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Abstract—Data-intensive applications like video processing 
and bioinformatics increasingly demand a high-performance and 
highly reliable storage system. Hard disk drive (HDD) has long 
been used as a standard storage device for most existing storage 
systems. Recently, NAND-flash memory based solid state drives 
(SSDs) are gradually exploited to replace HDDs in enterprise 
computing infrastructures due to their salient features such as 
high performance, low power consumption, and excellent shock-
resistance. With rapid price decreasing and capacity increasing, 
flash SSD based disk arrays organized in some RAID structures 
become feasible and greatly needed. In this paper, we propose a 
new RAID4 architecture called SPD-RAID4 (Splitting Parity 
Disk - RAID4) for parallel SSD arrays. It splits the parity disk of 
a traditional RAID 4 array into configurable number of smaller 
ones. Thus, multiple small parity SSDs operate in tandem with 
data SSDs to achieve a high performance and high level of 
reliability. We compare the performance of SPD-RAID4 with 
conventional RAID4 and RAID5 architectures by using both 
real-world traces and synthetic benchmarks. Experimental 
results demonstrate that in terms of mean response time SPD-
RAID4 outperforms standard RAID5 structured SSD arrays by 
up to 20.3%. Compared with standard RAID4, SPD-RAID4 
achieves a performance gain up to 40.6%. 

Keywords—flash memory; RAID; RAID4; SSD arrays 

I.  INTRODUCTION  
Compared with modern CPU speed, the speed of a 

conventional hard disk drive (hereafter, HDD) is much slower. 
Due to its physical properties, HDD has some inherent 
disadvantages such as poor performance, low energy-efficiency, 
and weak robustness, which make it the bottleneck of a high-
performance computing system [7][21]. As a result, NAND 
flash memory based solid state drive (hereafter, SSD) recently 
has attracted intensive attention and has gradually become an 
alternative storage device to HDD in enterprise storage systems 
[19][22][26]. Unlike rotating-based HDD, SSD is made up of 
semi-conductor chips without any moving parts. It possesses 
several extraordinary features such as low power consumption, 
excellent shock and temperature resistance, and extremely high 
performance in random read [1]. On the other hand, it also 
bears some obvious drawbacks like poor random write 
performance, erase-before-write issue, and wear-out problem 
[19][22][30]. With the application of MLC (multi-level cell) 
and TLC (triple-level cell) techniques, the price of SSD is 
decreasing while its capacity is increasing dramatically [2][25]. 
Thus, similar as a hard disk array, an array of SSDs organized 

in a RAID (Redundant Array of Independent Disk) [24] 
structure that can satisfy the performance, capacity, and 
reliability requirements of an enterprise storage system 
becomes both feasible and needed [12] [14][15][17][18]. 

Traditionally, the RAID technique improves the 
performance and reliability of HDD based storage systems by 
grouping a number of smaller disks together rather than 
building one large and expensive drive [24]. It has been 
successfully employed in almost all existing enterprise storage 
systems. It mainly employs the parallel I/O technique to 
improve performance and exploits data redundancy 
mechanisms to enhance the reliability of storage systems [24]. 
RAID 5 (block-level striping with distributed parity) distributes 
parity along with the data and it can tolerate a single drive 
failure. It is one of the most widely used disk array 
organizations. RAID 4 (block-level striping with dedicated 
parity) is equivalent to RAID 5 except that all parity data are 
stored on a single drive. Compared with RAID 5, it has been 
seldom used in HDD arrays. The main reason is that the use of 
a dedicated parity drive could create a performance bottleneck 
because the parity data must be written to a single, dedicated 
parity drive for each block of non-parity data [24]. Intuitively, 
the RAID technology can also be applied onto SSDs so that 
RAID 4 or RAID 5 structured SSD arrays can be built. 
Applying RAID 4 in an SSD array, however, is even more 
challenging as the dedicated parity SSD could wear out much 
faster than a data SSD [23]. To overcome this problem, current 
solution is to utilize an HDD as the dedicated parity drive while 
multiple SSDs are used as data drives [20][23].  

