
SPD-RAID4: Splitting Parity Disk for RAID4 Structured Parallel SSD Arrays

Wen Pan, Feng Liu
Computer & Information School
Hefei University of Technology

Hefei, Anhui, China
wenwen412@gmail.com
fengliu089@gmail.com

Tao Xie
Computer Science Department

San Diego State University
San Diego, California, USA

txie@mail.sdsu.edu

Yanyan Gao, Yiming Ouyang, Tian Chen
Computer & Information School
Hefei University of Technology

 Hefei, Anhui, China
littlek.gao@gmail.com

{oyym, ct}@hfut.edu.cn

Abstract—Data-intensive applications like video processing
and bioinformatics increasingly demand a high-performance and
highly reliable storage system. Hard disk drive (HDD) has long
been used as a standard storage device for most existing storage
systems. Recently, NAND-flash memory based solid state drives
(SSDs) are gradually exploited to replace HDDs in enterprise
computing infrastructures due to their salient features such as
high performance, low power consumption, and excellent shock-
resistance. With rapid price decreasing and capacity increasing,
flash SSD based disk arrays organized in some RAID structures
become feasible and greatly needed. In this paper, we propose a
new RAID4 architecture called SPD-RAID4 (Splitting Parity
Disk - RAID4) for parallel SSD arrays. It splits the parity disk of
a traditional RAID 4 array into configurable number of smaller
ones. Thus, multiple small parity SSDs operate in tandem with
data SSDs to achieve a high performance and high level of
reliability. We compare the performance of SPD-RAID4 with
conventional RAID4 and RAID5 architectures by using both
real-world traces and synthetic benchmarks. Experimental
results demonstrate that in terms of mean response time SPD-
RAID4 outperforms standard RAID5 structured SSD arrays by
up to 20.3%. Compared with standard RAID4, SPD-RAID4
achieves a performance gain up to 40.6%.

Keywords—flash memory; RAID; RAID4; SSD arrays

I. INTRODUCTION
Compared with modern CPU speed, the speed of a

conventional hard disk drive (hereafter, HDD) is much slower.
Due to its physical properties, HDD has some inherent
disadvantages such as poor performance, low energy-efficiency,
and weak robustness, which make it the bottleneck of a high-
performance computing system [7][21]. As a result, NAND
flash memory based solid state drive (hereafter, SSD) recently
has attracted intensive attention and has gradually become an
alternative storage device to HDD in enterprise storage systems
[19][22][26]. Unlike rotating-based HDD, SSD is made up of
semi-conductor chips without any moving parts. It possesses
several extraordinary features such as low power consumption,
excellent shock and temperature resistance, and extremely high
performance in random read [1]. On the other hand, it also
bears some obvious drawbacks like poor random write
performance, erase-before-write issue, and wear-out problem
[19][22][30]. With the application of MLC (multi-level cell)
and TLC (triple-level cell) techniques, the price of SSD is
decreasing while its capacity is increasing dramatically [2][25].
Thus, similar as a hard disk array, an array of SSDs organized

in a RAID (Redundant Array of Independent Disk) [24]
structure that can satisfy the performance, capacity, and
reliability requirements of an enterprise storage system
becomes both feasible and needed [12] [14][15][17][18].

Traditionally, the RAID technique improves the
performance and reliability of HDD based storage systems by
grouping a number of smaller disks together rather than
building one large and expensive drive [24]. It has been
successfully employed in almost all existing enterprise storage
systems. It mainly employs the parallel I/O technique to
improve performance and exploits data redundancy
mechanisms to enhance the reliability of storage systems [24].
RAID 5 (block-level striping with distributed parity) distributes
parity along with the data and it can tolerate a single drive
failure. It is one of the most widely used disk array
organizations. RAID 4 (block-level striping with dedicated
parity) is equivalent to RAID 5 except that all parity data are
stored on a single drive. Compared with RAID 5, it has been
seldom used in HDD arrays. The main reason is that the use of
a dedicated parity drive could create a performance bottleneck
because the parity data must be written to a single, dedicated
parity drive for each block of non-parity data [24]. Intuitively,
the RAID technology can also be applied onto SSDs so that
RAID 4 or RAID 5 structured SSD arrays can be built.
Applying RAID 4 in an SSD array, however, is even more
challenging as the dedicated parity SSD could wear out much
faster than a data SSD [23]. To overcome this problem, current
solution is to utilize an HDD as the dedicated parity drive while
multiple SSDs are used as data drives [20][23].

Although existing SSD-HDD hybrid RAID 4 architecture
can avoid parity SSD wear-out faster problem [20], it may also
cause the following potential issues. First of all, the inherent
performance gap between an SSD and an HDD could adversely
affect the overall performance because the overall write
performance still largely depends on the performance of the
HDD parity drive, which is usually lower than that of an SSD.
Next, data SSDs could wear out at similar rates, which can
result in correlated failures as the data SSDs age in unison [15].
Therefore, the risk of irreparable more-than-one-SSD-failure
becomes high. In addition, a hybrid RAID structure needs
separated RAID controllers dedicated for SSDs and HDD,
which increases the design complexity.

