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Abstract— Flash memory based solid state drives (SSD) are 
increasingly common in portable and mobile computing devices 
such as laptops, mobile phones, and tablets. Due to space, weight, 
and power constraints, portable devices are often restricted to a 
single storage device, which makes them susceptible to data loss 
from internal errors. On the other hand, mission-critical mobile 
applications like wireless healthcare always demand a high level 
of data reliability. This is mainly because data sampled from 
mobile and dynamic environments are most likely 
irreproducible. An effective approach to improving storage and 
data reliability is the RAID (redundant arrays of inexpensive 
disks) organization. However, the multiple disks required to 
implement RAID make it incompatible with the aforementioned 
restrictions of many portable devices. In this paper, we propose a 
SIRF (single internally redundant flash) architecture that 
leverages the internal hierarchical structure and parallelism of 
SSDs to provide redundancy similar to RAID in a single drive 
configuration. The initial effort focuses on implementing SIRF-1 
(mirroring), which is the corollary to its RAID-1 counterpart. In 
SIRF-1, data is mirrored across SSD channels to optimally 
exploit parallelism for both read and write operations. 
Simulation results show that for read-dominant workloads SIRF-
1 significantly outperforms a non-mirrored SSD by up to 39.5% 
in terms of mean response time. For write-intensive workloads, 
SIRF-1 pays a performance penalty no more than 5.5%.   

I. INTRODUCTION 
Industry trends show that flash memory based solid state 

drives (SSDs) are becoming the de facto standard for portable 
and mobile computing platforms. The rapidly decreasing cost, 
small physical size, low power consumption, mechanical 
simplicity, and durability of SSDs make them an attractive 
alternative to traditional hard disk drives (HDDs) [1][2]. In 
addition, SSDs are gaining ground in enterprise servers due to 
their low-latency read performance and power efficiency. 

All persistent storage technologies strive to provide high 
levels of reliability in order to maintain both the availability 
and integrity of users’ data. One well-known approach is RAID 
[16], which utilizes multiple HDDs in concert to provide 
redundancy to increase both performance and reliability. RAID 
has successfully been implemented using HDDs, SSDs, and 
hybrid systems [10][12][14]. The high cost associated with 
RAID organization has steered research and implementation of 
such systems towards server-class machines and enterprise 

applications. A large portion of RAID implementations are 
constructed in these scenarios since they are able to support the 
increased space, weight, and power requirements of multiple 
disks and controllers. RAID has proven effective in these 
applications by improving both reliability and availability of 
the data that they store. 

At the other end of the spectrum, individual mobile 
computing platforms are becoming ubiquitous in users’ 
everyday lives. The design of these devices typically focuses 
on reducing weight and size along with increasing battery life 
through the utilization of low power consuming components. 
Mobile storage applications are typically constrained to a small 
device, making it impractical to implement a traditional RAID 
architecture, which requires multiple disks, controllers, and 
connections. Storage in mobile devices is increasingly 
implemented using a single SSD, which currently offers little 
to no data redundancy. This lack of redundancy is at odds with 
the fact that mobile devices are becoming ever more critical in 
government, business, and personal computing environments.  

For example, wireless healthcare utilizes mobile 
communication devices, such as mobile phones and PDAs, for 
collecting community and clinical health data, delivery of 
healthcare information to patients, real-time monitoring of 
patient vital signs, and direct provision of care [18]. Thus, a 
reliable SSD is essential for wireless healthcare systems where 
life-critical personal health data is collected, stored, and 
analyzed on a daily basis [18]. Corporate employees leverage 
mobile devices to develop and store intellectual property. Users 
also store irreplaceable personal data such as pictures, 
organizational information, and financial data. Moreover, 
government and defense agencies rely on mobile devices in 
intelligence and tactical operations scenarios, where the loss of 
data can impact national security, mission success and 
jeopardize the safety of soldiers [19]. 

Fortunately, the parallelism and the independent failure 
modes of the individual flash memory chips within an SSD [4] 
provide a unique opportunity to apply RAID style redundancy 
within a single device. In this paper, we develop a single 
internally redundant flash (SIRF) architecture that provides 
data mirroring comparable to RAID level 1 (RAID-1) [16] 
within a single SSD. SIRF level 1 (SIRF-1) is designed to 
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improve the reliability and read performance of a single SSD 
by implementing an internal mirror through the enhancement 
of the flash transition layer (FTL) present in the 
software/firmware of SSDs. SSDs are composed of multiple 
flash memory chips arranged into a hierarchy exhibiting 
parallelism at multiple levels [4]. Figure 1 illustrates a notional 
internal mirroring organization for an SSD mirrored across 
channel boundaries. The RAID controller shields the users 
from knowing that two mirrors exist.  The user only sees one 
channel (e.g., Channel 0). In SIRF-1, each write request goes to 
both channels (i.e., mirrors) in parallel.  However, a read 
request is dispatched only to one of the two channels and is 
dispatched to the channel that is less busy.   