Although existing SSD-HDD hybrid RAID 4 architecture 
can avoid parity SSD wear-out faster problem [20], it may also 
cause the following potential issues. First of all, the inherent 
performance gap between an SSD and an HDD could adversely 
affect the overall performance because the overall write 
performance still largely depends on the performance of the 
HDD parity drive, which is usually lower than that of an SSD. 
Next, data SSDs could wear out at similar rates, which can 
result in correlated failures as the data SSDs age in unison [15]. 
Therefore, the risk of irreparable more-than-one-SSD-failure 
becomes high. In addition, a hybrid RAID structure needs 
separated RAID controllers dedicated for SSDs and HDD, 
which increases the design complexity. 

To alleviate the limitations of existing hybrid RAID 4 
architectures, in this paper, we propose a new SSD RAID 4 
structure named SPD-RAID4 (Splitting Parity Disk-RAID4), 
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which only utilizes SSDs. Moreover, it splits the parity disk of 
a traditional RAID 4 array into a configurable number of 
smaller ones. For example, SPD-RAID4 turns a standard RAID 
4 array with five 512 GB SSDs (four data SSDs plus one parity 
SSD) into a new structure with four 512 GB data SSDs and two 
256 GB parity SSDs. The new SPD-RAID4 structure will not 
increase the total cost as a 512 GB Intel SSD is currently 
$424.99 while the price of a 256 GB Intel SSD is $211.99 [13]. 
Using multiple smaller SSDs to replace the single parity SSD 
can enhance the parallelism of parity data processing, and thus, 
improve the overall performance. Our experimental results 
show that SPD-RAID4 performs much better than standard 
SSD RAID 4 and RAID 5. 

The rest of the paper is organized as follows. Related work 
and motivation will be discussed in section II. We present the 
implementation of SPD-RAID4 in section III. In section IV, we 
evaluate the performance of SPD-RAID4 based on real-world 
traces and synthetic benchmarks. Section V concludes this 
paper with a summary and future direction. 

II. RELATED WORK AND MOTIVATION  

A. SSD Basics 
Unlike HDDs, SSDs are made up of semiconductor 

memory chips, and thus, have no moving parts. They can avoid 
HDD’s long seek time and rotational latency, which are in the 
order of magnitude of millisecond (ms). Despite of SSD’s 
desirable properties like high energy efficiency, excellent 
temperature resistance, and high random read performance, it 
also has certain essential limitations. 

Firstly, current SSDs suffer from poor performance of 
random write [30]. The reason is that in flash memory, each 
block must be erased before it can be written, a characteristic 
known as erase-before-write. For a Samsung’s 
K9XXG08UXM series NAND flash memory, it takes 25 μs 
and 200 μs to read from and write into a flash page, whereas it 
needs about 1.5 milliseconds to execute an erase operation [1]. 

Secondly, flash memory wears out after repeated 
program/erase (P/E) operations, which affects the reliability of 
SSDs. Typically, for a single-level cell (SLC) NAND flash 
memory, its maximum available P/E cycles could reach 
100,000, whereas for a multi-level cell (MLC) flash memory, 
its available P/E cycles are only 10,000 [20]. A block of flash 
memory could fail when it has been erased more than its 
available P/E cycles.  These two limitations of SSDs must be 
taken into consideration when designing an SSD based storage 
system, especially for SSD based arrays. 

B. Related Work 
Applying SSDs in high-end server systems has attracted 

intensive attention in recent years due to both their excellent 
properties such as low-power consumption and high 
performance and their decreasing prices [1][8][19][22][26]. 
Typically, existing applications of SSDs in server domains can 
be categorized into two camps: a HDD-SSD hybrid storage 
architecture [11][16][20][28] and a RAID based pure SSD 
array [3][5][12][14][15][17][18][24]. Techniques in the first 
camp usually concentrate on how to combine one or multiple 

