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Abstract—Data grids provide large-scale geographically 
distributed data resources for data intensive applications such 
as high energy physics and bioinformatics. Optimizing the use 
of data resources to maximize the performance is critical for 
data grids. In this paper, we propose a novel dynamic data 
replication strategy called FIRE (file reunion), which is 
motivated by the observations that a group of jobs in a site 
tend to demand a common set of files distributed in a data 
grid. The basic idea of FIRE is to reunite the file set through 
data replication so that it resides with the job group on the 
same site. Extensive experiments using a well-known data grid 
simulator OptorSim and synthetic benchmarks demonstrate 
that compared with two existing schemes, LRU (Least Recently 
Used) and LFU (Least Frequently Used), FIRE performs 
obviously better in most scenarios. 

I. INTRODUCTION  
All manuscripts Grid computing is an emerging 

technology with the goal of providing geographically 
distributed users with virtual organizations, which allow the 
effective sharing of computation and storage resources 
[10][29]. In particular, a data grid deals with the controlled 
sharing and management of large amounts of data in the 
form of files, which are distributed among geographically 
diverse grid sites [1][4][7][10][12][29]. Typical data grid 
applications like high energy physics [1][9], image 
processing [17], bioinformatics [23], data mining [20], and 
spatial processing [21] normally demand enormous 
computational power as well as a vast amount of data in 
terabyte or even petabyte scale[22][25][27].  

Efficiently managing such huge and widely distributed 
data in a data grid, however, is a great challenge [9][26]. To 
solve this challenge, an array of techniques including 
dynamic data transfer [15][21], data-driven job 
scheduling[7][17][23], and data replication [1][6][9][11][18] 
have been proposed in the literature. The major goal of these 
techniques is to reduce the execution cost of a job, which 
depends not only on the computational resource assignment 
but also on the location of data files that are required by the 
job [1]. Data replication has long been considered as an 
important technique for improving performance in data grids 
because it can noticeably reduce the network bandwidth 
consumption and the access latency [2][6][7]. Besides, it can 
effectively enhance data availability, fault tolerance, system 
scalability, and load balancing by creating replicas and 

dispersing them among multiple sites [9][18]. A data 
replication process involves creating identical copies of a file 
and placing them onto multiple sites so that they can be 
accessed simultaneously from various locations. Three main 
decisions need to be made by a replication mechanism: 
which files to replicate, when to replicate, and where to 
replicate [23].  If there are several existing replicas of a given 
file, the replication mechanism also needs to determine the 
best replica to import. One key principle for data replication 
mechanisms is that a replica and the job that requires it 
should be allocated onto the same site whenever the storage 
element of the site can accommodate the replica. Otherwise, 
the replica should be stored onto a nearby site [12][12]. 
Since the popularity of a file could change over time, the 
replication service needs to replicate files with increasing 
popularity and to delete the ones with reduced popularity [1] 
[1]. More precisely, when the popularity of a file reaches a 
predefined threshold value, replication or deletion of replicas 
of the file has to be completed after analyzing the access 
patterns of previous file requests [13][13].  

File access pattern analysis has always been employed as 
a powerful tool to design efficient dynamic data replication 
schemes [17][21]. Most of existing dynamic data replication 
mechanisms [6][9][13][24], however, mainly focus on 
identifying popular files based on file access patterns 
observed at application run times. We argue that file access 
pattern can provide us with more useful information than the 
popularity of files. For example, after analyzing a real data-
intensive grid application Coadd [21], Ko et al. found that a 
significant number of files accessed by multiple tasks and a 
large number of tasks access the same set of files during their 
execution [17]. The important phenomenon was named 
locality of interest [17] and it has also been noticed in many 
other data-intensive grid applications like high energy 
physics and bioinformatics [16]. The implication of locality 
of interest is that a group of jobs has a strong correlation with 
a set of files in many data-intensive grid applications. 
Motivated by this critical observation, we propose a file 
reunion based dynamic data replication strategy for data 
grids.  

