jobs on the site
exhibits. FIRE achieves optimization based on file access
tables.

IV. THE FIRE STRATEGY
In this section, we first present an example to show the

basic idea of FIRE, which is followed by a brief introduction
of the auction protocol, as well as a detailed analysis of the
FIRE strategy.

A. An Illustrative Example
An example to show the basic idea of the FIRE strategy

is illustrated in Fig. 3. Assume that there is a set of files on
Site 1 and Site 2 as given in Fig. 3a. For illustration purpose,
suppose that all files are of the same size (e.g., 1 GB) and the
SE of a site can only accommodate 7 files. Initially, there is
just one set of master files available in a data grid. Assume
that the master file set is present on Site 0, which only has a
SE. When jobs are submitted to the data grid, they run at
different sites. Replication takes place when a job on a site
requires a file that is not locally available and the site has
enough space to accommodate the replica. When a site’s SE
has no free storage space, all jobs on it have to remotely
access files if they are not locally available. After a period of
time, files (i.e., replicas) are spread out randomly across the
sites in the data grid. These files are copies of the master
files, and thus, can be deleted. Every site individually keeps
track of its access histories for all local files and remote files
accessed by the jobs on it. The replica manager of a site
maintains a File Access Table as shown in Fig. 3a. While site
1 has files A, B, C, D, E, F, and G, Site 2 has files H, I, C, K,

L, M, and N. On Site 1, job J1 accessed files A, B, and C 3, 3,
and 2 times, respectively. Job J2 accessed files A, B, and C 3,
4, and 2 times, respectively. File D was remotely accessed by
J5 and J6 1 and 2 times, respectively. File E was remotely
accessed by J3 and J5, which are running on Site 2. Files F
and G have no local access but each of them has one remote
access. Note that J1 and J2 also accessed file K remotely.
Similarly, J2 and J4 accessed L remotely (Fig. 3a). The
correlation degree between a file fi and a job jk is defined as
the number of times jk accessed fi and it is denoted as c .
The correlation degree between a file fi and a group of local
jobs J = {ja, jb, jk, …,jq} that have accessed it is defined as
group correlation degree, which is the total number of times
that fi was accessed by jobs in J. Group correlation degree of
a file fi is denoted as

k

G . At the first time a job

needs to access a remote file, the file is not immediately
replicated onto the job’s site. Until FIRE makes sure that
there exists a benefit in replicating the file, the job will
continue to access the file remotely. The cost of replication
of a file includes access cost and the queuing time at the site
where the wanted file stays. The access cost is determined by
network bandwidth available between the two sites and the
size of the file. For a file to be replicated onto a site, the site
should also delete a file if it has no free storage space and
each file has the same size. If there is a file whose group
correlation degree is lower than the number of times the
remote file is being accessed, the file at the requesting site is
deleted and the remote file is bought in. Similarly, the access
history of files on Site 2 is given in Fig. 3a. We can see that
files H, I, C are accessed frequently by J3, J5, and J6. Also,
these jobs access files D and E on Site 1 remotely.

k
i

∑
⊂

=
Jj

k
ii c

After a certain period of time, FIRE analyzes the file
access tables on both Site 1 and Site 2. It detects that there
exists a strong correlation between a local job group (J1, J2,
J4) and a file set (A, B, C) on Site 1. Meanwhile, FIRE found
that jobs in the group of (J1, J2, J4) were correlated with files
K and L on Site 2 as they remotely accessed them multiple
times. Thus, FIRE decided to replicate K and L on Site 1 so
that the file set (A, B, C, K, L) and their correlated job group
(J1, J2, J4) can stay together (Fig. 3b). In order to
accommodate K and L, FIRE has to delete two files on Site 1
due to the limited storage space. Since F and G were only
accessed once remotely so far, they have no correlation with
local jobs. Therefore, FIRE deleted them to accept K and L
on Site 1 (Fig. 3b). Similarly, on Site 2 files H, I, and C were

218

kept there while files D and E were replicated from Site 1
because they were frequently accessed by jobs J3, J5, and J6.
Files M and N were deleted from Site 2 because they have no
local access (Fig. 3b). After data replication optimization, we
see that file C is present on both sites as it has a strong
correlation with both job group (J1, J2, J4) on Site 1 and job
group (J3, J5, J6) on Site 2 (Fig. 3b). On Site 1, since files D
and E have no local accesses, these files are likely to be
deleted if more replication has to occur in the future.
Likewise, files K and L will be deleted if any replication has
to happen on site 2 in the future.