SSDs with either a single HDD or an array of HDDs to form 
various hybrid storage architectures. One example is a hybrid 
storage system called HybridStore proposed by Kim et al. [16]. 
It exploits the complementary properties of HDD and SSD to 
provide improved performance and service differentiation 
under a certain cost budget [16]. Mao et al. proposed an HPDA 
(Hybrid Parity-based Disk Array) architecture, which combines 
a group of SSDs and two HDDs [20]. In HPDA, the SSDs 
(data disks) and part of one HDD (parity disk) compose a 
RAID4 disk array. Meanwhile, a second HDD and the free 
space of the parity disk are mirrored to form a RAID1-style 
write buffer that temporarily absorbs the small write requests 
and acts as a surrogate set during recovery when a disk fails. 
Ren and Yang recently proposed a new hybrid storage 
architecture named I-CASH (Intelligently Coupled Array of 
SSD and HDD) [28]. The SSD stores seldom-changed and 
mostly read reference data blocks whereas the HDD stores a 
log of deltas between currently accessed I/O blocks and their 
corresponding reference blocks in the SSD so that random 
writes are not performed in SSD during online I/O operations 
[28]. Essentially, these hybrid storage architectures share one 
common idea: smartly utilize the complementary properties of 
SSD and HDD. 

With rapid price decreasing and capacity increasing, pure 
SSD arrays organized in some RAID structures have become 
both feasible and needed. Pure SSD based RAID arrays 
normally can be classified into two categories based on the 
granularity of underlying storage device. While the coarse 
grain group directly applies RAID schemes on top of an array 
of independent SSDs [5][15][23], the fine grain group employs 
RAID structures on all flash chips within a single SSD 
[12][17][18]. In this research, we focus on the first category. 
When applying RAID schemes on SSDs, we need to adapt 
existing RAID strategies in order to make the best use of SSDs. 
Usually, a RAID mechanism on flash chips within a single 
SSD is integrated into the flash translation layer (FTL) of the 
SSD [1][8]. In other words, the FTL not only implements the 
function of address translation, garbage collection, and wear-
leveling, but also provides a RAID mechanism. 

 Existing RAID based SSD array research focuses on the 
following two important aspects: improving performance 
[12][14][17] and enhancing reliability [15][18]. The main 
approach to improving SSD array performance is to reduce the 
number of write operations for the parity updates, which is 
identified as a performance bottleneck for RAID 5 SSD arrays 
[12][17]. Im and Shin proposed a scheme to delay the parity 
update that must accompany each data write in the original 
RAID technique [12]. Similarly, Lee et al. developed a new 
technique called FRA (Flash aware Redundancy Array) [17]. 
In this technique, parity updates are postponed so that they are 
not included in the critical path of read and write operations 
[17]. Instead, they are scheduled for when the device becomes 
idle. The above two [12][17] are the typical representations for 
flash chip based SSD arrays. Jeremic et al. discovered several 
pitfalls for deploying SSDs in common RAID level 
configurations, which can lead to severe performance 
degradation after conducting a deep analysis of SSD RAID 
configuration issues [14]. Unlike [12] and [17], their solution is 
to utilize over-provisioning, which offers a potential solution to  
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this problem.  

Also, researchers have been working on improving the 
reliability and performance of pure SSD RAID mechanisms by 
inventing various SSD organizations, with several notable and 
effective outcomes. To enhance the reliability of an SSD array, 
Kadav et al. presented Diff-RAID, a new RAID variant that 
distributes parity unevenly across SSDs to create age 
disparities within arrays [15]. It can provide a great trade-off 
between throughput and reliability by dynamically regulating 
the distribution ratio of parity data. In this way, correlated 
failures as arrays age in unison can be reduced. Diff-RAID 
distributes more parity on some older devices to create an age 
gap to improve reliability by avoiding more than one SSD 
failures at one time [15]. However, parity devices that have 
taken more requests than others could receive an even heavier 
load, and thus, aggravating the load imbalance problem.  

