
SIRF-1: Enhancing Reliability of Single Flash SSD
through Internal Mirroring for Mission-Critical

Mobile Applications

Michael S. MacFadden, Richard Shelby, Tao Xie
Computer Science Department

San Diego State University
San Diego, CA, USA

Abstract— Flash memory based solid state drives (SSD) are
increasingly common in portable and mobile computing devices
such as laptops, mobile phones, and tablets. Due to space, weight,
and power constraints, portable devices are often restricted to a
single storage device, which makes them susceptible to data loss
from internal errors. On the other hand, mission-critical mobile
applications like wireless healthcare always demand a high level
of data reliability. This is mainly because data sampled from
mobile and dynamic environments are most likely
irreproducible. An effective approach to improving storage and
data reliability is the RAID (redundant arrays of inexpensive
disks) organization. However, the multiple disks required to
implement RAID make it incompatible with the aforementioned
restrictions of many portable devices. In this paper, we propose a
SIRF (single internally redundant flash) architecture that
leverages the internal hierarchical structure and parallelism of
SSDs to provide redundancy similar to RAID in a single drive
configuration. The initial effort focuses on implementing SIRF-1
(mirroring), which is the corollary to its RAID-1 counterpart. In
SIRF-1, data is mirrored across SSD channels to optimally
exploit parallelism for both read and write operations.
Simulation results show that for read-dominant workloads SIRF-
1 significantly outperforms a non-mirrored SSD by up to 39.5%
in terms of mean response time. For write-intensive workloads,
SIRF-1 pays a performance penalty no more than 5.5%.

I. INTRODUCTION
Industry trends show that flash memory based solid state

drives (SSDs) are becoming the de facto standard for portable
and mobile computing platforms. The rapidly decreasing cost,
small physical size, low power consumption, mechanical
simplicity, and durability of SSDs make them an attractive
alternative to traditional hard disk drives (HDDs) [1][2]. In
addition, SSDs are gaining ground in enterprise servers due to
their low-latency read performance and power efficiency.

All persistent storage technologies strive to provide high
levels of reliability in order to maintain both the availability
and integrity of users’ data. One well-known approach is RAID
[16], which utilizes multiple HDDs in concert to provide
redundancy to increase both performance and reliability. RAID
has successfully been implemented using HDDs, SSDs, and
hybrid systems [10][12][14]. The high cost associated with
RAID organization has steered research and implementation of
such systems towards server-class machines and enterprise

applications. A large portion of RAID implementations are
constructed in these scenarios since they are able to support the
increased space, weight, and power requirements of multiple
disks and controllers. RAID has proven effective in these
applications by improving both reliability and availability of
the data that they store.

At the other end of the spectrum, individual mobile
computing platforms are becoming ubiquitous in users’
everyday lives. The design of these devices typically focuses
on reducing weight and size along with increasing battery life
through the utilization of low power consuming components.
Mobile storage applications are typically constrained to a small
device, making it impractical to implement a traditional RAID
architecture, which requires multiple disks, controllers, and
connections. Storage in mobile devices is increasingly
implemented using a single SSD, which currently offers little
to no data redundancy. This lack of redundancy is at odds with
the fact that mobile devices are becoming ever more critical in
government, business, and personal computing environments.

For example, wireless healthcare utilizes mobile
communication devices, such as mobile phones and PDAs, for
collecting community and clinical health data, delivery of
healthcare information to patients, real-time monitoring of
patient vital signs, and direct provision of care [18]. Thus, a
reliable SSD is essential for wireless healthcare systems where
life-critical personal health data is collected, stored, and
analyzed on a daily basis [18]. Corporate employees leverage
mobile devices to develop and store intellectual property. Users
also store irreplaceable personal data such as pictures,
organizational information, and financial data. Moreover,
government and defense agencies rely on mobile devices in
intelligence and tactical operations scenarios, where the loss of
data can impact national security, mission success and
jeopardize the safety of soldiers [19].

Fortunately, the parallelism and the independent failure
modes of the individual flash memory chips within an SSD [4]
provide a unique opportunity to apply RAID style redundancy
within a single device. In this paper, we develop a single
internally redundant flash (SIRF) architecture that provides
data mirroring comparable to RAID level 1 (RAID-1) [16]
within a single SSD. SIRF level 1 (SIRF-1) is designed to

2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing

978-1-4799-8006-2/15 $31.00 © 2015 IEEE

DOI 10.1109/CCGrid.2015.28

343

improve the reliability and read performance of a single SSD
by implementing an internal mirror through the enhancement
of the flash transition layer (FTL) present in the
software/firmware of SSDs. SSDs are composed of multiple
flash memory chips arranged into a hierarchy exhibiting
parallelism at multiple levels [4]. Figure 1 illustrates a notional
internal mirroring organization for an SSD mirrored across
channel boundaries. The RAID controller shields the users
from knowing that two mirrors exist. The user only sees one
channel (e.g., Channel 0). In SIRF-1, each write request goes to
both channels (i.e., mirrors) in parallel. However, a read
request is dispatched only to one of the two channels and is
dispatched to the channel that is less busy.