Fig. 4. The FIRE strategy.

1. for each job j submitted to the RB of a data grid do
2. for each site in the data grid do
3. Calculate its file access cost and job queue cost
4. end for
5. Dispatch j to the least-total-cost site sl
6. Files in D = {d1, …, dk, …, dw} are required by j
7. for each file dk in D do
8. if dk is not locally present on sl
9. if dk can be accommodated by local SE
10. Use the Auction Protocol to replicate dk on sl
11. Space of local SE is reduced by the size of dk
12. else
13. RA = number of remote accesses on dk from sl
14. LAF = the local file received least local access
15. if RA >= the number of local accesses of LAF
16. Delete LAF
17. Use the Auction Protocol to replicate dk on sl
18. else
19. Access dk remotely
20. RM of the remote site updates its access table
21. end if
22. end if
23. end if
24. end for
25. Update the file access table on sl
26.end for

B. The Auction Protocol
When FIRE needs to make a replication of a file and

there are multiple copies of the file in a data grid, FIRE has
to decide which site to choose to make the replication.
Obviously, FIRE prefers to make a replication from a site
that will incur the least cost in terms of access time and the
site’s job queue cost. The job queue cost of a site is defined
as the earliest time that a job can start its execution if it is
assigned on the site. FIRE employs an auction protocol
named Vickery Auction proposed in [1] to accomplish the
best replica selection process. Whenever FIRE finds multiple
copies of a file that it wants to make a copy, it starts an
auction process by sending a bidding request to all sites that
have the file. Each site that received the request will then
send a bid back to FIRE. After examining all the bids, FIRE
selects the site that offered the lowest bid (i.e., the least cost
in access time and job queue cost) as the winner, who only
has to pay the price of the second lowest bid. This way FIRE
replicates the file from the winner of the auction. If there is
only one replica existed in the data grid, FIRE directly copies
the file from that site. More detailed information about the
Auction Protocol can be found in [1].

C. Strategy Description
The Fig. 4 outlines the FIRE strategy. Assume that a

data grid consists of m sites and it is represented by the set S
= {s1, ..., sj, …, sn}. Also, assume that there are master files
denoted by F = {f1, ..., fi, …, fm} in the data grid. When a
job j is submitted to a data grid, the resource broker receives
the job and then makes a decision about where to dispatch
it. This decision is made based on the scheduling algorithm
utilized at the resource broker. Here, we use the scheduling
algorithm that takes the file access cost and job queue cost
into consideration. The sum of these two costs is calculated
for all n sites (Step 2 – Step 4). The least-total-cost site s is
chosen to execute the job (Step 5). It is highly possible that
site sl has all or part of the files required by j. Assume that
files required by j constitute a set D = {d1, …, dk, …, dw}
where w <= m (Step 6). For each file dk in D, FIRE checks
if it is locally available. If not, FIRE tests whether or not
local SE has space to accommodate dk. If yes, FIRE
replicates dk from a site with least cost based on AP (the
Auction Protocol described in Section 4.2) (Step 9 – Step
11). If not, FIRE compares the number of remote accesses
on dk issued from site sl against the number of local accesses

of the least locally accessed file on sl. If the former is no less
than the latter, the least locally accessed file will be deleted
and dk will be replicated onto sl using the Auction Protocol
(Step 13 – Step 17).Otherwise, job j has to access dk
remotely (Step 19). In this case, the replica manager of the
remote site that has file dk needs to update its file access
table to log this remote access event (Step 20). Finally, the
replica manager of site sl updates its file access table to log
local accesses and remote accesses caused by job j (Step
25).