To avoid the problem that Diff-RAID bears, Du et al. 
proposed Wele-RAID [5], which introduces a novel wear 
leveling scheme among all flash SSDs. The wear leveling 
strategy is derived from the age-driven parity distribution 
mechanism to enhance the endurance of entire SSD RAID 
system [5]. Nevertheless, it requires replacing the entire array 
with new SSDs when the whole system approaches the end of 
its lifetime, which increases the hardware cost. Lee et al. found 
that the bit error rate of flash memory enlarges rapidly as the 
number of P/E (program/erase) cycles increases [18]. To 
relieve these problems, they proposed a lifespan-aware 
reliability scheme, which adopts RAID technologies together 
with ECCs (error correction codes) [18].  

One obvious drawback of RAID 4 is that the parity disk 
could become a performance bottleneck even for workloads 
with a small percentage of writes because every write operation 
needs to update the parity disk. In order to overcome parity 
SSD’s fast wearing out problem, Park et al. [24] proposed a 
heterogeneous RAID 4 array by replacing parity SSD with a 
parity hard disk drive. Qin et al. [27] proposed a flash memory 
redundant array that is similar to a RAID-4 array. In this 
scheme, they add an independent channel (parity channel) to an 
SSD to store specialized parity data and utilize a built-in 
NVRAM to cache the parity data updates for minimal write to 
flash memory in parity channel. Our SPD-RAID4 scheme 
concentrates on SSD array performance enhancement by using 
an approach different from existing ones [12][14][17]. SPD-
RAID4 exploits the parallelism of multiple small capacity 
parity SSDs to significantly improve the performance. 

C. Motivation 
There are multiple types of RAID organizations such as 

RAID 0, RAID 1, RAID 4, RAID 5, and RAID 6 [24]. In 
addition, some RAID structures can be combined together to 
form a compound RAID architecture like RAID 10. Simply 
applying an existing RAID structure to an array of SSDs 
without taking their characteristics into consideration could 
cause problems. In what follows, we first analyze which RAID 
format is suitable for an SSD array. Next, we explain why we 
need to change the architecture of a standard RAID 4 to make 
it suitable for SSD arrays. 

RAID 0 is not suitable for SSD arrays where data reliability       

has to be provided as it does not employ any data redundancy 
schemes although it can boost performance. RAID 1, which 
provides a mirroring disk to offer duplicated data redundancy, 
is too expensive for SSD arrays due to SSD’s relatively high 
overhead in terms of the dollar cost per gigabyte [13]. In 
addition, each write request incurs two write operations, one on 
a data disk and one on its mirroring disk, which degrades the 
SSD reliability due to the wear-out problem.  Although RAID 
5, one of the most widely used RAID formats, could provide a 
decent performance and survive a single disk failure, it imposes 
some difficulties when it is applied on an SSD array. First, 
frequent parity update operations distributed across all SSDs 
could affect overall performance and SSDs’ reliability due to 
the fact that parity data are mixed together with normal data on 
all SSDs in a RAID5 format.  In other words, the stream of 
normal data operations and parity read/writes could interfere 
with each other, and thus, lowers the performance that a user 
can perceive. Besides, managing both normal data and parity 
data on one SSD increases the complexity of data management. 

On the other hand, RAID 4, which uses a dedicated disk to 
store parity data, can eliminate the interference between normal 
data operations and parity data operations as it separates them 
onto different disks. As a result, the data management scheme 
could also be simpler than that of RAID 5. The only concern of 
applying a traditional RAID 4 on an SSD array is that the 
single parity SSD could become both a performance bottleneck 
and a potential failure point. This is because frequent updates 
could largely lower the performance of the single parity SSD. 
Also, they can wear it out rapidly. To overcome these problems 
while enjoying the simplicity of RAID 4, we construct a novel 
variant of a conventional RAID 4 organization for SSD arrays 
by splitting the single parity SSD into a configurable number of 
smaller SSDs. In this way, the two problems mentioned above 
can be alleviated. 

III. THE SPD-RAID4 ARCHITECTURE 
In this section, we first introduce the SPD-RAID4 

architecture, which splits the parity SSD of a standard RAID 4 
structure into a configurable number of smaller ones so as to 
achieve a higher performance. Next, implementation details are 
explained. 