Initially, only one set of files known as master files exist 
on a special site called data site, which normally only has a 
storage element. None of the master files has a replica at this 
moment. When a job submitted to a normal site (hereafter, 
site) with both storage element and computing element 
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requires a file that is not locally available, the file will be 
replicated from the data site to the site. In this way replicas 
of the master files are spread out randomly across the sites 
after a period of time. After a site runs out of its storage 
space, a job on the site has to remotely access files that 
reside on other sites. Since they are copies of the master 
files, files on a site could be deleted or moved away when 
there is no enough storage space on the site to accommodate 
new files. Each site maintains a file access table to keep track 
of its local file access history. A site makes independent 
decisions on whether or not deleting some old files to 
accommodate new files if some benefits can be achieved. On 
each site, the FIRE strategy analyzes the site’s file access 
table. If on a site FIRE detects that a common set of files are 
frequently accessed by a group of local jobs, in other words, 
a strong correlation between a group of local jobs and a set 
of distributed files exists, FIRE will reunite the set of files 
onto the site by replication. Since files that belong to the 
same set (or family) have been initially separated among 
various sites, FIRE makes the file set reunion after the strong 
correlation between the file set and the job group exhibits. 
Section 3.1 provides an example to show the basic idea of 
FIRE. 

 Tier-0 

Tier-1 

 Tier-2

Tier-3 

Fig. 1. The multi-tier architecture. 

The rest of this paper is organized as follows. Section 2 
gives a brief introduction of related work. Section 3 presents 
an overview of the grid architecture, which will be used in 
this work. Section 4 proposes the FIRE strategy with an 
illustrative example. An extensive simulation study will be 
discussed in Section 5. Finally, section 6 concludes the work 
with some future directions.  

II. RELATED WORK  
Compared with transferring a file from one site to the 

other in real time, data replication is a better technique as it 
can reduce bandwidth consumption and access latency[9] 
[9]. In addition, it improves data availability, data reliability, 
and system scalability. Data replication algorithms for data 
grids can be broadly classified into two camps: static and 
dynamic [18][19][22][26]. Static replications create 
algorithms based on a set of predefined rules, which requires 
a complete and prior knowledge of workload characteristics 
[9][12]. The implication is that they cannot adapt to the 
changing network or access pattern, which is common in 
data grids. Dynamic replication, on the other hand, makes 
data replications based on real-time network condition and 
access patterns, and thus, is more suitable for data grids 
where resources and workload statistics are continuously 
changing. In this section, we introduce some typical dynamic 
data replication algorithms. 

To ensure scalability of the distributed systems, a multi-
tier architecture has been proposed for data grids [26]. Fig. 1 
shows its architecture. Each tier represents a different region. 
For example, Tier-0 is stores the raw data generated by the 
experiments in CERN [28] and Tier-1 processes the data 
analysis by several regional centers. Leafs represent the 
clients, and each client only accesses the replicas from its 
ancestor. Two dynamic replication strategies, namely, SBU 
(Simple Bottom Up) and ABU (Aggregate Bottom Up), were 
developed in [26]. 

 
 In contrast to traditional data replication where a 

complete file is replicated, Chang et al. proposed a new data 
replication approach called fragmented replicas, which only 
replicates needed partial contents of a file locally to save 
storage space [8]. However, the problem of fragmented 
replica updates is to be solved and it is challenging. Also, 
their assumption that fragmented replicas are contiguous 
may not always hold in data grids. Further, they developed a 
job scheduling policy HCS (Hierarchical Cluster Scheduling) 
and a dynamic data replication strategy HRS (Hierarchical 
Replication Strategy) to improve the data access efficiencies 
in a cluster grid [7]. The rationale behind the two 
coordinated algorithms is that job scheduling in concert with 
data replication can significantly reduce data access time and 
the amount of inter-cluster-communications. In order to 
design an effective data replication algorithm, file access 
pattern analysis is frequently employed [6][9][13][24].  Sato 
et al. model the replication problem as a combinatorial 
optimization problem with constraints from the access time 
threshold and various system parameters. The objective of 
their algorithm is to minimize file replication costs by 
dynamically monitoring and estimating inter-node link 
throughputs and file access patterns of running applications 
[24]. 