V. PERFORMANCE EVALUATION

A. Simulation Setups
In this section, we evaluate the performance of our FIRE

strategy along with two existing algorithms using a set of
high energy physics analysis jobs generated from the CDF
experiment in the European Organization for Nuclear
Research project [14]. In this real-world based workload,
each file has a size of 1 GB and the total size of file set is 97
GB. The simulated grid used in our experiments has 27 sites
and the experimental data came from a world wide data

TABLE I. SYSTEM PARAMETERS

Parameter Value
Number of sites 27
Storage space at each site (GB) 50
Inter-Cluster bandwidth (Mbps) 10

Intra-Cluster bandwidth (Mbps) 100
Single file size (GB) 1
Total file size (GB) 97
Job inter arrival time (second) 2.5

219

production generated in [28]. To simplify the simulations,
we assume that there is no contending network traffic. To
test FIRE under a real world scenario, we adopt this set of
jobs from a practical data grid application. Among the 27
sites, 18 of them have a computing element and 20 of them
have a storage element. The capacity of each SE is 50 GB.
We tested two initial replica distribution cases: random
replicas and no replica. In the first case, the copies of the
master files are distributed randomly over various sites
before any job is submitted. In the second case, the set of
master files stay on a particular site and all other sites have
no replica at all. The sites are connected to each other by
networking links with a constant bandwidth. The
configuration above is stored in OptorSim as a parameter file
[4]. Not all sites are directly connected to each other. Since
most replication algorithms assume that data is read-only in
data grid environments, we adopt this assumption as well.
The parameters used are shown in Table 1.

The next configuration file is called the job parameter. It
specifies the file names along with their logical ids. It also
lists the number of jobs to be run, which in our case will be
100. Each job requires a set of files for its execution. There
are six jobs, which will run for a total number of 100 times.
We used a scheduling algorithm that makes scheduling
decision based on the sum of the access cost and the job
queue cost. The site with the least-total-cost will receive the
job. The job parameter file also gives the submission
frequency of each job. The job submission frequency is
configured as 2.5 seconds in our simulations. The final
configuration file is called the bandwidth configuration file.
It is used to simulate background traffic in the simulated data
grid at different times. We used the default bandwidth
configuration file.

In addition to total execution time, we also measured
effective network usage (ENU), which was defined in [5].
Assume that Nremote file accesses is the number of times the CE
reads a file from a SE on a different site, Nfile replications is the
total number of file replications, and Nlocal file accesses is the
number of times a CE reads a file from a SE on the same
site. ENU is equal to (Nremote file accesses + Nfile replications)/Nlocal file

accesses. For a particular network topology, a lower value of
ENU indicates a better performance for a data replication
strategy for data grids [5].

B. Experimental Results
We conduct a group of simulation experiments to

examine the effectiveness of the FIRE strategy. We run the
six jobs totally 100 times and measured the total execution
times. In the first simulation experiment, we evaluate the
impacts of file access pattern on FIRE. We tested FIRE and
the two existing algorithms in both sequential file access
pattern and random file access pattern. We first set the file
access parameter to sequential access, which means that all
files of a given file set will be accessed in a sequential
fashion. Next, we tested the three algorithms for random a
access pattern where each job accesses files in random
manner. The number of reads on a file issued from a job was
randomly generated. Fig. 5a shows the total execution time
of the three algorithms. Under sequential access pattern,
FIRE obviously outperforms the two baseline algorithms.
More precisely, compared with LRU and LFU, FIRE
improves job execution performance by 25% and 14%,
respectively (Fig. 5a). This is because FIRE knows that all
the files required by a particular job will be accessed
sequentially. Hence, these files will not be deleted and shall
be accessed later by the same job or related jobs, which
results in performance improvement. On the other hand, for
LRU and LFU, if the file set of required by a particular job is
larger than storage space available in a SE, the existing files
in the SE will be deleted. Therefore, the next time the job
runs, RO has to do a remote read and replicate the file again,
which leads to performance degradation. Under the random
access pattern, a job could access any files from its candidate
file set during its execution. For example, assume that job j
has a candidate file set (A, B, C, D). In its first run, j may
only access file A. However, in its second run, j accesses
both file C and D. In short, each time when j is running, it
could access any number of files in the candidate file set.
Clearly, we can see that the performance of FIRE decreases
while the performance of LRU and LFU increases. This is
because the history access information has little help for
FIRE to keep files that will be accessed in the near future as
file access is totally random. LRU and LFU can still keep
some recently access files on local SE due to the nature of
these two mechanisms. This is the reason why the total
execution time of LRU and LFU decreases in random
pattern. Fig. 4b shows the ENU performance of all three
algorithms. While the ENU for FIRE is around 0.37, the

 (a) (b)
Fig. 5. Performance Impact of file access pattern.