A. Architecture of SPD-RAID4 
Fig. 1 shows the architecture of the proposed SPD-RAID4 

structure. SPD-RAID4 has one data sub array and one parity 
sub array. All read/write requests from outside will be directed 
to the data sub array, whereas the parity sub array processes all 
parity updates. Basically, it is a variant of a standard SSD 
structure, which splits the parity SSD into a configurable 
number of smaller ones. It is composed of m data SSDs and   n 
small capacity parity SSDs. When a request arrives, the RAID 
controller divides it into multiple one-page size sub-requests. 
Each of these sub-requests is dispatched to a data SSD in a 
round-robin fashion. The size of a flash page is set to 2 KB in 
our experiments. For a write operation, SPD-RAID4 also needs 
to internally create parity read and write operations to deal with 
parity data. When updating the parity data on the parity sub 
array, we also employ the round-robin algorithm to write parity 
data evenly across all parity SSDs (see Fig.  1). In addition, we
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Figure 1. The architecture of SPD-RAID4.

adopt two methods to update parity data: RMW (Read-Modify-
Write) and RCW (Read-Reconstruct-Write). 

While the pre-read count of RMW equals to the sum of the 
number of devices which received write requests and one (i.e., 
parity read), the pre-read count of RCW is the number of 
devices which do not have write requests. After comparing the 
pre-read count of RMW and RCW, we will use the one that 
results in a smaller pre-read count in order to reduce pre-read 
overhead. If they are equal, we select the RCW method, which 
does not depend on the parity information so that the 
probability of coding errors becomes lower. When a request 
spans across two or more stripes, the parity SSDs can work in 
parallel, and thus, significantly boosts the SSD performance. 

Since serving read request does not involve parity updates, 
the read performance of SPD-RAID4 almost maintains the 
same as that of standard SSD RAID 4 and RAID 5. On the 
other hand, in a standard RAID4 SSD array, only one parity 
SSD undertakes all parity updates, which makes it wear out 
quickly. This problem can be largely solved in SPD-RAID4 
SSD array because multiple parity SSDs evenly receive parity 
updates. In addition, SSD failures becomes more common 
either in the data SSDs or in the parity SSDs and when it 
happens we should make sure that the recovery process satisfy 
the following three demands: function without taking the 
system off-line, rapidly restore the system to its fault-free state 
and have minimal impact on system performance as observed 
by users. When a parity SSD in an SPD-RAID4 array fails, 
only the data on this small capacity parity SSD needs to be 
rebuilt, which is much smaller than that of the parity SSD in a 
standard RAID 4 structure. Therefore, SPD-RAID4 can 
obviously decrease the reconstruction time and alleviate the 
performance degradation caused by data recovery. If a data 
SSD fails, multiple parity SSDs can serve requests in parallel 
when recovering data in the failed data SSD. It also can 
improve the performance during data reconstruction period 
when compared with standard SSD RAID 4 and RAID 5 
structures. 

B. Implementation 
Fig. 2 shows the workflow of SPD-RAID4. Once the host  

sends a request, the RAID controller gets the device number 
and its logical page number (LPN) as well as the stripe number 
by a division operation. The mapping from a logical address to 
a physical address is controlled by FTL implemented inside 
each SSD. After the address mapping is finished, SPD-RAID4 
selects multiple pages each from the requested pages in data 
SSDs and free pages from remaining unrequested data SSDs as 
well as a page derived from one of the parity SSDs to form a 
stripe. The request can be mapped to one or more stripes. 
When it spans across more than one stripe, we adopt the round-
robin algorithm to write parity data in parity SSDs. Thus, the 
parity SSDs can work concurrently. 