A very novel ant-like agent-based data replication 
mechanism called ARMAP protocol (Ant-based Replication 
and Mapping) has been developed by Forestiero et al. [15]. 
Agents travel a data grid through P2P interconnections and 
replicate data whenever necessary. The protocol can enforce 
the dissemination of descriptors related to high Quality of 
Service (QoS) resources. One potential problem of this 
approach is that security could become a concern when 
agents themselves are infected by computer viruses. 
Although improving performance in terms of reducing 
access latency is always the goal of data replication 
algorithms, data availability is also very important for the 
users of a data grid. To maximize the data availability, Lei et 
al. devised an on-line data replication optimizer algorithm 
called MinDmr [19].  

A comprehensive investigation on dynamic data 
replication strategies for high-performance data grids has 
been conducted by Ranganathan and Foster [22]. They 
developed a simulation framework, which enables 
comparative studies of alternative dynamic replication 
strategies including No Replication or Caching, Best Client, 
Cascading Replication, Plain Caching, Caching plus 
Cascading Replication, and Fast Spread. The performance of  
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the six replication strategies was evaluated under three 
distinct types of access patterns: random access pattern with 
no locality, a small amount of temporal locality, and a small 
amount of geographical and temporal locality [22]. Their 
simulation results show that significant savings in latency 
and bandwidth can be obtained when the access patterns 
contain a small degree of geographical locality, which 
indicates that files recently accessed by a client are likely to 
be accessed by nearby clients. We view this crucial finding 
as a strong evidence that a group of geographically close jobs 
(e.g., staying on one site) tend to access a common set of 
files, which justifies the fundamental assumption on access 
patterns used in this research. 

III. ARCHITECTURE OVERVIEW 
 The architecture of the data grids simulated by the 

OptorSim simulator [2][3][4] is shown in Fig. 2. We adopt 
this architecture as it has been widely used for studying 
various file replication algorithms in conjunction with 
different job scheduling algorithms in data grid 
environments [1][3][9]. OptorSim provides a framework to 
simulate real-world data grids by considering an array of 
parameters and scenarios found in reality. It was developed 
by the European Data Grid Project [28]. One data grid 
consists of several sites. Each site has either a computing 
element (CE) or a storage element (SE) or both (Fig. 2). 
Geographically distributed sites are connected by the 
internet. End users use a machine running the user interface 
(UI) software to interact with the grid system (Fig. 2). More 
precisely, end-user uses the machine to submit jobs to the 
grid system and retrieve output of the completed jobs. The 
user interface may be also used to monitor the execution of 
jobs after submission. All submitted jobs will then be 
forwarded to a resource broker (RB), which matches the 
jobs' requirements to the available resources at the various 
sites within the grid and dispatches them [4].  

 

 
A CE is composed by a gatekeeper machine and a number 
of worker nodes [4] (Fig. 2). A gatekeeper is the front-end 
of a computing element. It accepts jobs and then dispatches 
them for execution on the worker nodes. Finally, it returns 
the results to RB. This way the gatekeeper provides a 
uniform interface to the computational resources that it 
controls. The SE provides uniform access to large storage 
spaces [2]. The storage element may control large disk 
arrays or mass storage systems. SE hides the details of the 
backend storage systems and provides a uniform interface to 
the grid users. At each site, there is a software component 
called replica manager (RM), which manages the data flow 
between sites. Within a replica manager, there is a 
subcomponent called replica optimizer (RO), whose major 
duty is to create file replicas and to destroy them whenever 
necessary [1]. The replica manager possesses the knowledge 
of the local file access patterns as well as the access history 
of files that were requested by remote jobs. Various 
dynamic data replication algorithms like FIRE can be 
integrated into the replica manager as a replica optimizer. 
Therefore, their performance can be studied and compared 
in a fair manner. 