220

 (a) (b)

Fig. 6. Performance Impact of initial state.

ENU for LRU and LFU are 0.42 and 0.45, respectively.
FIRE gains a better ENU value under sequential access
pattern. However, it performs slightly worse than LRU (Fig.
5b) when the access pattern random is chosen. This is
because FIRE moves around files more often when files are
accessed randomly, and thus, the network usage was
increased.

The second group of experiments is to examine the
performance of FIRE under two initial replica distribution
scenarios: random replicas and no replica. In the first case,
there is just one set of master files on a particular site while
all other sites’ SEs are empty with no replica at all.
Experiments in this scenario help us understand how much
time a replication algorithm needs to fill in sites with
replicas. In the second scenario, initially all sites are
randomly filled with some replicas. In the first scenario as
shown in Fig. 6a, compared with LRU and LFU, FIRE
reduces total execution time by 7.4% and 19.3%,
respectively. The implication is that FIRE creates replicas
faster than LRU and LFU. Thus, it leads to a lower total
execution time.

The purpose of the last group of simulations is to

evaluate the impacts of global job queue construction on the
performance of FIRE. In our simulations, we have 6 distinct
jobs (hereafter, candidates) and each of them can run
multiple times. Each execution of a job is called a job
instance and there are totally 100 job instances. The 100 job
instances (hereafter, jobs) stays in the global job queue,
which resides on the resource broker (see Fig. 2). There are
multiple ways to construct the global job queue. One way we
called free is that each of the 100 jobs in the global job queue
is randomly selected from the 6 candidates. The global job
queue built in this way represents a random job submission
pattern. Another way we called fixed is that each of the 6
candidates has a specific percentage weight in the range [0,
100%] and the sum of these percentage weights is equal to 1.
For example, a global job queue constructed in this manner
could be (10 j1, 10 j2, 10 j3, 10 j4, 30 j5, 30 j6). In other words,

In the second scenario, we examine the total execution
time of jobs when initially replicas are spread randomly
among sites. FIRE still outperforms the two baseline
algorithms in terms of total execution time (Fig. 6a). In
particular, FIRE achieves 3.2% and 12.8% improvements in
total execution time compared with LRU and LFU,
respectively. However, we notice that for each algorithm its

total execution time increases compared with the no replica
scenario. This is because initially the sites are randomly
filled with replicas, and thus, it takes time for the replicas to
get grouped along with similar files in the same set. Due to
this fact, the network usage is also increased, which can be
observed in Fig. 6b. The value of ENU is also enlarged from
the first scenario to the second scenario due to increased
network activities. Nevertheless, FIRE consistently performs
better in terms of ENU (Fig. 6b), which demonstrates that
FIRE is a more efficient replication strategy due to its lower
network usage.

 (a) (b)
Fig. 7. Performance Impact of global job queue pattern.

221

each of the 100 jobs in the global job queue is selected from
the 6 candidates based on their respective percentage weight.
As a result, the global queue constructed in this manner
represents a job submission pattern with some “space”
locality. We tested these two job submission patterns in Fig.
7. When the global job queue was constructed in the fixed
manner, in terms of total execution time FIRE outperforms
LRU and LFU by 18.2% and 12.9%, respectively (Fig 7a). In
the free situation, FIRE performs worse than LRU and LFU.
The reason is that FIRE depends on the close relationship
between jobs and files. If this workload assumption does not
hold, i.e., similar jobs are not executed together but rather are
mixed with other non-related jobs, the performance of FIRE
deteriorates. Hence, the performance of FIRE is worse than
that of LRU and LFU. This also explains why LRU and LFU
outperform FIRE in ENU when the global job queue was
built in the free manner (Fig. 7b). Still, FIRE performs better
in the fixed case

VI. CONCLUSIONS AND FUTURE WORK
Data replication is a frequently used technique that can

reduce bandwidth consumption and access latency in high
performance data grids where end users demand remote
accesses to large files. In this paper, we developed a dynamic
data replication strategy called FIRE, which was motivated
by an important observation from many data-intensive grid
applications. Researchers in [16][17] found that a group of
jobs in a site tend to demand a common set of files
distributed in a data grid. To optimize replication based on
the critical access pattern characteristic, FIRE reunites a set
of distributed files onto one site after a strong correlation
between the set of files and a group of jobs on the site
exhibits.