If one of the channels (or chips, dies, etc.) fails, then all 
reads must be performed on the corresponding component on 
the surviving mirror.  Much like a regular RAID-1 architecture, 
this relies on the device being able to detect failures. RAID-1 
does not typically handle Byzantine failures where in a drive 
reports itself as healthy but returns invalid data.  Modern 
HDDs and SSDs typically implement their own internal error 
detection schemes, such as cyclic redundancy checks (CRCs), 
which allow the drive itself to detect internal inconsistencies.  
SIRF-1 assumes to trigger the failover behavior.    When a 
failure is detected, reading from the surviving mirror will 
maintain data integrity. However, users would no longer get 
the benefits of the distributed reads. Thus, there would be 
performance degradation in this failure mode. 

 

 

Fig. 1. SIRF-1 channel mirroring exmaple. 

If redundancy similar to RAID can be introduced among 
the flash memory structures within an SSD, the reliability of a 
device can be increased without the need for multiple drives. 
While there may be many situations and classes of devices 
where the mirroring approach may not be ideal due to the 
reduction in effective storage, there are cases where 
performance and / or data integrity is paramount [18].  
Additionally, the amount of storage per volume in SSDs is 
continually increasing.  As of 2015, many mobile phones are 
available with upwards of 64GB of flash memory in a very 
small form factor. Even with a 50% reduction in effective 
storage, 32GB is more than enough storage for many use cases.  
While end users always want as much storage as possible, as 

storage capacities increase over time, the number of usage 
cases that can tolerate a 50% effective storage penalty will 
increase. 

While the redundancy properties of mirroring are well 
understood [16], the performance implications of introducing 
mirroring across the various components of an SSD are not. As 
such, this paper makes the following contributions: 

� The development of a SIRF-1 architecture that 
implements redundancy within a single SSD through 
internal mirroring. This approach improves both 
reliability and read performance. To the best of our 
knowledge, this is the first study on implementing 
mirroring within a single SSD to enhance reliability. 

� A design roadmap for designing SIRF-1 within the FTL 
of an SSD, which encourages future research on 
multiple-parity-channel based SIRF-4 and SIRF-5. 

� The enhancement of SSDSim, an open-source SSD 
simulator that has been validated against hardware. 
SSDSim will be used to evaluate the performance of the 
SIRF-1 architecture. 

� An evaluation of SIRF-1 using several real-world 
workloads executed in a variety of SSD configurations. 
An average improvement in mean response time of 
15% was observed with the best-case yielding a 39.5% 
improvement. 

The remainder of this paper is organized as follows. 
Section 2 discusses related work that motivated this research. 
Section 3 gives the implementation details of SIRF-1. Section 
4 presents the experimental results. Lastly, section 5 
summarizes our efforts, insights and outlines our vision for 
continued research for internally redundant SSD architectures.  

II. RELATED WORK AND MOTIVATION 
Current research in applying the RAID technologies on 

SSDs focus on using SSDs in place of, or in concert with, 
HDDs in an array fashion [2][10][13][15]. The proposed 
various RAID-like SSD arrays or HDD-SSD hybrid arrays 
largely focus on enhancing the RAID controllers by accounting 
for the unique performance and wear-out properties of SSDs to 
increase both the performance and longevity of SSDs [10][13]. 
Similar to RAID in HDDs, RAID structured SSD arrays 
attempt to exploit the parallelism provided by multiple SSDs. 
However, all of these SSD array techniques cannot be applied 
on mission-critical mobile applications where constraints in 
space, weight, and power consumption do not allow more than 
one SSD to be employed. Therefore, exploiting an SSD’s 
internal structure to enhance its reliability becomes a feasible 
approach. Fortunately, several recent studies [4][5][15] reveal 
that the multi-level internal parallelism existed in the internal 
structure of an SSD significantly impacts its performance. The 
finding provides us with an opportunity to expand on the 
confluence of RAID and SSD concepts within a single SSD.  

Existing research on exploring the SSD internal 
architecture mainly examines the allocation schemes, page 
size, and over-provisioning [1][4][5][7][15]. While most of 
them focus on enhancements to an FTL to increase 
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performance, little research has been done to address the 
inherent data reliability issues of SSDs from a system-level 
perspective. Although advances focused on wear leveling and 
overprovisioning generally aim to increase the longevity of the 
drive [1], they too do not directly address data reliability during 
the expected life of an SSD. Research has shown that while 
advancements in hardware manufacturing can increase the raw 
capacity and speed of the flash memory packages, FTL is still a 
key component for an SSD as it contributes noticeably to both 
performance and reliability [9][17]. 