A data grid is a highly dynamic environment for the 
status of its resources can change during the execution of its 
jobs [29]. Hence, optimizations are needed in every stage 
from job submission to data replication [13]. The first 
optimization phase occurs when the RB determines the CE 
on which a job should run. This process is called scheduling 
optimization as the RB has to select a CE from many 
available ones. The scheduling algorithm mainly considers 
parameters like a job’s access cost, which is the sum of the 
costs that are incurred in bringing all the files required by 
the job. Besides, the scheduling algorithm also takes the 
job’s execution time on a CE into account. Moreover, it 
needs to consider the existing load on a site to avoid load 
imbalance. Only after the CE finishes its ongoing jobs will  
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it be able to process newly arrived jobs. The waiting cost is 
called queuing time.  In addition to scheduling optimization, 
data optimization is needed as well. This optimization task 
is accomplished by the RO where a dynamic data replication 
strategy like FIRE is implemented (Fig. 2). For example, 
when a RM selects a replica from multiple available ones, it 
should bring the one that will incur the least cost in terms of 
latency and network bandwidth. Thus, the replica optimizer 
has to weigh the cost of each replica and informs the RM 
the best replica to fetch. Note that the RO is the “brain” of 
the RM, which is an interface to send/receive replicas. 
Further data replication optimization can be done by the 
RO. For instance, FIRE within the RO can reunite a set of 
distributed files onto one site after a strong correlation 
between the set of files and a group of jobs on the site 
exhibits. FIRE achieves optimization based on file access 
tables. 

IV. THE FIRE STRATEGY  
In this section, we first present an example to show the 

basic idea of FIRE, which is followed by a brief introduction 
of the auction protocol, as well as a detailed analysis of the 
FIRE strategy. 

A. An Illustrative Example 
An example to show the basic idea of the FIRE strategy 

is illustrated in Fig. 3. Assume that there is a set of files on 
Site 1 and Site 2 as given in Fig. 3a. For illustration purpose, 
suppose that all files are of the same size (e.g., 1 GB) and the 
SE of a site can only accommodate 7 files. Initially, there is 
just one set of master files available in a data grid. Assume 
that the master file set is present on Site 0, which only has a 
SE. When jobs are submitted to the data grid, they run at 
different sites. Replication takes place when a job on a site 
requires a file that is not locally available and the site has 
enough space to accommodate the replica. When a site’s SE 
has no free storage space, all jobs on it have to remotely 
access files if they are not locally available. After a period of 
time, files (i.e., replicas) are spread out randomly across the 
sites in the data grid. These files are copies of the master 
files, and thus, can be deleted. Every site individually keeps 
track of its access histories for all local files and remote files 
accessed by the jobs on it. The replica manager of a site 
maintains a File Access Table as shown in Fig. 3a. While site 
1 has files A, B, C, D, E, F, and G, Site 2 has files H, I, C, K,  

 
L, M, and N. On Site 1, job J1 accessed files A, B, and C 3, 3, 
and 2 times, respectively. Job J2 accessed files A, B, and C 3, 
4, and 2 times, respectively. File D was remotely accessed by 
J5 and J6 1 and 2 times, respectively. File E was remotely 
accessed by J3 and J5, which are running on Site 2. Files F 
and G have no local access but each of them has one remote 
access. Note that J1 and J2 also accessed file K remotely. 
Similarly, J2 and J4 accessed L remotely (Fig. 3a). The 
correlation degree between a file fi and a job jk is defined as 
the number of times jk accessed fi and it is denoted as c . 
The correlation degree between a file fi and a group of local 
jobs J = {ja, jb, jk, …,jq} that have accessed it is defined as 
group correlation degree, which is the total number of times 
that fi was accessed by jobs in J. Group correlation degree of 
a file fi is denoted as 

k

G . At the first time a job 

needs to access a remote file, the file is not immediately 
replicated onto the job’s site. Until FIRE makes sure that 
there exists a benefit in replicating the file, the job will 
continue to access the file remotely. The cost of replication 
of a file includes access cost and the queuing time at the site 
where the wanted file stays. The access cost is determined by 
network bandwidth available between the two sites and the 
size of the file. For a file to be replicated onto a site, the site 
should also delete a file if it has no free storage space and 
each file has the same size. If there is a file whose group 
correlation degree is lower than the number of times the 
remote file is being accessed, the file at the requesting site is 
deleted and the remote file is bought in. Similarly, the access 
history of files on Site 2 is given in Fig. 3a.  We can see that 
files H, I, C are accessed frequently by J3, J5, and J6. Also, 
these jobs access files D and E on Site 1 remotely. 