If one of the channels (or chips, dies, etc.) fails, then all
reads must be performed on the corresponding component on
the surviving mirror. Much like a regular RAID-1 architecture,
this relies on the device being able to detect failures. RAID-1
does not typically handle Byzantine failures where in a drive
reports itself as healthy but returns invalid data. Modern
HDDs and SSDs typically implement their own internal error
detection schemes, such as cyclic redundancy checks (CRCs),
which allow the drive itself to detect internal inconsistencies.
SIRF-1 assumes to trigger the failover behavior. When a
failure is detected, reading from the surviving mirror will
maintain data integrity. However, users would no longer get
the benefits of the distributed reads. Thus, there would be
performance degradation in this failure mode.

Fig. 1. SIRF-1 channel mirroring exmaple.

If redundancy similar to RAID can be introduced among
the flash memory structures within an SSD, the reliability of a
device can be increased without the need for multiple drives.
While there may be many situations and classes of devices
where the mirroring approach may not be ideal due to the
reduction in effective storage, there are cases where
performance and / or data integrity is paramount [18].
Additionally, the amount of storage per volume in SSDs is
continually increasing. As of 2015, many mobile phones are
available with upwards of 64GB of flash memory in a very
small form factor. Even with a 50% reduction in effective
storage, 32GB is more than enough storage for many use cases.
While end users always want as much storage as possible, as

storage capacities increase over time, the number of usage
cases that can tolerate a 50% effective storage penalty will
increase.

While the redundancy properties of mirroring are well
understood [16], the performance implications of introducing
mirroring across the various components of an SSD are not. As
such, this paper makes the following contributions:

� The development of a SIRF-1 architecture that
implements redundancy within a single SSD through
internal mirroring. This approach improves both
reliability and read performance. To the best of our
knowledge, this is the first study on implementing
mirroring within a single SSD to enhance reliability.

� A design roadmap for designing SIRF-1 within the FTL
of an SSD, which encourages future research on
multiple-parity-channel based SIRF-4 and SIRF-5.

� The enhancement of SSDSim, an open-source SSD
simulator that has been validated against hardware.
SSDSim will be used to evaluate the performance of the
SIRF-1 architecture.

� An evaluation of SIRF-1 using several real-world
workloads executed in a variety of SSD configurations.
An average improvement in mean response time of
15% was observed with the best-case yielding a 39.5%
improvement.

The remainder of this paper is organized as follows.
Section 2 discusses related work that motivated this research.
Section 3 gives the implementation details of SIRF-1. Section
4 presents the experimental results. Lastly, section 5
summarizes our efforts, insights and outlines our vision for
continued research for internally redundant SSD architectures.

II. RELATED WORK AND MOTIVATION
Current research in applying the RAID technologies on

SSDs focus on using SSDs in place of, or in concert with,
HDDs in an array fashion [2][10][13][15]. The proposed
various RAID-like SSD arrays or HDD-SSD hybrid arrays
largely focus on enhancing the RAID controllers by accounting
for the unique performance and wear-out properties of SSDs to
increase both the performance and longevity of SSDs [10][13].
Similar to RAID in HDDs, RAID structured SSD arrays
attempt to exploit the parallelism provided by multiple SSDs.
However, all of these SSD array techniques cannot be applied
on mission-critical mobile applications where constraints in
space, weight, and power consumption do not allow more than
one SSD to be employed. Therefore, exploiting an SSD’s
internal structure to enhance its reliability becomes a feasible
approach. Fortunately, several recent studies [4][5][15] reveal
that the multi-level internal parallelism existed in the internal
structure of an SSD significantly impacts its performance. The
finding provides us with an opportunity to expand on the
confluence of RAID and SSD concepts within a single SSD.

Existing research on exploring the SSD internal
architecture mainly examines the allocation schemes, page
size, and over-provisioning [1][4][5][7][15]. While most of
them focus on enhancements to an FTL to increase

Channel 0

Chip 0

 Die 0

 Plane

Plane

Die 1

 Plane

Plane

Chip 1

 Die 0

 Plane

Plane

Die 1

 Plane

Plane

Channel 1

Chip 0

 Die 0

 Plane

Plane

Die 1

 Plane

Plane

Chip 1

Die 0

 Plane

Plane

Die 1

 Plane

Plane

Mirror 0 Mirror 1

344

performance, little research has been done to address the
inherent data reliability issues of SSDs from a system-level
perspective. Although advances focused on wear leveling and
overprovisioning generally aim to increase the longevity of the
drive [1], they too do not directly address data reliability during
the expected life of an SSD. Research has shown that while
advancements in hardware manufacturing can increase the raw
capacity and speed of the flash memory packages, FTL is still a
key component for an SSD as it contributes noticeably to both
performance and reliability [9][17].