Recent research has explored applying RAID-4 [7] and 
RAID-5 [10] style concepts within and/or between flash drives.  
This work demonstrated that applying RAID concepts to SSDs 
can be a viable mechanism to improving the reliablitiy of SSD.  
RAID-4/5 do offer attrative properties in terms of space 
efficiency and fault tolerance [7][10].  However, in traditional 
RAID implementations there are many tradeoffs when 
determining which RAID level to implement.  For example, 
RAID-5 can have better effective storage efficiency, whereas 
RAID-1 will typically have better write performance.  
Additionally, the mirroring scheme of RAID-1 is much simpler 
to implement than the partiy schemes of RAID-5. This is why 
many integrated RAID controllers on nowadays motherboards 
only support RAID 0/1.  Implmeenting RAID-1 can be a 
simpler extentions to existing FTLs and give implementers an 
additional alternative beyond RAID-4/5 concepts. 

As stated above, the improved reliability and performance 
of RAID-1 may increase the utility of SSD’s in mission-critical 
mobile application environments where data integrity and 
performance are paramount. Previous studies have 
demonstrated that the viability of enhancements to the FTL can 
be successfully evaluated through software-based simulations. 
By combining the proven data redundancy techniques in 
RAID-1 with the data access flexibility provided by SSD 
enhanced reliability can be achieved within a single device. 

III. DESIGN AND IMPLEMENTATION 

A. Architecture Overview 
The FTL contained within an SSD hides the internal flash 

memory organization, data placement, and IO operations from 
the operating system. As depicted in Figure 2, the FTL is 
responsible for taking IO requests from the file system and 
translating them into appropriate internal operations required to 
service the request. For example, when a write request arrives 
at the SSD, the FTL must identify one or more available flash 
pages, write the data to those pages, and record the location of 
the written data in the mapping table. This process highlights 
the fact that there is no permanent relationship between the 
logical addresses that the file system uses to identify data and 
the locations of the physical pages that the SSD uses to store it. 
Each page within the SSD is assigned a fixed physical page 
number (PPN) that uniquely identifies the page. The PPN used 
to store a particular logical sector, as identified by the file 
system, will likely change each time the sector is written. The 
mapping table, contained in Dynamic Random Access Memory 
(DRAM), allows the SSD to keep track of where each logical 
page is physically stored in flash memory.  

In traditional RAID implementations the controller presents 
multiple drives as a single storage device, thereby hiding the 
implementation details of the configuration [16]. The operating 
system sees a single storage device and is unaware of the data 
placement and redundancy properties of the RAID. Similarly, 
the SIRF-1 mirroring scheme must also be implemented in a 
transparent manor if existing device drivers and file systems 
are to be used. The FTL is the ideal place to implement 
mirroring, as it is already responsible for hiding the details of 
the SSD organization from the operating system. To implement 
mirroring within the FTL, five main high-level functions were 
enhanced: 1) page allocation, 2) write request processing, 3) 
page mapping, 4) buffer management, and 5) read request 
processing. Each of these will be discussed in turn.  

 

 

B. Write Request Processing 
Page allocation is the process of determining where to place 

data within the flash memory. The allocation algorithm within 
the FTL is responsible for selecting which physical pages will 
be used to service a write request. Allocation algorithms 
typically make use of all available flash memory to optimize 
performance and wear leveling [1]. To implement SIRF-1, the 
allocation technique must be enhanced to be cognizant of the 
mirroring scheme. To optimize parallelism, mirroring was 
implemented across channel boundaries. This required 
modifying the allocation algorithm to partition the SSD’s 
channels into distinct mirror groups and to ensure that data 
assigned to a particular mirror group is only written to the 
channels belonging to that group. 

When a write request arrives at the SSD, the FTL will 
leverage the allocation algorithm to find available pages to 
service the request. If this is the first time the logical page is to 
be written, the SSD writes the new data to the selected physical 
pages. However, since flash pages cannot be directly 
overwritten, if the requested logical pages had previously been 
written, the FTL may need to read the existing page data and 
merge it with the write operation’s data before writing to the 
new location. Ultimately, the preexisting pages will be 
invalidated and be made available for subsequent garbage 
collection. In either case, the mapping table must be updated to 
record the physical location on the SSD that was used to store 
the data. The initial implementation for this research leverages 
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a page-level mapping table. This means each logical page 
affected by a write request will be mapped directly to the 
physical page used to store the data.  

 When a write request arrives from the operating system it 
specifics the starting logical sector number (LSN) of the data, 
the length of the data to be written, and the data itself. The FTL 
must create write operations to service the write request. If the 
data spans multiple logical pages, then the FTL will create 
multiple write operations. To implement SIRF-1, each write 
operation must be duplicated to store the requested data to both 
mirror groups. Since mirror groups are created by partitioning 
channels, the duplicate writes are guaranteed to execute on two 
different channels. This ensures that the mirrored write 
operations can happen in parallel, minimizing the overhead of 
processing the additional operations. 