To alleviate the limitations of existing hybrid RAID 4
architectures, in this paper, we propose a new SSD RAID 4
structure named SPD-RAID4 (Splitting Parity Disk-RAID4),

2013 IEEE International Conference on High Performance Computing and Communications & 2013 IEEE International Conference

on Embedded and Ubiquitous Computing

978-0-7695-5088-6/13 $26.00 © 2013 IEEE

DOI 10.1109/HPCC.and.EUC.2013.12

9

2013 IEEE International Conference on High Performance Computing and Communications & 2013 IEEE International Conference

on Embedded and Ubiquitous Computing

978-0-7695-5088-6/13 $31.00 © 2013 IEEE

DOI 10.1109/HPCC.and.EUC.2013.12

9

2013 IEEE International Conference on High Performance Computing and Communications & 2013 IEEE International Conference

on Embedded and Ubiquitous Computing

978-0-7695-5088-6/13 $31.00 © 2013 IEEE

DOI 10.1109/HPCC.and.EUC.2013.12

9

which only utilizes SSDs. Moreover, it splits the parity disk of
a traditional RAID 4 array into a configurable number of
smaller ones. For example, SPD-RAID4 turns a standard RAID
4 array with five 512 GB SSDs (four data SSDs plus one parity
SSD) into a new structure with four 512 GB data SSDs and two
256 GB parity SSDs. The new SPD-RAID4 structure will not
increase the total cost as a 512 GB Intel SSD is currently
$424.99 while the price of a 256 GB Intel SSD is $211.99 [13].
Using multiple smaller SSDs to replace the single parity SSD
can enhance the parallelism of parity data processing, and thus,
improve the overall performance. Our experimental results
show that SPD-RAID4 performs much better than standard
SSD RAID 4 and RAID 5.

The rest of the paper is organized as follows. Related work
and motivation will be discussed in section II. We present the
implementation of SPD-RAID4 in section III. In section IV, we
evaluate the performance of SPD-RAID4 based on real-world
traces and synthetic benchmarks. Section V concludes this
paper with a summary and future direction.

II. RELATED WORK AND MOTIVATION

A. SSD Basics
Unlike HDDs, SSDs are made up of semiconductor

memory chips, and thus, have no moving parts. They can avoid
HDD’s long seek time and rotational latency, which are in the
order of magnitude of millisecond (ms). Despite of SSD’s
desirable properties like high energy efficiency, excellent
temperature resistance, and high random read performance, it
also has certain essential limitations.

Firstly, current SSDs suffer from poor performance of
random write [30]. The reason is that in flash memory, each
block must be erased before it can be written, a characteristic
known as erase-before-write. For a Samsung’s
K9XXG08UXM series NAND flash memory, it takes 25 μs
and 200 μs to read from and write into a flash page, whereas it
needs about 1.5 milliseconds to execute an erase operation [1].

Secondly, flash memory wears out after repeated
program/erase (P/E) operations, which affects the reliability of
SSDs. Typically, for a single-level cell (SLC) NAND flash
memory, its maximum available P/E cycles could reach
100,000, whereas for a multi-level cell (MLC) flash memory,
its available P/E cycles are only 10,000 [20]. A block of flash
memory could fail when it has been erased more than its
available P/E cycles. These two limitations of SSDs must be
taken into consideration when designing an SSD based storage
system, especially for SSD based arrays.

B. Related Work
Applying SSDs in high-end server systems has attracted

intensive attention in recent years due to both their excellent
properties such as low-power consumption and high
performance and their decreasing prices [1][8][19][22][26].
Typically, existing applications of SSDs in server domains can
be categorized into two camps: a HDD-SSD hybrid storage
architecture [11][16][20][28] and a RAID based pure SSD
array [3][5][12][14][15][17][18][24]. Techniques in the first
camp usually concentrate on how to combine one or multiple

SSDs with either a single HDD or an array of HDDs to form
various hybrid storage architectures. One example is a hybrid
storage system called HybridStore proposed by Kim et al. [16].
It exploits the complementary properties of HDD and SSD to
provide improved performance and service differentiation
under a certain cost budget [16]. Mao et al. proposed an HPDA
(Hybrid Parity-based Disk Array) architecture, which combines
a group of SSDs and two HDDs [20]. In HPDA, the SSDs
(data disks) and part of one HDD (parity disk) compose a
RAID4 disk array. Meanwhile, a second HDD and the free
space of the parity disk are mirrored to form a RAID1-style
write buffer that temporarily absorbs the small write requests
and acts as a surrogate set during recovery when a disk fails.
Ren and Yang recently proposed a new hybrid storage
architecture named I-CASH (Intelligently Coupled Array of
SSD and HDD) [28]. The SSD stores seldom-changed and
mostly read reference data blocks whereas the HDD stores a
log of deltas between currently accessed I/O blocks and their
corresponding reference blocks in the SSD so that random
writes are not performed in SSD during online I/O operations
[28]. Essentially, these hybrid storage architectures share one
common idea: smartly utilize the complementary properties of
SSD and HDD.