k
i

∑
⊂

=
Jj

k
ii c

After a certain period of time, FIRE analyzes the file 
access tables on both Site 1 and Site 2. It detects that there 
exists a strong correlation between a local job group (J1, J2, 
J4) and a file set (A, B, C) on Site 1. Meanwhile, FIRE found 
that jobs in the group of (J1, J2, J4) were correlated with files 
K and L on Site 2 as they remotely accessed them multiple 
times. Thus, FIRE decided to replicate K and L on Site 1 so 
that the file set (A, B, C, K, L) and their correlated job group 
(J1, J2, J4) can stay together (Fig. 3b). In order to 
accommodate K and L, FIRE has to delete two files on Site 1 
due to the limited storage space. Since F and G were only 
accessed once remotely so far, they have no correlation with 
local jobs. Therefore, FIRE deleted them to accept K and L 
on Site 1 (Fig. 3b). Similarly, on Site 2 files H, I, and C were 
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kept there while files D and E were replicated from Site 1 
because they were frequently accessed by jobs J3, J5, and J6. 
Files M and N were deleted from Site 2 because they have no 
local access (Fig. 3b). After data replication optimization, we 
see that file C is present on both sites as it has a strong 
correlation with both job group (J1, J2, J4) on Site 1 and job 
group (J3, J5, J6) on Site 2 (Fig. 3b). On Site 1, since files D 
and E have no local accesses, these files are likely to be 
deleted if more replication has to occur in the future. 
Likewise, files K and L will be deleted if any replication has 
to happen on site 2 in the future. 

Fig. 4. The FIRE strategy. 

1. for each job j submitted to the RB of a data grid do         
2.   for each site in the data grid do 
3.     Calculate its file access cost and job queue cost 
4.   end for 
5.   Dispatch j to the least-total-cost site sl                         
6.   Files in D = {d1, …, dk, …, dw} are required by j  
7.   for each file dk in D do 
8.     if dk is not locally present on sl 
9.       if dk can be accommodated by local SE 
10.        Use the Auction Protocol to replicate dk on sl 
11.        Space of local SE is reduced by the size of dk 
12.      else 
13.        RA = number of remote accesses on dk  from sl 
14.        LAF = the local file received least local access  
15.        if RA >= the number of local accesses of LAF 
16.          Delete LAF  
17.          Use the Auction Protocol to replicate dk on sl  
18.        else 
19.          Access dk remotely 
20.          RM of the remote site updates its access table 
21.        end if 
22.    end if  
23.    end if  
24.  end for 
25.  Update the file access table on sl 
26.end for 

B. The Auction Protocol 
When FIRE needs to make a replication of a file and 

there are multiple copies of the file in a data grid, FIRE has 
to decide which site to choose to make the replication. 
Obviously, FIRE prefers to make a replication from a site 
that will incur the least cost in terms of access time and the 
site’s job queue cost. The job queue cost of a site is defined 
as the earliest time that a job can start its execution if it is 
assigned on the site. FIRE employs an auction protocol 
named Vickery Auction proposed in [1] to accomplish the 
best replica selection process. Whenever FIRE finds multiple 
copies of a file that it wants to make a copy, it starts an 
auction process by sending a bidding request to all sites that 
have the file. Each site that received the request will then 
send a bid back to FIRE. After examining all the bids, FIRE 
selects the site that offered the lowest bid (i.e., the least cost 
in access time and job queue cost) as the winner, who only 
has to pay the price of the second lowest bid. This way FIRE 
replicates the file from the winner of the auction.  If there is 
only one replica existed in the data grid, FIRE directly copies 
the file from that site. More detailed information about the 
Auction Protocol can be found in [1]. 