To evaluate the efficiency of our algorithm, we ran
extensive simulation experiments using the OptorSim
simulator and a real-world data grid test bed from high
energy physics [28]. Total job execution time and effective
network usage are used as two performance metrics. We
compared FIRE with two traditional algorithms LRU and
LFU. The experimental results demonstrate that FIRE
noticeably improves the total execution time and ENU under
sequential access pattern. The performance enhancement is
attributed to FIRE’s ability of coupling similar jobs that
access a common set of files together through replication. As
part of our future work, we plan to extend FIRE to parallel
applications where jobs may have precedence constraints and
communicate with each other during their executions.

ACKNOWLEDGMENT
This work was supported by the US National Science

Foundation under grant number CNS (CAREER)-0845105,
CNS-0834466, and CCF-0702781.

REFERENCES
[1] W.H. Bell, D.G. Cameron, L. Capozza, P. Millar, K. Stockinger, and

F. Zini, “Evaluation of an economy-based file replication strategy for
a data grid,” Proc. IEEE Int’l Symp. Cluster Computing and the Grid
(CCGrid), pp. 661-668, 2003.

[2] W.H. Bell, D.G. Cameron, L. Capozza, P. Millar, K. Stockinger, and
F. Zini, “Simulation of dynamic grid replication strategies in
optorSim,” Proc. Third Int’l Workshop on Grid Computing, pp. 46-
57, 2002.

[3] W.H. Bell, D.G. Cameron, L. Capozza, P. Millar, K. Stockinger, and
F. Zini, “OptorSim-a grid simulator for studying dynamic data
replication strategies,” Int’l Journal High Perform Computer
Application, Vol. 17, No. 4, pp. 403–416, 2003.

[4] D.G. Cameron, A.P. Millar, and C. Nicholson, “OptorSim: a
simulation tool for scheduling and replica optimization in data grids,”
Proc. Computing in High Energy and Nuclear Physics (CHEP), 2004.

[5] D.G. Cameron, R.C. Schiaffino, A.P. Millar, C. Nicholson, K.
Stockinger, and F. Zini, “Evaluating scheduling and replica
optimisation strategies in optorSim,” Proc. 4th Int’l Workshop on
Grid Computing, pp. 52-59, 2003.

[6] M. Carman, F Zini, L.Serafini, and K.Stockinger, “Towards an
Economy-based optimisation of file access and replication on a data
grid,” Workshop on Agent-based Cluster and Grid Computing, in
conjunction with Cluster Computing and the Grid (CCGrid), May
2002.

[7] R.S. Chang, J.S. Chang, and S.Y. Lin, “Job scheduling and data
replication on data grids,” Future Generation Computer Systems, Vol.
23, Issue 7, pp. 846-860, August 2007.

[8] R.S. Chang and P.H. Chen, “Complete and fragmented replica
selection and retrieval in data grids,” Future Generation Computer
Systems, Vol. 23, Issue 4, pp. 536-546, May 2007.

[9] R.S. Chang and H.P. Chang, “A dynamic data replication strategy
using access-weights in data grids,” Journal of Supercomputing, Vol.
45, Issue 3, pp. 277 – 295, 2008.

[10] A. Chervenaka, I. Foster, C. Kesselmana, C. Salisbury, and S.
Tuecke, “The data grid: Towards an architecture for the distributed
management and analysis of large scientific datasets,” Journal of
Network and Computer Applications, Vol. 23, No. 3, pp. 187-200,
2000.

[11] A. Chervenak, E. Deelman, I. Foster, L. Guy, W. Hoschek, A.
Iamnitchi, C. Kesselman, P. Kunszt, M. Ripeanu, B. Schwartzkopf,
H. Stockinger, K. Stockinger, and B. Tierney, “Giggle: a framework
for constructing scalable replica location services,” Proc. ACM/IEEE
Conference on Supercomputing, pp. 1-17, 2002.