With rapid price decreasing and capacity increasing, pure
SSD arrays organized in some RAID structures have become
both feasible and needed. Pure SSD based RAID arrays
normally can be classified into two categories based on the
granularity of underlying storage device. While the coarse
grain group directly applies RAID schemes on top of an array
of independent SSDs [5][15][23], the fine grain group employs
RAID structures on all flash chips within a single SSD
[12][17][18]. In this research, we focus on the first category.
When applying RAID schemes on SSDs, we need to adapt
existing RAID strategies in order to make the best use of SSDs.
Usually, a RAID mechanism on flash chips within a single
SSD is integrated into the flash translation layer (FTL) of the
SSD [1][8]. In other words, the FTL not only implements the
function of address translation, garbage collection, and wear-
leveling, but also provides a RAID mechanism.

 Existing RAID based SSD array research focuses on the
following two important aspects: improving performance
[12][14][17] and enhancing reliability [15][18]. The main
approach to improving SSD array performance is to reduce the
number of write operations for the parity updates, which is
identified as a performance bottleneck for RAID 5 SSD arrays
[12][17]. Im and Shin proposed a scheme to delay the parity
update that must accompany each data write in the original
RAID technique [12]. Similarly, Lee et al. developed a new
technique called FRA (Flash aware Redundancy Array) [17].
In this technique, parity updates are postponed so that they are
not included in the critical path of read and write operations
[17]. Instead, they are scheduled for when the device becomes
idle. The above two [12][17] are the typical representations for
flash chip based SSD arrays. Jeremic et al. discovered several
pitfalls for deploying SSDs in common RAID level
configurations, which can lead to severe performance
degradation after conducting a deep analysis of SSD RAID
configuration issues [14]. Unlike [12] and [17], their solution is
to utilize over-provisioning, which offers a potential solution to

101010

this problem.

Also, researchers have been working on improving the
reliability and performance of pure SSD RAID mechanisms by
inventing various SSD organizations, with several notable and
effective outcomes. To enhance the reliability of an SSD array,
Kadav et al. presented Diff-RAID, a new RAID variant that
distributes parity unevenly across SSDs to create age
disparities within arrays [15]. It can provide a great trade-off
between throughput and reliability by dynamically regulating
the distribution ratio of parity data. In this way, correlated
failures as arrays age in unison can be reduced. Diff-RAID
distributes more parity on some older devices to create an age
gap to improve reliability by avoiding more than one SSD
failures at one time [15]. However, parity devices that have
taken more requests than others could receive an even heavier
load, and thus, aggravating the load imbalance problem.

To avoid the problem that Diff-RAID bears, Du et al.
proposed Wele-RAID [5], which introduces a novel wear
leveling scheme among all flash SSDs. The wear leveling
strategy is derived from the age-driven parity distribution
mechanism to enhance the endurance of entire SSD RAID
system [5]. Nevertheless, it requires replacing the entire array
with new SSDs when the whole system approaches the end of
its lifetime, which increases the hardware cost. Lee et al. found
that the bit error rate of flash memory enlarges rapidly as the
number of P/E (program/erase) cycles increases [18]. To
relieve these problems, they proposed a lifespan-aware
reliability scheme, which adopts RAID technologies together
with ECCs (error correction codes) [18].

One obvious drawback of RAID 4 is that the parity disk
could become a performance bottleneck even for workloads
with a small percentage of writes because every write operation
needs to update the parity disk. In order to overcome parity
SSD’s fast wearing out problem, Park et al. [24] proposed a
heterogeneous RAID 4 array by replacing parity SSD with a
parity hard disk drive. Qin et al. [27] proposed a flash memory
redundant array that is similar to a RAID-4 array. In this
scheme, they add an independent channel (parity channel) to an
SSD to store specialized parity data and utilize a built-in
NVRAM to cache the parity data updates for minimal write to
flash memory in parity channel. Our SPD-RAID4 scheme
concentrates on SSD array performance enhancement by using
an approach different from existing ones [12][14][17]. SPD-
RAID4 exploits the parallelism of multiple small capacity
parity SSDs to significantly improve the performance.

C. Motivation
There are multiple types of RAID organizations such as

RAID 0, RAID 1, RAID 4, RAID 5, and RAID 6 [24]. In
addition, some RAID structures can be combined together to
form a compound RAID architecture like RAID 10. Simply
applying an existing RAID structure to an array of SSDs
without taking their characteristics into consideration could
cause problems. In what follows, we first analyze which RAID
format is suitable for an SSD array. Next, we explain why we
need to change the architecture of a standard RAID 4 to make
it suitable for SSD arrays.