C.  Strategy Description 
The Fig. 4 outlines the FIRE strategy. Assume that a 

data grid consists of m sites and it is represented by the set S 
= {s1, ..., sj, …, sn}. Also, assume that there are master files 
denoted by F = {f1, ..., fi, …, fm} in the data grid.  When a 
job j is submitted to a data grid, the resource broker receives 
the job and then makes a decision about where to dispatch 
it. This decision is made based on the scheduling algorithm 
utilized at the resource broker. Here, we use the scheduling 
algorithm that takes the file access cost and job queue cost 
into consideration. The sum of these two costs is calculated 
for all n sites (Step 2 – Step 4). The least-total-cost site s is 
chosen to execute the job (Step 5). It is highly possible that 
site sl has all or part of the files required by j. Assume that 
files required by j constitute a set D = {d1, …, dk, …, dw} 
where w <= m (Step 6). For each file dk in D, FIRE checks 
if it is locally available. If not, FIRE tests whether or not 
local SE has space to accommodate dk. If yes, FIRE 
replicates dk from a site with least cost based on AP (the 
Auction Protocol described in Section 4.2) (Step 9 – Step 
11). If not, FIRE compares the number of remote accesses 
on dk issued from site sl against the number of local accesses  

of the least locally accessed file on sl. If the former is no less 
than the latter, the least locally accessed file will be deleted 
and dk will be replicated onto sl using the Auction Protocol 
(Step 13 – Step 17).Otherwise, job j has to access dk 
remotely (Step 19). In this case, the replica manager of the 
remote site that has file dk needs to update its file access 
table to log this remote access event (Step 20). Finally, the 
replica manager of site sl updates its file access table to log 
local accesses and remote accesses caused by job j (Step 
25). 

V. PERFORMANCE EVALUATION 

A. Simulation Setups 
In this section, we evaluate the performance of our FIRE 

strategy along with two existing algorithms using a set of 
high energy physics analysis jobs generated from the CDF 
experiment in the European Organization for Nuclear 
Research project [14]. In this real-world based workload, 
each file has a size of 1 GB and the total size of file set is 97 
GB. The simulated grid used in our experiments has 27 sites 
and the experimental data came from a world wide data  

TABLE I.  SYSTEM PARAMETERS 

 
Parameter Value  
Number of sites 27 
Storage space at each site (GB) 50 
Inter-Cluster bandwidth (Mbps) 10 

Intra-Cluster bandwidth (Mbps) 100 
Single file size (GB) 1 
Total file size (GB) 97 
Job inter arrival time (second) 2.5 
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production generated in [28]. To simplify the simulations, 
we assume that there is no contending network traffic. To 
test FIRE under a real world scenario, we adopt this set of 
jobs from a practical data grid application. Among the 27 
sites, 18 of them have a computing element and 20 of them 
have a storage element. The capacity of each SE is 50 GB.  
We tested two initial replica distribution cases: random 
replicas and no replica. In the first case, the copies of the 
master files are distributed randomly over various sites 
before any job is submitted. In the second case, the set of 
master files stay on a particular site and all other sites have 
no replica at all. The sites are connected to each other by 
networking links with a constant bandwidth. The 
configuration above is stored in OptorSim as a parameter file 
[4]. Not all sites are directly connected to each other. Since 
most replication algorithms assume that data is read-only in 
data grid environments, we adopt this assumption as well. 
The parameters used are shown in Table 1. 

The next configuration file is called the job parameter. It 
specifies the file names along with their logical ids. It also 
lists the number of jobs to be run, which in our case will be 
100. Each job requires a set of files for its execution. There 
are six jobs, which will run for a total number of 100 times. 
We used a scheduling algorithm that makes scheduling 
decision based on the sum of the access cost and the job 
queue cost. The site with the least-total-cost will receive the 
job. The job parameter file also gives the submission 
frequency of each job. The job submission frequency is 
configured as 2.5 seconds in our simulations. The final 
configuration file is called the bandwidth configuration file. 
It is used to simulate background traffic in the simulated data 
grid at different times. We used the default bandwidth 
configuration file.  