When a read request comes, the RAID controller first splits 
it into multiple one-page sub-requests, and then, puts each sub 
request onto the request queue of its corresponding SSD. After 
the reading process completes, the statistics like response time 
can be obtained. Upon receiving a write request, the RAID 
controller also first splits it into multiple one-page sub-requests, 
and then, it makes a selection between RMW and RCW based 
on pre-read count. Next, SPD-RAID4 pre-reads the 
corresponding data and puts the sub-requests into each 
involved SSD. It then waits for the write operation to complete. 
Lastly, it updates the parity data either by RMW or RCW 
approach. When a write request spans across more than one 
stripe, the parity SSDs can work in parallel to process parity 
updates. As a result, the write performance can be boosted 
compared with standard RAID4 SSD arrays. 

IV. PERFORMANCE EVALUATION 

A. Experimental Setup 
We developed an SSD RAID simulator that can simulate 

standard RAID4, RAID5, and SPD-RAID4. Our simulator is 
built based on a validated single SSD simulator called SSDsim 
developed by Hu et al. [9][10]. SSDsim is an event-driven, 
modularly structured, and highly accurate simulator for single 
SSD. We added about 1,400 lines of C codes to implement a 
RAID controller on top of SSDSim [9]. The RAID controller 
fetches a request from a trace file and splits it into multiple 
sub-requests. And then it dispatches all sub-requests onto             
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Figure 2. Process workflow of SPD-RAID4. 

multiple SSDs. If the request is a write request, the RAID 
controller also needs to generate several read/write requests to 
update the parity data. Only after all sub-requests are finished 
can we say the original request has been served. 

We use five real-world traces to compare the performance 
of RAID 4 and RAID 5 SSD arrays with the proposed SPD-
RAID4 with different number of parity SSDs. The five traces 
and their characteristics are summarized in Table I. The Build 
trace [4] was collected from the Microsoft Build Server 
production traces. The Exchange trace [6] was from a 
collection of production traces collected over a period a 24 
hours at Microsoft Exchange Server using the event tracing for 
Windows framework. The Financial1 and Financial2 [29] are 
I/O traces from OLTP application running at two financial 
institutions. The Radius trace [4] was collected for RADIUS 
authentication server. Table II illustrates the experimental 
parameters. 

B. Real-World Trace Experimental Results 
In this section, we only compare the overall performance of 

SPD-RAID4 and standard RAID 5 while ignoring standard 
RAID 4 because its performance is consistently lower than that 
of RAID 5. Furthermore, we evaluate the scalability of SPD-
RAID4 by varying the number of parity SSDs. Due to the 
limited footprint of the five real-world traces, we measure the 
write counts instead of erase counts of each SSD to evaluate 
SPD-RAID4’s wear-out degree. The number of data SSDs and 
parity SSDs are both configurable for SPD-RAID4. For 
simplicity, in our experiments, the number of data SSDs in 
SPD-RAID4 is fixed to 5 and the number of SSDs in a standard 
RAID 5 is set to 6. The default capacity of an SSD is set to be 
32 GB. The capacity of each data SSD in SPD-RAID4 equals 
to each SSD in a standard RAID 5 array. We change the 
capacity of parity SSDs, whose total capacity is less than or 
equal to that of one SSD in RAID 5 array (i.e., 32 GB). 

TABLE I.  REAL-WORLD TRACES CHARACTERSTIC 

Trace 
Name 

Write 
Ratio 

Ave. Size 
(KB) 

Access Rate
(reqs/sec.) 

Duration 
(minute)

Build 45.71 6.5 372 15 
Exchange 46.43 12.5 166 15 
Financial1 77.88 3 122 782 
Financial2 17.65 2 90 683 

Radius 88.46 6.5 57 35 

TABLE II.  EXPERIMENTAL  PARAMETERS 

Parameters Values 

Page read 20 s 

Page write 200 s 

Block erase 1.5ms 

Read one byte 25ns 

Write one byte 25ns 

Page size 2KB 

 