RAID 0 is not suitable for SSD arrays where data reliability

has to be provided as it does not employ any data redundancy
schemes although it can boost performance. RAID 1, which
provides a mirroring disk to offer duplicated data redundancy,
is too expensive for SSD arrays due to SSD’s relatively high
overhead in terms of the dollar cost per gigabyte [13]. In
addition, each write request incurs two write operations, one on
a data disk and one on its mirroring disk, which degrades the
SSD reliability due to the wear-out problem. Although RAID
5, one of the most widely used RAID formats, could provide a
decent performance and survive a single disk failure, it imposes
some difficulties when it is applied on an SSD array. First,
frequent parity update operations distributed across all SSDs
could affect overall performance and SSDs’ reliability due to
the fact that parity data are mixed together with normal data on
all SSDs in a RAID5 format. In other words, the stream of
normal data operations and parity read/writes could interfere
with each other, and thus, lowers the performance that a user
can perceive. Besides, managing both normal data and parity
data on one SSD increases the complexity of data management.

On the other hand, RAID 4, which uses a dedicated disk to
store parity data, can eliminate the interference between normal
data operations and parity data operations as it separates them
onto different disks. As a result, the data management scheme
could also be simpler than that of RAID 5. The only concern of
applying a traditional RAID 4 on an SSD array is that the
single parity SSD could become both a performance bottleneck
and a potential failure point. This is because frequent updates
could largely lower the performance of the single parity SSD.
Also, they can wear it out rapidly. To overcome these problems
while enjoying the simplicity of RAID 4, we construct a novel
variant of a conventional RAID 4 organization for SSD arrays
by splitting the single parity SSD into a configurable number of
smaller SSDs. In this way, the two problems mentioned above
can be alleviated.

III. THE SPD-RAID4 ARCHITECTURE
In this section, we first introduce the SPD-RAID4

architecture, which splits the parity SSD of a standard RAID 4
structure into a configurable number of smaller ones so as to
achieve a higher performance. Next, implementation details are
explained.

A. Architecture of SPD-RAID4
Fig. 1 shows the architecture of the proposed SPD-RAID4

structure. SPD-RAID4 has one data sub array and one parity
sub array. All read/write requests from outside will be directed
to the data sub array, whereas the parity sub array processes all
parity updates. Basically, it is a variant of a standard SSD
structure, which splits the parity SSD into a configurable
number of smaller ones. It is composed of m data SSDs and n
small capacity parity SSDs. When a request arrives, the RAID
controller divides it into multiple one-page size sub-requests.
Each of these sub-requests is dispatched to a data SSD in a
round-robin fashion. The size of a flash page is set to 2 KB in
our experiments. For a write operation, SPD-RAID4 also needs
to internally create parity read and write operations to deal with
parity data. When updating the parity data on the parity sub
array, we also employ the round-robin algorithm to write parity
data evenly across all parity SSDs (see Fig. 1). In addition, we

111111

� � � �� �

� �

��

Figure 1. The architecture of SPD-RAID4.

adopt two methods to update parity data: RMW (Read-Modify-
Write) and RCW (Read-Reconstruct-Write).

While the pre-read count of RMW equals to the sum of the
number of devices which received write requests and one (i.e.,
parity read), the pre-read count of RCW is the number of
devices which do not have write requests. After comparing the
pre-read count of RMW and RCW, we will use the one that
results in a smaller pre-read count in order to reduce pre-read
overhead. If they are equal, we select the RCW method, which
does not depend on the parity information so that the
probability of coding errors becomes lower. When a request
spans across two or more stripes, the parity SSDs can work in
parallel, and thus, significantly boosts the SSD performance.

Since serving read request does not involve parity updates,
the read performance of SPD-RAID4 almost maintains the
same as that of standard SSD RAID 4 and RAID 5. On the
other hand, in a standard RAID4 SSD array, only one parity
SSD undertakes all parity updates, which makes it wear out
quickly. This problem can be largely solved in SPD-RAID4
SSD array because multiple parity SSDs evenly receive parity
updates. In addition, SSD failures becomes more common
either in the data SSDs or in the parity SSDs and when it
happens we should make sure that the recovery process satisfy
the following three demands: function without taking the
system off-line, rapidly restore the system to its fault-free state
and have minimal impact on system performance as observed
by users. When a parity SSD in an SPD-RAID4 array fails,
only the data on this small capacity parity SSD needs to be
rebuilt, which is much smaller than that of the parity SSD in a
standard RAID 4 structure. Therefore, SPD-RAID4 can
obviously decrease the reconstruction time and alleviate the
performance degradation caused by data recovery. If a data
SSD fails, multiple parity SSDs can serve requests in parallel
when recovering data in the failed data SSD. It also can
improve the performance during data reconstruction period
when compared with standard SSD RAID 4 and RAID 5
structures.