A mirror field was added to the write operation meta-data 
to indicate which mirror group the write operation is assigned 
to. As the FTL is creating the write operations to service the 
write request two identical write operations are created; one 
write request has the mirror field set to 0 and one write request 
has the mirror field set to 1. The updated allocation algorithm 
described above will use the mirror field to constrain the 
assignment of a physical page to the proper set of channels 
based on the specified mirror group. Figure 3 illustrates the 
conceptual flash memory state after a write request is issued on 
a 2-channel SSD that previously contained no data. The write 
operation illustrated is a request to write five pages worth of 
data starting from logical page number (LPN) seven on an SSD 
with two channels. This will result in ten individual write 
operations, with five operations executing on each channel.  

 

 
Figure 3 shows that LPNs seven through eleven have been 

written to both channels. However, the relative location that a 
particular LPN is stored within each channel is not the same. 
This is a major difference between the RAID-1 and SIRF-1 
implementations. In a traditional RAID the drives are managed 
as identical mirrors. In SIRF-1, enabling the allocation 
algorithm to independently place data within each mirror group 
allows greater flexibility to optimize placement based on the 

current IO state of the drive when the write operations are 
actually carried out. To facilitate this flexibility, the page 
mapping mechanism must be enhanced to record the location 
of each logical page within each mirror group. Table 1 shows 
the enhanced mapping structure resulting from the write 
illustrated in Figure 3. Rather than a single mapping entry, 
every LPN has a record of the associated PPN within each 
mirror group. 

To update a preexisting flash page, the FTL uses an out-of-
place write strategy that may first read an existing page from 
flash memory in order to merge the existing data with the new 
data to be written. Most SSDs include an IO buffer to improve 
performance. This buffer leverages temporal locality to 
minimize the number of read-before-write operations required. 
When a write request arrives, the FTL will check if the 
physical page associated with the LPN is in the cache. If the 
page is not present in the cache, it must be read from flash 
memory. When implementing mirroring, an update request will 
result in pairs of associated write operations that operate on the 
same data. Both write operations can be serviced by a single 
cache entry. The buffer management algorithm was enhanced 
to detect if either page is present and, if required, only perform 
a single read operation from whichever mirror group is less 
busy to service both mirrored write operations. This reduces 
the amount of data required in the cache and lowers the 
overhead of mirrored update operations. 

TABLE I.  MAPPING TABLE AFTER MIRRORED WRITES 

LPN Mirror 0 PPN Mirror 1 PPN 
7 02 26 
8 11 21 
9 07 32 
10 14 17 
11 04 25 

 

C. Read Request Processing 
The final high-level enhancement required to complete the 

SIRF-1 mirroring scheme is the modification of the read 
request processing algorithm. By distributing read requests 
evenly across mirror groups the FTL can take increased 
advantage of channel level parallelism. The approach 
implemented in this research is a simple round-robin 
distribution of read operations across mirror groups. As multi-
page read requests are processed, they are broken down into 
individual page reads. When the requested LPN is resolved to a 
PPN, the algorithm alternates between the two mirror group 
entries in the mapping table. Table 2 illustrates the resolution 
of PPNs to service a read request of LPNs seven through 
eleven using the mapping table shown in Table 1. The current 
approach guarantees that read operations will be evenly 
distributed across mirror groups over time. However, a 
potential enhancement would be to choose a channel based on 
its state when the read is actually carried out. 

The design for implementing SIRF-1 requires modifying 
several components of the FTL. In order to implement SIRF-1 
the read/write request processor, mapping table, and allocation 
scheme of SSDSim were enhanced. By implementing this 
design within the FTL, an SSD can effectively create and 

Fig. 3. Data placement after mirrored writes. 
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manage mirrored data without requiring substantial changes to 
its hardware. By limiting changes to the software/ firmware of 
the SSD, our approach to SIRF-1 can be more easily integrated 
into existing SSD designs. 

TABLE II.  SEQUENTIAL READ REQUEST PPNS 

LPN PPN Channel 
7 02 0 
8 21 1 
9 07 0 
10 17 1 
11 04 0 

 

D. Garbage Collection 
The enhancement of the FLT allows it to make read and 

write decisions based on parallelism across channels. For write 
operations, writes are mirrored to both mirror groups.  For read 
operations, reads are distributed to maximize parallelism.  A 
potential issue is that for the same effective storage, the SSD 
has twice the physical storage it must perform garbage 
collection on.  If not accounted for, these extra garbage 
collection operations could hinder the performance of the 
drive. As noted above the mirrored writes, will be distributed 
across channels, but the two mirrors may not be identical. For 
this reason, garbage collection operations may also be 
asymmetrical so that each mirror must be handled 
independently.  However, garbage collection operations are 
constrained to operate within their mirror group.  This allows 
the garbage collection of both mirrors to execute 
simultaneously in parallel.  This ensures that a performance 
penalty is not incurred due to the larger amount of physical 
storage. 