Fig. 3 compares read mean response time and write mean 
response time of the two RAID architectures. All mean 
response times including read, write, and overall (see Fig. 4) 
are normalized to that of a standard SSD RAID 5 array, which 
always has six 32 GB SSDs. From Fig. 3a, we find that read 
response time of SPD-RAID4 does not improve remarkably. 
With the number of parity SSDs increasing from 2 to 5, read 
performance increases at most 0.3%. It performs best under the 
Exchange trace, because the average read request size is about 
12 KB, which is the largest size in the five real-world traces 
and it equals to 6 logical pages. However, the read average 
request sizes of the other four traces are all less than 9 KB, 
which can not completely exploit the stripping and parallelism 
of SPD-RAID4. Under Financial2 and Radius trace, SPD-
RAID4 performs a little worse than RAID 5. When the number 
of parity SSDs increases from 2 to 5, read performance almost 
remains the same. Still, compared to RAID 5, SPD-RAID4’s 
read mean response time decreases 2.1% in the best case. 

Fig. 3b demonstrates the best result in Exchange trace and 
the worst outcome in Financial2 case in terms of mean write 
response time. Since Financial2 is a read-dominant workload, 
the number of write requests SPD-RAID4 can serve is 
relatively small. Therefore, the write performance improves at 
a minimal percentage. In the best case of Build and Exchange 
traces, SPD-RAID4 improves 19.5% and 21.6% respectively. 
Besides, when configured with 5 parity SSDs, write mean 
response time under Financial1 and Radius cases decreases 
5.4% and 5.1%, respectively. 

As shown in Fig. 4, only in Financial2 does the overall 
mean response time of SPD-RAID4 perform a little worse than 
SSD RAID 5. It is because the read performance is poor under 
Financial2 trace, which impacts the write performance of SPD- 
RAID4. However, its mean response time increases at most 
0.6% under the Financial2 trace. Similar to the case of write 
performance, the overall mean response time of SPD-RAID4 
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(a)  (b)

Figure 3. (a) Impacts of the number of parity SSDs on read performance;  (b) impacts of the number of parity SSDs on write performance. 

 

Figure 4. Impacts of the number of parity SSDs on overal performance. 

shows the best performance under Exchange trace.SPD-RAID4 
improves 20.5% and 15.7% at best situations. SPD-RAID4 
decreases overall mean response time by 5.0% and 4.4% under 
Financial1 and Radius trace, respectively. 

Since SSDs serve read requests much faster than write 
requests, write requests dominate an SSD array’s request 
waiting queue. Besides, write requests result in erase 
operations, which consume SSD’s P/E cycle budget. Thus, the 
evenness of the distribution of writes among all SSDs in an 
array influences both overall performance and reliability. 

Fig. 5 illustrates the standard deviation of write distribution 
in data SSDs and parity SSDs of an SPD-RAID4 array. A 
lower standard deviation of write distribution among all SSDs 
indicates a more even distribution of wear-out, which leads to a 
higher level of reliability. From Fig. 5 one can see that the 
standard deviation of writes in SPD-RAID4 with 2 parity SSDs 
is lower than that of RAID 4 (i.e., only one parity SSD) with 
the only exception in Exchange scenario.  This is because the 
average request size of Exchange is large, which results in an 
even distribution of a write request across all data SSDs in a  

 

Figure 5. Write distribution comparison between RAID 4 and SPD-RAID4. 

standard RAID 4. However, when there are 2 parity SSDs, the 
distribution gap between the data SSD and the parity SSD 
group becomes substantial. Also, Fig. 5 demonstrates that 
further increasing the number of parity SSDs (i.e., the number 
of parity SSDs is larger than 2) can only affect the reliability of 
the entire SSD array for the distribution of writes becomes 
increasingly uneven. Fig. 6 shows the impacts of the number of 
parity SSDs on write distribution across all parity SSDs in an 
SPD-RAID4 array. The write distribution in parity SSDs is 
very uniform. For example, the highest standard deviation is 
less than 0.105 and the lowest one is only about 0.005. The 
implication is two-fold. First of all, an even write distribution 
among all parity SSDs implies a load balancing, which is 
helpful for overall performance. Secondly, an even write 
distribution across parity SSDs makes them age at almost the 
same speed because their P/E cycles are consumed evenly, and 
thus, prevents premature failures on parity SSDs.  