B. Implementation
Fig. 2 shows the workflow of SPD-RAID4. Once the host

sends a request, the RAID controller gets the device number
and its logical page number (LPN) as well as the stripe number
by a division operation. The mapping from a logical address to
a physical address is controlled by FTL implemented inside
each SSD. After the address mapping is finished, SPD-RAID4
selects multiple pages each from the requested pages in data
SSDs and free pages from remaining unrequested data SSDs as
well as a page derived from one of the parity SSDs to form a
stripe. The request can be mapped to one or more stripes.
When it spans across more than one stripe, we adopt the round-
robin algorithm to write parity data in parity SSDs. Thus, the
parity SSDs can work concurrently.

When a read request comes, the RAID controller first splits
it into multiple one-page sub-requests, and then, puts each sub
request onto the request queue of its corresponding SSD. After
the reading process completes, the statistics like response time
can be obtained. Upon receiving a write request, the RAID
controller also first splits it into multiple one-page sub-requests,
and then, it makes a selection between RMW and RCW based
on pre-read count. Next, SPD-RAID4 pre-reads the
corresponding data and puts the sub-requests into each
involved SSD. It then waits for the write operation to complete.
Lastly, it updates the parity data either by RMW or RCW
approach. When a write request spans across more than one
stripe, the parity SSDs can work in parallel to process parity
updates. As a result, the write performance can be boosted
compared with standard RAID4 SSD arrays.

IV. PERFORMANCE EVALUATION

A. Experimental Setup
We developed an SSD RAID simulator that can simulate

standard RAID4, RAID5, and SPD-RAID4. Our simulator is
built based on a validated single SSD simulator called SSDsim
developed by Hu et al. [9][10]. SSDsim is an event-driven,
modularly structured, and highly accurate simulator for single
SSD. We added about 1,400 lines of C codes to implement a
RAID controller on top of SSDSim [9]. The RAID controller
fetches a request from a trace file and splits it into multiple
sub-requests. And then it dispatches all sub-requests onto

121212

�

Figure 2. Process workflow of SPD-RAID4.

multiple SSDs. If the request is a write request, the RAID
controller also needs to generate several read/write requests to
update the parity data. Only after all sub-requests are finished
can we say the original request has been served.

We use five real-world traces to compare the performance
of RAID 4 and RAID 5 SSD arrays with the proposed SPD-
RAID4 with different number of parity SSDs. The five traces
and their characteristics are summarized in Table I. The Build
trace [4] was collected from the Microsoft Build Server
production traces. The Exchange trace [6] was from a
collection of production traces collected over a period a 24
hours at Microsoft Exchange Server using the event tracing for
Windows framework. The Financial1 and Financial2 [29] are
I/O traces from OLTP application running at two financial
institutions. The Radius trace [4] was collected for RADIUS
authentication server. Table II illustrates the experimental
parameters.

B. Real-World Trace Experimental Results
In this section, we only compare the overall performance of

SPD-RAID4 and standard RAID 5 while ignoring standard
RAID 4 because its performance is consistently lower than that
of RAID 5. Furthermore, we evaluate the scalability of SPD-
RAID4 by varying the number of parity SSDs. Due to the
limited footprint of the five real-world traces, we measure the
write counts instead of erase counts of each SSD to evaluate
SPD-RAID4’s wear-out degree. The number of data SSDs and
parity SSDs are both configurable for SPD-RAID4. For
simplicity, in our experiments, the number of data SSDs in
SPD-RAID4 is fixed to 5 and the number of SSDs in a standard
RAID 5 is set to 6. The default capacity of an SSD is set to be
32 GB. The capacity of each data SSD in SPD-RAID4 equals
to each SSD in a standard RAID 5 array. We change the
capacity of parity SSDs, whose total capacity is less than or
equal to that of one SSD in RAID 5 array (i.e., 32 GB).

TABLE I. REAL-WORLD TRACES CHARACTERSTIC

Trace
Name

Write
Ratio

Ave. Size
(KB)

Access Rate
(reqs/sec.)

Duration
(minute)

Build 45.71 6.5 372 15
Exchange 46.43 12.5 166 15
Financial1 77.88 3 122 782
Financial2 17.65 2 90 683

Radius 88.46 6.5 57 35

TABLE II. EXPERIMENTAL PARAMETERS

Parameters Values

Page read 20 s

Page write 200 s

Block erase 1.5ms

Read one byte 25ns

Write one byte 25ns

Page size 2KB

Fig. 3 compares read mean response time and write mean
response time of the two RAID architectures. All mean
response times including read, write, and overall (see Fig. 4)
are normalized to that of a standard SSD RAID 5 array, which
always has six 32 GB SSDs. From Fig. 3a, we find that read
response time of SPD-RAID4 does not improve remarkably.
With the number of parity SSDs increasing from 2 to 5, read
performance increases at most 0.3%. It performs best under the
Exchange trace, because the average read request size is about
12 KB, which is the largest size in the five real-world traces
and it equals to 6 logical pages. However, the read average
request sizes of the other four traces are all less than 9 KB,
which can not completely exploit the stripping and parallelism
of SPD-RAID4. Under Financial2 and Radius trace, SPD-
RAID4 performs a little worse than RAID 5. When the number
of parity SSDs increases from 2 to 5, read performance almost
remains the same. Still, compared to RAID 5, SPD-RAID4’s
read mean response time decreases 2.1% in the best case.