In addition to total execution time, we also measured 
effective network usage (ENU), which was defined in [5]. 
Assume that Nremote file accesses is the number of times the CE 
reads a file from a SE on a different site, Nfile replications is the 
total number of file replications, and Nlocal file accesses is the 
number of times a CE reads a file from a SE on the same 
site. ENU is equal to (Nremote file accesses + Nfile replications)/Nlocal file 

accesses. For a particular network topology, a lower value of 
ENU indicates a better performance for a data replication 
strategy for data grids [5].  

B. Experimental Results 
We conduct a group of simulation experiments to 

examine the effectiveness of the FIRE strategy. We run the 
six jobs totally 100 times and measured the total execution 
times. In the first simulation experiment, we evaluate the 
impacts of file access pattern on FIRE. We tested FIRE and 
the two existing algorithms in both sequential file access 
pattern and random file access pattern. We first set the file 
access parameter to sequential access, which means that all 
files of a given file set will be accessed in a sequential 
fashion. Next, we tested the three algorithms for random a 
access pattern where each job accesses files in random 
manner. The number of reads on a file issued from a job was 
randomly generated.  Fig. 5a shows the total execution time 
of the three algorithms. Under sequential access pattern, 
FIRE obviously outperforms the two baseline algorithms. 
More precisely, compared with LRU and LFU, FIRE 
improves job execution performance by 25% and 14%, 
respectively (Fig. 5a). This is because FIRE knows that all 
the files required by a particular job will be accessed 
sequentially. Hence, these files will not be deleted and shall 
be accessed later by the same job or related jobs, which 
results in performance improvement. On the other hand, for 
LRU and LFU, if the file set of required by a particular job is 
larger than storage space available in a SE, the existing files 
in the SE will be deleted. Therefore, the next time the job 
runs, RO has to do a remote read and replicate the file again, 
which leads to performance degradation. Under the random 
access pattern, a job could access any files from its candidate 
file set during its execution. For example, assume that job j 
has a candidate file set (A, B, C, D). In its first run, j may 
only access file A. However, in its second run, j accesses 
both file C and D. In short, each time when j is running, it 
could access any number of files in the candidate file set. 
Clearly, we can see that the performance of FIRE decreases 
while the performance of LRU and LFU increases. This is 
because the history access information has little help for 
FIRE to keep files that will be accessed in the near future as 
file access is totally random. LRU and LFU can still keep 
some recently access files on local SE due to the nature of 
these two mechanisms. This is the reason why the total 
execution time of LRU and LFU decreases in random 
pattern.  Fig. 4b shows the ENU performance of all three 
algorithms.  While the ENU for FIRE is around 0.37, the   

                                          (a)                                                                                                                           (b) 
Fig. 5. Performance Impact of file access pattern. 
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                                     (a)                                                                                                                     (b) 

Fig. 6. Performance Impact of initial state. 

 
ENU for LRU and LFU are 0.42 and 0.45, respectively. 
FIRE gains a better ENU value under sequential access 
pattern. However, it performs slightly worse than LRU (Fig. 
5b) when the access pattern random is chosen. This is 
because FIRE moves around files more often when files are 
accessed randomly, and thus, the network usage was 
increased. 

The second group of experiments is to examine the 
performance of FIRE under two initial replica distribution 
scenarios: random replicas and no replica. In the first case, 
there is just one set of master files on a particular site while 
all other sites’ SEs are empty with no replica at all. 
Experiments in this scenario help us understand how much       
time a replication algorithm needs to fill in sites with 
replicas. In the second scenario, initially all sites are 
randomly filled with some replicas. In the first scenario as 
shown in Fig. 6a, compared with LRU and LFU, FIRE 
reduces total execution time by 7.4% and 19.3%, 
respectively. The implication is that FIRE creates replicas 
faster than LRU and LFU. Thus, it leads to a lower total 
execution time.  