IV. PERFORMANCE EVALUATION 
This section presents an assessment of the performance of 

the SIRF-1 architecture, as well as the methodology for 
performing the evaluation. Three primary metrics were 
considered when evaluating performance. The first of these is 
the mean response time (MRT), which is the mean time the 
SSD required to service all requests of a single trace. The MRT 
gives an overall assessment of how the SSD performed for a 
given workload. The second performance metric is the mean 
read response time (MRRT), which measures the average time 
required to service all read requests. The final metric is the 
mean write response time (MWRT), which measures the 
average time required to service all write requests. While the 
MRT describes overall performance metric, the MWRT and 
MRRT give additional insight into how SIRF-1 will affect read 
and write performance under different workloads 

A. Simulation Environment 
Analyzing the performance of the SIRF-1 mirroring 

architecture requires the collection of performance data under 
various enterprise-level workloads and configurations. Since it 
would be impractical to build a custom hardware 
implementation for each configuration, the evaluation was 
carried out using an SSD simulator. Rather than developing a 
new simulator, SIRF-1 was implemented within SSDSim.  

SSDSim is an IO event driven SSD simulator previously 
validated by comparing its performance predictions against 
actual hardware devices [5]. Given a trace file, SSDSim 
simulates the operation of a real SSD by calculating the time 
required to service each request based on the configuration.  

SSDSim was extended to support SIRF-1 by modifying 
several functional areas of the simulator including the trace file 
pre-processor, read request handler, write request handler, 
mapping table, allocation algorithm and buffer management. In 
total, approximately 750 lines of code were added and/or 
modified in the existing codebase of approximately 15,000 
lines of code. While, SSDSim was modified according to the 
implementation strategy outlined in Section 3, there are several 
items of consideration specific to the implementation within 
SSDSim. First, SSDSim’s preprocessing mechanism scans the 
entire trace file for all read operations and performs “pre-
simulation” write operations to simulate the presence of 
preexisting data on the drive. This process was enhanced to 
mirror the preprocessing write operations. SSDSim uses a 
dynamic allocation scheme, which selects free pages based on 
which channels and chips are either busy or idle. This 
algorithm was enhanced to limit the choice of channels based 
on the mirror group specified by the write request. Since 
SSDSim implements a page-level mapping table, every page 
write operation must update the mapping table for all mirror 
groups. The buffer management modifications also were made 
at the page level, since individual pages are stored in the 
buffer, impacting both cache hit/miss evaluation and read-
before-update operations. 

B. Experimental Setup 
Simulations were performed using traces captured from 

real-world systems. Table 3 illustrates the properties of the 
various traces files used. The Exchange trace was obtained 
from a Microsoft Exchange Email server [6]. The Build trace 
was captured from a Microsoft Windows build server [3].  
Both of these traces contain a low request arrival rate and a 
fairly even distribution of read versus write requests. The TPC-
C trace was collected from a server connected to a Microsoft 
SQL server over a storage area network. This trace contains a 
relatively high request arrival rate, includes more read 
operations than write operations and contains predominantly 
random read/write access [11].  The Financial1 (hereafter, 
Fin1) and Financial2 (hereafter, Fin2) traces both contain data 
collected from on-line transaction processing systems. Both 
traces provide a moderate request arrival rate and are 
characterized by random read/write access. Finl contains 
predominately write operations whereas Fin2 contains 
predominately read operations [17]. 

TABLE III.   CHARACTERISTICS OF THE TRACES 

Trace Requests Write % Read 
% 

Avg. Reqts. 
/ Sec 

Avg. 
Reqts. 
Size 

Exchange 67,087 69.7% 30.3% 14 12 KB 
Build 209,020 28.1% 71.9% 28 8 KB 

TPC-C 368,606 33.5% 66.5% 301 8 KB 
Fin1 5,334,948 76.8% 23.2% 123 3 KB 
Fin2 3,698,863 17.7% 82.3% 92 4 KB 
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Each workload was evaluated under a variety of SSD 
configurations to analyze the impact of implementing SIRF-1 
mirroring on drive performance. SSDSim provides a wide 
array of configuration parameters. Many parameters were fixed 
for all simulations, while others were varied to analyze the 
scalability of the SIRF-1. Table 4 shows several of the key 
simulation parameters. 

TABLE IV.  SIMULATION PARAMETERS 

Parameter Value 
Dies per Chip 4 
Planes per Die 4 

Blocks per Plane 1024 
Pages per Block 64 
Page size (KB) 4 – (2, 4, 8) 

DRAM per GB of Storage 0.5MB 
Block erase latency 1500�s 
Page write latency 200�s 
Page read latency 20�s 

 

Table 5 shows the test configurations that were used during 
simulation and the values of the parameters that were varied 
for each test. All tests used the fixed parameters shown in 
Figure 4. Test configurations are named by the number of 
channels and a ‘C’ followed by either an ‘M’ if mirroring was 
enabled, or an ‘NM’ if mirroring was disabled, followed by a 
“-“ and the total amount of flash memory in gigabytes. For 
example the 1CNM-64 configuration used 1 channel, no 
mirroring, and 64GB of flash memory. Similarly, the 2CM-128 
configuration used 2 channels, with mirroring enabled and 
128GB total flash memory. 