Fig. 3b demonstrates the best result in Exchange trace and
the worst outcome in Financial2 case in terms of mean write
response time. Since Financial2 is a read-dominant workload,
the number of write requests SPD-RAID4 can serve is
relatively small. Therefore, the write performance improves at
a minimal percentage. In the best case of Build and Exchange
traces, SPD-RAID4 improves 19.5% and 21.6% respectively.
Besides, when configured with 5 parity SSDs, write mean
response time under Financial1 and Radius cases decreases
5.4% and 5.1%, respectively.

As shown in Fig. 4, only in Financial2 does the overall
mean response time of SPD-RAID4 perform a little worse than
SSD RAID 5. It is because the read performance is poor under
Financial2 trace, which impacts the write performance of SPD-
RAID4. However, its mean response time increases at most
0.6% under the Financial2 trace. Similar to the case of write
performance, the overall mean response time of SPD-RAID4

131313

(a) (b)

Figure 3. (a) Impacts of the number of parity SSDs on read performance; (b) impacts of the number of parity SSDs on write performance.

Figure 4. Impacts of the number of parity SSDs on overal performance.

shows the best performance under Exchange trace.SPD-RAID4
improves 20.5% and 15.7% at best situations. SPD-RAID4
decreases overall mean response time by 5.0% and 4.4% under
Financial1 and Radius trace, respectively.

Since SSDs serve read requests much faster than write
requests, write requests dominate an SSD array’s request
waiting queue. Besides, write requests result in erase
operations, which consume SSD’s P/E cycle budget. Thus, the
evenness of the distribution of writes among all SSDs in an
array influences both overall performance and reliability.

Fig. 5 illustrates the standard deviation of write distribution
in data SSDs and parity SSDs of an SPD-RAID4 array. A
lower standard deviation of write distribution among all SSDs
indicates a more even distribution of wear-out, which leads to a
higher level of reliability. From Fig. 5 one can see that the
standard deviation of writes in SPD-RAID4 with 2 parity SSDs
is lower than that of RAID 4 (i.e., only one parity SSD) with
the only exception in Exchange scenario. This is because the
average request size of Exchange is large, which results in an
even distribution of a write request across all data SSDs in a

Figure 5. Write distribution comparison between RAID 4 and SPD-RAID4.

standard RAID 4. However, when there are 2 parity SSDs, the
distribution gap between the data SSD and the parity SSD
group becomes substantial. Also, Fig. 5 demonstrates that
further increasing the number of parity SSDs (i.e., the number
of parity SSDs is larger than 2) can only affect the reliability of
the entire SSD array for the distribution of writes becomes
increasingly uneven. Fig. 6 shows the impacts of the number of
parity SSDs on write distribution across all parity SSDs in an
SPD-RAID4 array. The write distribution in parity SSDs is
very uniform. For example, the highest standard deviation is
less than 0.105 and the lowest one is only about 0.005. The
implication is two-fold. First of all, an even write distribution
among all parity SSDs implies a load balancing, which is
helpful for overall performance. Secondly, an even write
distribution across parity SSDs makes them age at almost the
same speed because their P/E cycles are consumed evenly, and
thus, prevents premature failures on parity SSDs.

C. Experimental Results from Synthetic Benchmarks
We also use a set of synthetic benchmarks to evaluate our

141414

Figure 6. Write disitributions across parity SSDs in SPD-RAID4.

Figure 7. Impacts of percentage of write requests.

SPD-RAID4 architecture. In particular, we evaluate the
performance impacts of write percentage, average request size
and access rate on both standard RAID 5 and SPD-RAID4.
Again, all the experimental results of SPD-RAID4 are
normalized to that of a standard RAID 5 structure. The number
in front of “P” in the legends of Fig. 7, Fig. 8, and Fig. 9
represents the number of parity SSDs.

Fig. 7 shows the impacts of write request percentage on
SPD-RAID4’s performance. The default average request size
and request access rate are set to 12 KB and 160 requests per
second, respectively. We vary the write percentage from 20%
to 80%. SPD-RAID4 demonstrates a better performance except
for the 20% write scenario. It outperforms RAID5 by up to
20.9%. When write percentage is low, the read performance
behaves poor and negatively impacts the overall performance.

We also examine the impacts of average request size on
performance. The default write percentage is set to 60% and
the default access rate is configured to 160 requests per second.
Fig. 8 shows that the smaller the average request size of the
synthetic workload, the more improvement can be obtained by
SPD-RAID4. In the best situation, SPD-RAID4 can gain
20.3% improvement (see Fig. 8). Clearly, when request size
increases, mean response time increases as well.

The impacts of access rate on SPD-RAID4’s performance
are demonstrated in Fig. 9. The default write percentage and

Figure 8. Impacts of average request size.