C. Experimental Results from Synthetic Benchmarks 
We also use a set of synthetic benchmarks to evaluate our  
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Figure 6. Write disitributions across parity SSDs in SPD-RAID4. 

 

Figure 7. Impacts of percentage of write requests. 

SPD-RAID4 architecture. In particular, we evaluate the 
performance impacts of write percentage, average request size 
and access rate on both standard RAID 5 and SPD-RAID4. 
Again, all the experimental results of SPD-RAID4 are 
normalized to that of a standard RAID 5 structure. The number 
in front of “P” in the legends of Fig. 7, Fig. 8, and Fig. 9 
represents the number of parity SSDs. 

Fig. 7 shows the impacts of write request percentage on 
SPD-RAID4’s performance. The default average request size 
and request access rate are set to 12 KB and 160 requests per 
second, respectively. We vary the write percentage from 20% 
to 80%. SPD-RAID4 demonstrates a better performance except 
for the 20% write scenario. It outperforms RAID5 by up to 
20.9%. When write percentage is low, the read performance 
behaves poor and negatively impacts the overall performance. 

We also examine the impacts of average request size on 
performance. The default write percentage is set to 60% and 
the default access rate is configured to 160 requests per second. 
Fig. 8 shows that the smaller the average request size of the 
synthetic workload, the more improvement can be obtained by 
SPD-RAID4. In the best situation, SPD-RAID4 can gain 
20.3% improvement (see Fig. 8). Clearly, when request size 
increases, mean response time increases as well. 

The impacts of access rate on SPD-RAID4’s performance 
are demonstrated in Fig. 9. The default write percentage and  

 

Figure 8. Impacts of average request  size. 

 

Figure 9. Impacts of aggregate access rate. 

average request size are 60% and 12KB, respectively. The 
access rate varies from 80 requests per second to 1,280 requests 
per second. The access rate stands for the intensity of a 
workload. From Fig. 9, we can see that the average response 
time increases when the access rate enlarges. This is because 
the load of the SSD array becomes heavier. The largest 
performance improvement (i.e., 27.01% improvement with two 
parity SSDs) can be observed when the access rate is 80 
requests per second. When access rate increases to 1,280 
requests per second, SPD-RAID4 can only achieve 16.01% 
performance improvement when there are 2 parity SSDs. When 
request access rate increases, the queuing delay becomes much 
larger. Naturally, the average response time increases and 
performance improvement becomes less remarkable. However, 
SPD-RAID4 significantly outperforms RAID 4 in all cases. 

V. CONCLUSIONS 
Disk arrays built by SSDs recently attracted intensive 

attention from both industry and research communities 
[12][14][15][17][18]. Existing strategies on SSD based RAID 
arrays mainly concentrated on RAID 5 [12][17]. To reduce the 
number of write operations for the parity updates, they 
normally postpone the parity updates so that the interference 
caused by frequent updates can be minimized. In this paper, we 
explore a new approach to applying SSDs in a RAID-like 
structure where both performance and reliability can be offered. 
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In particular, we propose a novel SSD based RAID 4 structure 
called SPD-RAID4, which splits the parity SSD into a 
configurable number of smaller ones. In SPD-RAID4, the 
parity SSDs can function in parallel, and thus, can enhance the 
degree of parallelism and decrease mean response time. 
Comprehensive experimental results show that SPD-RAID4 
can improve the performance of SSD based RAID storage 
system in terms of mean response times. Compared with a 
standard RAID5 structured SSD array, SPD-RAID4 can 
achieve a performance gain up to 20.3%. 

In its current format, SPD-RAID4 does not provide a data 
reconstruction mechanism. One future direction of this research 
is to develop a new on-line data reconstruction algorithm for 
SPD-RAID4. To the best of our knowledge, very little research 
about SSD data reconstruction has been reported in the 
literature. We are going to develop a data reconstruction 
scheme for SSD arrays so that data reconstruction time can be 
reduced and performance degradation during data recovery can 
be alleviated. 
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