[12] U. Cibej, B. Slivnik, and B. Robic, “The complexity of static data
replication in data grids,” Parallel Computing, Vol. 31, Issue 8-9, pp.
900-912, 2005.

[13] M.M. Deris, J.H. Abawajy, and A. Mamat, “An efficient replicated
data access approach for large-scale distributed systems”, Future
Generation Computer Systems, Vol. 24, Issue 1, pp. 1-9, January
2008.

[14] European Organization for Nuclear Research
(CERN),http://public.web.cern.ch/Public/Welcome.html.

[15] A. Forestiero, C. Mastroianni, and G. Spezzano, “QoS-based
dissemination of content in grids,” Future Generation Computer
Systems, Vol. 24, Issue 3, pp. 235-244, March 2008.

[16] A. Iamnitchi, S. Doraimani, G. Garzoglio, “Filecules in High-Energy
Physics: characteristics and impact on resource management,” Proc.
15th IEEE Int’l Symp. High Performance Distributed Computing
(HPDC), pp. 69-80, 2006.

[17] S.Y. Ko, R. Morales, and I. Gupta, “New worker-centric scheduling
strategies for data-intensive grid applications,” Proc.
ACM/IFIP/USENIX Int’l Conference on Middleware, pp. 121-142,
2007.

[18] H. Lamehamedi, B.Szymanski, and Z. Shentu, “Data replication
strategies in grid environments”, Proc. 5th Int’l Conf. On Algorithms
and Architecture for Parallel Processing, pp. 378–383, 2002.

[19] M. Lei, S.V. Vrbsky, X. Hong, “An on-line replication strategy to
increase availability in data grids,” Future Generation Computer
Systems, Vol. 24, Issue 2, pp. 85-98, 2008.

[20] Y. Machida, S. Takizawa, H. Nakada, and S. Matsuoka, “Multi-
replication with intelligent staging in data-Intensive grid

222

applications,” Proc. 7th IEEE/ACM Int’l Conference on Grid
Computing, pp. 88-95, 2006.

[21] L. Meyer, J. Annis, M. Wilde, M. Mattoso, and I. Foster, “Planning
spatial workflows to optimize grid performance,” Proc. ACM Symp.
Applied Computing, pp. 786 - 790, 2006.

[22] K. Ranganathan and I. Foster, “Identifying dynamic replication
strategies for a high-performance data grids,” Proc. 3rd Int’l
Workshop on Grid Computing, Lecture Notes on Computer Science,
Vol. 2242, pp. 75-86, 2002.

[23] K. Ranganathan and I. Foster, “Computation scheduling and data
replication algorithms for data Grids”, Grid resource management:
state of the art and future trends, pp. 359-373, 2004.

[24] H. Sato, S. Matsuoka, T. Endo, and N. Maruyama, “Access-pattern
and bandwidth aware file replication algorithm in a grid
environment,” Proc. 9th IEEE/ACM International Conference on
Grid Computing, pp. 250-257, 2008.

[25] H. Stockinger, A. Samar, K. Holtman, B. Allcock, I. Foster, and B.
Tierney, “File and object replication in data Grids,” Proc. 10th IEEE
Int’l Symp. High Performance Distributed Computing (HPDC), pp.
76-86, 2001.

[26] M. Tang, B.S. Lee, C.K. Yeo, and X. Tang, “Dynamic replication
algorithms for the multi-tier data grid,” Future Generation Computer
Systems, Vol. 21, Issue 5, pp. 775–790, 2005.

[27] M. Tang, B.S. Lee, X. Tang, and C.K. Yeo, “The impact of data
replication of job scheduling performance in the data grid,” Future
Generation Computer Systems, Vol. 22, pp. 254-268, 2006.

[28] The European Data Grid Project, http://eu-
datagrid.web.cern.ch/eu-datagrid.

[29] S. Venugopal, R. Buyya, and K. Ramamohanarao, “A taxonomy of
data grids for distributed data sharing, management, and processing,”
ACM Computing Surveys, Vol. 38, Issue 1, Article 3, 2006.

223