Figure 9. Impacts of aggregate access rate.

average request size are 60% and 12KB, respectively. The
access rate varies from 80 requests per second to 1,280 requests
per second. The access rate stands for the intensity of a
workload. From Fig. 9, we can see that the average response
time increases when the access rate enlarges. This is because
the load of the SSD array becomes heavier. The largest
performance improvement (i.e., 27.01% improvement with two
parity SSDs) can be observed when the access rate is 80
requests per second. When access rate increases to 1,280
requests per second, SPD-RAID4 can only achieve 16.01%
performance improvement when there are 2 parity SSDs. When
request access rate increases, the queuing delay becomes much
larger. Naturally, the average response time increases and
performance improvement becomes less remarkable. However,
SPD-RAID4 significantly outperforms RAID 4 in all cases.

V. CONCLUSIONS
Disk arrays built by SSDs recently attracted intensive

attention from both industry and research communities
[12][14][15][17][18]. Existing strategies on SSD based RAID
arrays mainly concentrated on RAID 5 [12][17]. To reduce the
number of write operations for the parity updates, they
normally postpone the parity updates so that the interference
caused by frequent updates can be minimized. In this paper, we
explore a new approach to applying SSDs in a RAID-like
structure where both performance and reliability can be offered.

151515

In particular, we propose a novel SSD based RAID 4 structure
called SPD-RAID4, which splits the parity SSD into a
configurable number of smaller ones. In SPD-RAID4, the
parity SSDs can function in parallel, and thus, can enhance the
degree of parallelism and decrease mean response time.
Comprehensive experimental results show that SPD-RAID4
can improve the performance of SSD based RAID storage
system in terms of mean response times. Compared with a
standard RAID5 structured SSD array, SPD-RAID4 can
achieve a performance gain up to 20.3%.

In its current format, SPD-RAID4 does not provide a data
reconstruction mechanism. One future direction of this research
is to develop a new on-line data reconstruction algorithm for
SPD-RAID4. To the best of our knowledge, very little research
about SSD data reconstruction has been reported in the
literature. We are going to develop a data reconstruction
scheme for SSD arrays so that data reconstruction time can be
reduced and performance degradation during data recovery can
be alleviated.

VI. ACKNOWLEDGMENT
This work is sponsored in part by the National Natural

Science Foundation of China (NFSC) under Grant No.
61204046 and U.S. National Science Foundation under grant
CNS-(CAREER)-0845105.

REFERENCES
[1] N. Agrawal, V. Prabhakaran, T. Wobber, J. Davis, M. Manasse, and R.

Panigrahy, “Design Tradeoffs for SSD Performance,” Proc. USENIX
Annual Technical Conference, pp. 57-70, 2008.

[2] R. Bilton, “Good News for Consumers: Solid State Drives prices are
dropping,” http://www.zdnet.com/blog/storage/good-news-for-
consumers-solid-state-drive-prices-are-dropping/1706, June 2012.

[3] K. Bu, Q. Yin, X. Xu, H. Xu, Y. Zhang, and W. Yi, “Research and
Design of Solid State RAID Storage System,” Proc. Intelligent System
Design and Engineering Application (ISDEA), pp. 143-145, 2010.

[4] Build Trace, Radius Trace, http://iotta.snia.org/traces/158..
[5] Y. Du, F. Liu, Z. Chen, and X. Ma, “Wele-RAID: a SSD- based RAID

for System Endurance and Performance,” Proc. 8th IFIP international
conference on Network and parallel computing (NPC), pp. 248-262,
2011.

[6] Exchange Trace, SNIA IOTTA Repository,
http://iotta.snia.org/traces/130.

[7] R. Fang, B. He, C. Mohan, and Y. Wang, “High Performance Database
Logging using Storage Class Memory,” Proc. 27th Int’l Conf. on Data
Engineering(ICDE), pp. 1221-1231, 2011.

[8] A. Gupta, Y. Kim, and B. Urgaonkar, “DFTL: a flash translation layer
employing demand-based selective caching of page-level address
mappings,” Proc. 14th Int’l Conf. Architectural Support for
Programming Languages and Operating Systems (ASPLOS), pp. 229-
240, 2009.

[9] Y. Hu, H. Jiang, D. Feng, L. Tian, H. Luo, and S. Zhang, “Performance
Impact and Interplay of SSD Parallelism through Advanced Commands,
Allocation Strategy and Data Granularity,” Proc. ACM Int’l Conf. on
Supercomputing (ICS), pp. 96-107, 2011.

[10] Y. Hu, H. Jiang, D. Feng, L. Tian, H. Luo, and C. Ren, “Exploring and
Exploiting the Multi-level Parallelism Inside SSDs for Improved
Performance and Endurance,” IEEE Transaction on Computers, Vol. 62,
No. 6, pp. 1141-1155, June 2013.