Test configurations were executed in pairs to evaluate the 
performance impacts of adding mirroring to various 
configurations. Each pair contains one non-mirrored and one 
mirrored test configuration. Both tests in a given pair yield the 
same effective storage capacity to the user. A test pair (TP) is 
identified with a test pair ID (TP ID) that is simply the letters 
“TP” followed by a single digit (e.g. TP1). TP1 through TP3 
explore the scalability SIRF-1 as the number of channels is 
increased in an SSD with a fixed effective storage capacity. 
TP4 through TP6 explore the scalability of SIRF-1 as the 
capacity of the SSD is increased while fixing the amount of 
flash memory per channel. The latter is achieved by fixing the 
number of channels contributing to the effective storage 
capacity within each test set. For all tests, the number of 
channels is doubled when mirroring is enabled. 

C. Experimental Result Analysis 
To evaluate the performance of SIRF-1, each workload was 

simulated using all configurations listed in Table 5. Several 
statistics were captured that were used to calculate the three 
key metrics used to evaluate performance. The most important 
of these metrics is the mean response time (MRT), which 
measures the average time to serve all requests in the trace file. 
By analyzing the MRT between the two tests in a test pair for a 
particular workload, a comparison of the overall performance 
of the two configurations can be made. Additionally, the mean 

read response time (MRRT) and mean write response time 
(MWRT) were also computed. The MRRT and MRWT 
measure the average time required to service all read requests 
and write requests, respectively, in the trace file. These two 
metrics give greater insight into how the different 
configurations affect the read and write operations 
independently. The MRRT and MWRT metrics are especially 
useful since it is well understood how existing RAID level 
impact read and write performance. The MRRT and MWRT 
metrics allow for a more natural comparison between the 
corresponding levels of SIRF and RAID. Additionally, by 
comparing the MRRT and the MWRT with the read/write 
composition of the workloads, more insightful conclusions can 
be drawn as to how future workloads might perform based on 
the predicted read/write characteristics.  

TABLE V.  VARIED SIMULATION PARAMETERS 

TP ID Test 
ID 

# of 
Channels 

Flash 
Memory 

Storage 
Capacity DRAM 

TP1 1CNM-64 1 64GB 64GB 32MB
TP1 2CM-128 2 128GB 64GB 64MB
TP2 2CNM-64 2 64GB 64GB 32MB
TP2 4CM-128 4 128GB 64GB 64MB
TP3 4CNM-64 4 64GB 64GB 32MB
TP3 8CM-128 8 128GB 64GB 64MB

TP4 4CNM-32 4 32GB 32GB 16MB
TP4 8CNM-64 8 64GB 32GB 32MB
TP5 4CNM-64 4 64GB 64GB 32MB
TP5 8CM-128 8 128GB 64GB 64MB
TP6 4CNM-128 4 128GB 128GB 64MB
TP6 8CM-256 8 256GB 128GB 128MB
 

Figure 4 illustrates how SIRF-1 performs in terms of MRT 
across the five workloads as the number of channels is 
increased. TP1 contains 1 channel per mirror, TP2 contains 2 
channels per mirror, and TP3 contains 4 channels per mirror. 
Table 6 shows additional detail by providing the percent 
change in performance between the two tests in each pair for 
the MRT, MRRT, and MRWT. The percent change stated is 
the performance of the SIRF-1 configuration relative to the 
non-mirrored configuration.  

Several general trends can be seen in these results.  First, 
performance improves across all tests as the number of 
channels increases, because there is more channel-level 
parallelism for the drive to exploit. Second, the most benefit is 
achieved in TP1 where the non-mirrored configuration only 
has 1 channel. In this case the non-mirrored drive has no 
channel-level parallelism to take advantage of. Adding the 
mirror dramatically improves performance since it introduces 
channel-level parallelism where the non-mirrored configuration 
had none. Lastly, in general MRRT improved more than 
MRWT. Other test pairs show less improvement since the SSD 
already had some measure of channel-level parallelism to 
leverage. It is intuitive that read performance is improved since 
reads can be distributed across the channels in the two mirror 
groups. It is less obvious why write performance would 
improve at all given that the major change in write handling is 
to duplicate the write operations required to service a write 
request. On the surface, this approach would be expected to 
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cause an overall decrease in write performance. However, the 
unique functionality of SSDs leads to a counterintuitive result.  