  
The purpose of the last group of simulations is to 

evaluate the impacts of global job queue construction on the 
performance of FIRE. In our simulations, we have 6 distinct 
jobs (hereafter, candidates) and each of them can run 
multiple times. Each execution of a job is called a job 
instance and there are totally 100 job instances. The 100 job 
instances (hereafter, jobs) stays in the global job queue, 
which resides on the resource broker (see Fig. 2). There are 
multiple ways to construct the global job queue. One way we 
called free is that each of the 100 jobs in the global job queue 
is randomly selected from the 6 candidates. The global job 
queue built in this way represents a random job submission 
pattern. Another way we called fixed is that each of the 6 
candidates has a specific percentage weight in the range [0, 
100%] and the sum of these percentage weights is equal to 1. 
For example, a global job queue constructed in this manner 
could be (10 j1, 10 j2, 10 j3, 10 j4, 30 j5, 30 j6). In other words, 

In the second scenario, we examine the total execution 
time of jobs when initially replicas are spread randomly 
among sites. FIRE still outperforms the two baseline 
algorithms in terms of total execution time (Fig. 6a). In 
particular, FIRE achieves 3.2% and 12.8% improvements in 
total execution time compared with LRU and LFU, 
respectively. However, we notice that for each algorithm its  

 
total execution time increases compared with the no replica 
scenario. This is because initially the sites are randomly 
filled with replicas, and thus, it takes time for the replicas to 
get grouped along with similar files in the same set. Due to 
this fact, the network usage is also increased, which can be 
observed in Fig. 6b. The value of ENU is also enlarged from 
the first scenario to the second scenario due to increased 
network activities. Nevertheless, FIRE consistently performs 
better in terms of ENU (Fig. 6b), which demonstrates that 
FIRE is a more efficient replication strategy due to its lower 
network usage. 

                                     (a)                                                                                                                            (b) 
Fig. 7. Performance Impact of global job queue pattern. 
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each of the 100 jobs in the global job queue is selected from 
the 6 candidates based on their respective percentage weight. 
As a result, the global queue constructed in this manner 
represents a job submission pattern with some “space” 
locality. We tested these two job submission patterns in Fig. 
7. When the global job queue was constructed in the fixed 
manner, in terms of total execution time FIRE outperforms 
LRU and LFU by 18.2% and 12.9%, respectively (Fig 7a). In 
the free situation, FIRE performs worse than LRU and LFU. 
The reason is that FIRE depends on the close relationship 
between jobs and files. If this workload assumption does not 
hold, i.e., similar jobs are not executed together but rather are 
mixed with other non-related jobs, the performance of FIRE 
deteriorates. Hence, the performance of FIRE is worse than 
that of LRU and LFU. This also explains why LRU and LFU 
outperform FIRE in ENU when the global job queue was 
built in the free manner (Fig. 7b). Still, FIRE performs better 
in the fixed case 

VI. CONCLUSIONS AND FUTURE WORK 
Data replication is a frequently used technique that can 

reduce bandwidth consumption and access latency in high 
performance data grids where end users demand remote 
accesses to large files. In this paper, we developed a dynamic 
data replication strategy called FIRE, which was motivated 
by an important observation from many data-intensive grid 
applications. Researchers in [16][17] found that a group of 
jobs in a site tend to demand a common set of files 
distributed in a data grid. To optimize replication based on 
the critical access pattern characteristic, FIRE reunites a set 
of distributed files onto one site after a strong correlation 
between the set of files and a group of jobs on the site 
exhibits.   

To evaluate the efficiency of our algorithm, we ran 
extensive simulation experiments using the OptorSim 
simulator and a real-world data grid test bed from high 
energy physics [28]. Total job execution time and effective 
network usage are used as two performance metrics. We 
compared FIRE with two traditional algorithms LRU and 
LFU. The experimental results demonstrate that FIRE 
noticeably improves the total execution time and ENU under 
sequential access pattern. The performance enhancement is 
attributed to FIRE’s ability of coupling similar jobs that 
access a common set of files together through replication. As 
part of our future work, we plan to extend FIRE to parallel 
applications where jobs may have precedence constraints and 
communicate with each other during their executions. 
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