[11] J. Hui, X. Ge, X. Huang, Y. Liu, and Q. Ran, “E-HASH: An Energy-
Efficient Hybrid Storage System Composed of One SSD and Multiple
HDDs,” Proc. Springer-Verlag Berlin Heidelberg, pp. 527-534, 2012.

[12] S. Im and D. Shin, “Flash-Aware RAID Techniques for Dependable and
High-Performance Flash Memory SSD,” IEEE Transaction on Computer,
Vol. 6, Issue 1, pp. 80-92, 2011.

[13] Intel SSD Price - SSDs Starting from 64GB to 256 GB,
www.crucial.com/, January, 2013.

[14] N. Jeremic, G. Muhl, A. Busse, and J. Richling, “The Pitfalls of
Deploying Solid-State Drive RAIDs,” Proc. the 4th Annual Int’l Conf.
Systems and Storage, 2011.

[15] A. Kadav, M. Kalarishnan, V. Prabhakaran, and D. Malkhi, “Differential
RAID: Rethinking RAID for SSD Reliability,” ACM Transactions on
Storage, Vol. 6, Issue 2, July 2010.

[16] Y. Kim, A. Gupta, B. Urgaonkar, B. Perman, and A. Sivasubramaniam,
“HybridStore: A Cost-Efficient, High-Performance Storage System
Combining SSDs and HDDs,” Proc. 19th IEEE Int’l Symp. Modeling,
Analysis & Simulation of Computer Telecommunication Systems, pp.
227-236, 2011.

[17] Y. Lee, S. Jung, and Y.H. Song, “FRA: A Flash-aware Redundant Array
of Flash Storage Devices,” Proc. 7th IEEE/ACM Int’l Conf. on
Hardware/Software Codesign and System Synthesis, pp. 163-172, 2009.

[18] S. Lee, B. Lee, K. Koh, and H. Bahn, “A Lifespan-aware Reliability
Scheme for RAID-based Flash Storage,” Proc. ACM Symposium on
Applied Computing, pp. 374-379, 2011.

[19] S. Lee, B. Moon, C. Park, J. Kim, and S. Kim, “A Case for Flash
Memory SSD in Enterprise Database Applications,” Proc. Int’l Conf. on
Management of Data (SIGMOD), pp. 1075-1086, 2008.

[20] B. Mao, H. Jiang, D. Feng, S. Wu, J. Chen, L. Zheng, and L. Tian,
“HPDA: A Hybrid Parity-based Disk Array for Enhanced Performance
and Reliability,” Proc. IEEE Int’l Symp. on Parallel & Distributed
Processing (IPDPS), pp. 1-12, 2010.

[21] J. Matthews, S. Trika, D. Hensgen, R. Coulson, and K. Grimsrud, “Intel
Turbo Memory: Nonvolatile disk caches in the storage hierarchy of
mainstream computer systems,” ACM Transactions on Storage, Vol. 4,
Issue 2, May 2008.

[22] D. Narayanan, E. Thereska, A. Donnelly, S. Elnikety, and A. Rowstron,
“Migrating Enterprise Storage to SSDs: Analysis of Tradeoffs,” Proc.
4th ACM European Conf. on Computer Systems), pp. 145-158, 2009.

[23] K. Park, D-H Lee, Y. Woo, G. Lee, J-H Lee, and D-H Kim, “Reliability
and Performance Enhancement Technique for SSD Array Storage
System Using RAID Mechanism,” Proc. 9th Int’l Conf. on
Communications and Information Technologies, pp. 140-145, 2009.

[24] D. A. Patterson, G. Gibson, and R.H. Katz, “A Case for Redundant
Arrays for Inexpensive Disks (RAID),” Proc. ACM Int’l Conf. on
Management of Data, Vol. 17, No. 3, pp. 109-116, 1988.

[25] D. Perry, “Intel Expected to Drop SSD Prices in August,” CNET.NEWS,
http://www.tomshardware.com/news/intel-ssd-prices-price-drop-cheap-
discount,16276.html, July, 2012.

[26] M. Polte, J. Simsa, and G. Gibson, “Enabling Enterprise Solid State
Disks Performance,” Proc. Workshop on Integrating Solid-state Memory
into the Storage Hierarchy, March, 2009.

[27] Y. Qin, D. Feng, J. Liu, W. Tong, Y. Hu, and Z. Zhu, “A Parity Scheme
to Enhance Reliability for SSDs,” Proc. 7th Int’l Conf. on Networking,
Architecture, and Storage, pp. 293-297, June, 2012.

[28] J. Ren and Q. Yang, “I-CASH: Intelligently Coupled Array of SSD and
HDD,” Proc. 17th IEEE Int’l Symp. on High Performance Computer
Architecture (HPCA), pp. 278-289, 2011.

[29] SPC, “Storage Performance Council I/O traces,”
http://www.storageperformance.org/.

[30] T.Xie, and J.Koshia. “Boosting Randon Write Performance for
Enterprise Flash Storage System,” Proc. IEEE 27th Symposium on Mass
Storage Systems and Technologies (MSST), pp. 1-10, 2011.

161616