Similar to read operations, duplicated mirror write 
operations are distributed across mirror groups and will 
therefore utilize different channels. This allows the mirrored 
write operations to execute in parallel. While there is some 
processing overhead required for the controller to create and 
issue the additional write operation, much of the two 
operations can execute simultaneously. Additionally, in update 
scenarios, a read operation must be performed in order to 
retrieve existing page data before the new page data can be 
written to flash memory. The write operation will be blocked 
until this read operation is completed. Given that the read 
performance of the SSD is increased dramatically due to 
mirroring, the amount of time the write request is blocked 
waiting for its read-before-update operation to complete is 
actually reduced. In addition, the FTL was modified to require 
only one page read to service both mirrored write operations, 
again reducing the overhead of duplicating the write operations 
to maintain the mirror.   

Beyond the general trends, insight can be gained from the 
differences in the way each workload performed. Unlike all 
other workloads, Fin1 shows a decrease in overall MRT. Fin1 
is a heavily write predominant workload with small, 
randomized IO operations. The benefit gained in MRRT is still 
20.7%, however there are so few read operations as compared 
to write operations that the performance gain in MRRT alone 
does not significantly impact the overall MRT. Furthermore the 
write requests are received at a moderate pace and are mostly 
random, resulting in many more cache misses and therefore 
many more read-before-update operations. With more read-
before-update and write operations consuming the drive, there 
is less opportunity to exploit parallelism during writes. Without 
the benefit of parallelism in writes, only the penalty incurred 

from duplicating write operations is left to influence the 
MWRT. 

While the Exchange workload is also write dominant, it 
contains a less skewed distribution of operations and has a 
much lower average request arrival rate. With a lower request 
rate, the SSD has greater opportunity to exploit parallelism for 
all operations. The Build, TPC-C, and Fin2 workloads all 
contain a majority of read operations and therefore consistently 
show an overall increase in performance with mirroring 
enabled. Interestingly, the Fin2 workload gains less 
performance than the Build workload due to the smaller 
average request size of the Fin2 workload. Smaller requests are 
less able to leverage parallelism. For example if a request can 
be handled with a single page read operation, then the entire 
request can be handled with a single channel. The presence of a 
mirror channel will be of little benefit to that specific request. 
Furthermore, with only a moderate request arrival rate, the 
odds of a particular channel being busy when a request is 
received is also reduced, again minimizing the need for 
parallelism. These factors limit the amount of performance 
gain achieved in the Fin2 workload as compared to the other 
read dominant workloads. 

The second set of tests, pairs TP4 through TP6, evaluate the 
scalability of SIRF-1 as the capacity of the drive is increased 
while holding the number of channels per mirror group fixed. 
Figure 5 illustrates how the MRT changes for each workload as 
the amount of effective storage is increased from 32GB to 
64GB and finally to 128GB.  Note that in the SIRF-1 
configuration the actual capacity of the SSD is 64GB, 128GB, 
and 265GB respectively. 

In general, the performance gains presented for the second 
set of tests are less pronounced than in the first set. The main 
contributing factor to this is that the channel configuration used 

TABLE VI. RELATIVE PERFORMANCE IMPROVEMENTS FROM TEST PAIRS 1 THROUGH 3 

 TP1 (1CNM-64 v. 2CM-128) TP2 (2CNM-64 v. 4CM-128) TP3 (4CNM-64 v. 8CM-128) 
Trace �MRT �MRRT �MWRT �MRT �MRRT �MWRT �MRT �MRRT �MWRT 

Exchange 33.6% 48.6% 17.2% 13.6% 9.9% 16.4% 12.3% 8.8% 14.4% 

Build 39.5% 44.5% 3.9% 14.7% 17.0% 2.6% 11.4% 13.7% 2.0% 
TPC-C 36.4% 46.9% 13.7% 30.8% 39.8% 12.7% 24.9% 31.8% 12.7% 

Fin1 -5.5% 20.7% -14.3% 0.4% 16.1% -5.2% -2.3% 10.4% -7.3% 
Fin2 27.3% 28.2% 15.7% 13.7% 13.6% 14.6% 10.0% 9.6% 14.1% 

Fig. 4. Performance with channel scalability. 
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for the second set of tests is identical to those used in TP3 
above, which yielded the least amount of performance gain. 
This configuration was selected because the 4-channel and 8-
channel configurations used in TP3 are more representative of 
the number of channels utilized in the SSDs on the market at 
the time this paper was written. Furthermore, the relative 
performance of the five workloads is consistent with the first 
three test pairs. Fin1 still pays an overall MRT penalty due the 
duplication of write request while the other four tests see an 
overall improvement in the MRT. Another general trend is that 
the performance of both the non-mirrored and SIRF-1 
configurations increases as the capacity of the SSD increases. 
This is expected, as the SSD will have more room to perform 
out-of-place updates. This will reduce the amount and 
frequency of the garbage collection.  

Several insights can be observed from Figure 5. For the 
Fin1, TPC-C and Exchange traces, the performance between 
the non-mirrored and SIRF-1 configurations actually improves 
as the SSD’s capacity grows. While initially unintuitive, this 
can be understood by examining the use of the cache for these 
traces. These workloads are predominately random access in 
nature. This means that the cache will be strained to provide 
performance benefits due to the weaker locality of the data 
access. The simulation configurations of the SSD proscribe that 
the amount of DRAM scales linearly with the capacity of the 
drive, as is the case in most commercially available drives. 
However, since the amount of data in the trace file remains the 
same, as the SSD capacity increases, the size of the cache with 
respect to the amount of the data in the trace increases, 
providing more cache coverage. In the SIRF-1 configuration, 
the DRAM is doubled from the non-mirrored configuration 
since the capacity of the SSD is doubled. However, the 
effective capacity of the SSD remains the same, further 
widening the margin of extra DRAM available for caching. 

These factors lead to many more cache hits and far fewer read-
before-update operations, which greatly improve the MWRT 
and MRT of the SIRF-1 configurations. 

The purpose of the last group of tests is to understand the 
performance impacts of page size on SIRF-1. We only show 
page size impacts in TP1 configuration. Figure 6 demonstrates 
that the overall results are consistent with previous results with 
TP1.  The results for the Exchange, Build, TPC-C, and Fin2 
show significant improvements whereas the Fin1 shows only 
minimal improvements or a reduced overall performance for 
the same reasons as discussed earlier.  It should be noted that 
all other parameters were held constant while the page size was 
varied. As the page size is increased, the capacity of the SSD is 
increased while the amount of DRAM cache is held constant.  
This results in an overall relative performance reduction as the 
page size is increased. Another interesting discovery is that 
while the results are still positive overall, the improvement is 
reduced as the page size is increased from 2KB to 8KB. The 
reason for this is that the larger page size actually reduces the 
opportunity for parallelism.  Consider a request for 6KB of 
data from the operating system.  With a page size of 2KB the 
request will be decomposed in to 3 individual page requests, 
which can be spread across the mirrored channels.  However, if 
the page size is set to 8KB, then the request from the operating 
system will be handled by a single read request, which reduces 
the gain from parallelization. 

V. CONCLUSIONS 
The goal of this research was to evaluate the potential to 

improve the reliability and performance of SSDs by 
introducing internal RAID-1 style mirroring. SIRF-1 leverages 
the internal parallelism afforded by the flash memory 
organization of an SSD to mirror data in an efficient manner. 

TABLE VII. RELATIVE PERFORMANCE IMPROVEMENTS FROM TEST PAIRS 4 THROUGH 6 

 TP4 (4CNM-32 v. 8CNM-64)  TP5 (4CNM-64 v. 8CM-128) TP6 (4CNM-128 v. 8CM-256) 

Trace �MRT �MRRT �MWRT �MRT �MRRT �MWRT �MRT �MRRT �MWRT 

Exchange 10.2% 13.7% 8.2% 12.7% 9.0% 14.8% 25.3% 8.6% 36.4% 

Build 16.8% 20.3% 4.0% 9.5% 11.8% 1.9% 7.2% 8.5% 2.8% 
TPC-C 21.1% 29.5% 6.1% 31.5% 31.5% 12.7% 33.8% 33.8% 27.5% 

Fin1 -3.5% 10.1% -8.7% -2.3% 10.4% -7.3% -0.1% 12.1% -5.0% 
Fin2 9.8% 9.8% 10.4% 10.0% 9.6% 14.1% 9.6% 8.8% 19.5% 

Fig. 5. Performance with capacity scalability. 
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Improving the reliability of SSDs will allow them to support 
the vital need for reliable storage in mobile devices as they 
continue to support functions in business, mission critical, and 
personal use cases. 

To evaluate SIRF-1, an existing validated SSD simulator 
SSDSim has been extended to implement it. The performance 
of SIRF-1 is evaluated by running several real-world 
workloads using the modified simulator. Finally, the 
performance implications of SIRF-1 are collected, presented, 
and analyzed. An average performance increase in MRT of 
15% is observed across all tests and workloads. The best-case 
improvement observed for configurations that contained 2 or 
more channels was shown to be 39.5%.  Workloads consisting 
of high rates of random reads benefit the most due to additional 
parallelism that overshadowed cache gains due to weak request 
locality. In the worst-case, a 5.5% decrease in performance is 
shown for a write-intensive trace. Enabling SIRF-1 will halve 
the effective capacity of the SSD. Therefore a penalty will be 
paid in either capacity, if the cost must be held constant, or in 
cost, if capacity must be maintained. This is the same trade-off 
scenario that is well understood in RAID implementations. 
Fortunately, the price of flash memory is dropping quickly, 
which makes SIRF-1 become increasingly practical. 

In the future, SIRF-1 will be compared to other SIRF / 
RAID levels such as RAID-4 and RAID-5[7]. Each of the 
additional SIRF levels should be analyzed to determine the 
corresponding reliability, performance, and cost trade-offs. 
Future research will also investigate the interplay between 
SIRF methods and other SSD design choices. 
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