Recent research has explored applying RAID-4 [7] and
RAID-5 [10] style concepts within and/or between flash drives.
This work demonstrated that applying RAID concepts to SSDs
can be a viable mechanism to improving the reliablitiy of SSD.
RAID-4/5 do offer attrative properties in terms of space
efficiency and fault tolerance [7][10]. However, in traditional
RAID implementations there are many tradeoffs when
determining which RAID level to implement. For example,
RAID-5 can have better effective storage efficiency, whereas
RAID-1 will typically have better write performance.
Additionally, the mirroring scheme of RAID-1 is much simpler
to implement than the partiy schemes of RAID-5. This is why
many integrated RAID controllers on nowadays motherboards
only support RAID 0/1. Implmeenting RAID-1 can be a
simpler extentions to existing FTLs and give implementers an
additional alternative beyond RAID-4/5 concepts.

As stated above, the improved reliability and performance
of RAID-1 may increase the utility of SSD’s in mission-critical
mobile application environments where data integrity and
performance are paramount. Previous studies have
demonstrated that the viability of enhancements to the FTL can
be successfully evaluated through software-based simulations.
By combining the proven data redundancy techniques in
RAID-1 with the data access flexibility provided by SSD
enhanced reliability can be achieved within a single device.

III. DESIGN AND IMPLEMENTATION

A. Architecture Overview
The FTL contained within an SSD hides the internal flash

memory organization, data placement, and IO operations from
the operating system. As depicted in Figure 2, the FTL is
responsible for taking IO requests from the file system and
translating them into appropriate internal operations required to
service the request. For example, when a write request arrives
at the SSD, the FTL must identify one or more available flash
pages, write the data to those pages, and record the location of
the written data in the mapping table. This process highlights
the fact that there is no permanent relationship between the
logical addresses that the file system uses to identify data and
the locations of the physical pages that the SSD uses to store it.
Each page within the SSD is assigned a fixed physical page
number (PPN) that uniquely identifies the page. The PPN used
to store a particular logical sector, as identified by the file
system, will likely change each time the sector is written. The
mapping table, contained in Dynamic Random Access Memory
(DRAM), allows the SSD to keep track of where each logical
page is physically stored in flash memory.

In traditional RAID implementations the controller presents
multiple drives as a single storage device, thereby hiding the
implementation details of the configuration [16]. The operating
system sees a single storage device and is unaware of the data
placement and redundancy properties of the RAID. Similarly,
the SIRF-1 mirroring scheme must also be implemented in a
transparent manor if existing device drivers and file systems
are to be used. The FTL is the ideal place to implement
mirroring, as it is already responsible for hiding the details of
the SSD organization from the operating system. To implement
mirroring within the FTL, five main high-level functions were
enhanced: 1) page allocation, 2) write request processing, 3)
page mapping, 4) buffer management, and 5) read request
processing. Each of these will be discussed in turn.

B. Write Request Processing
Page allocation is the process of determining where to place

data within the flash memory. The allocation algorithm within
the FTL is responsible for selecting which physical pages will
be used to service a write request. Allocation algorithms
typically make use of all available flash memory to optimize
performance and wear leveling [1]. To implement SIRF-1, the
allocation technique must be enhanced to be cognizant of the
mirroring scheme. To optimize parallelism, mirroring was
implemented across channel boundaries. This required
modifying the allocation algorithm to partition the SSD’s
channels into distinct mirror groups and to ensure that data
assigned to a particular mirror group is only written to the
channels belonging to that group.

When a write request arrives at the SSD, the FTL will
leverage the allocation algorithm to find available pages to
service the request. If this is the first time the logical page is to
be written, the SSD writes the new data to the selected physical
pages. However, since flash pages cannot be directly
overwritten, if the requested logical pages had previously been
written, the FTL may need to read the existing page data and
merge it with the write operation’s data before writing to the
new location. Ultimately, the preexisting pages will be
invalidated and be made available for subsequent garbage
collection. In either case, the mapping table must be updated to
record the physical location on the SSD that was used to store
the data. The initial implementation for this research leverages

File System

Flash Translation Layer (FTL)

 Page 0

Page 1

Page 2

Page 3

Block 0

Page 0

Page 1

Page 2

Page 3

Block n

. . . .

Flash Memory

DRAM

Mapping
Table

I/O & W/R
Buffer

Page
Write

Block
Erase

Page
Read

Advanced
Commands

Mapping &
Buffering

Logical Sector
Writes

Logical Sector
Reads

Fig. 2. SIRF-1 architecture.

345

a page-level mapping table. This means each logical page
affected by a write request will be mapped directly to the
physical page used to store the data.

 When a write request arrives from the operating system it
specifics the starting logical sector number (LSN) of the data,
the length of the data to be written, and the data itself. The FTL
must create write operations to service the write request. If the
data spans multiple logical pages, then the FTL will create
multiple write operations. To implement SIRF-1, each write
operation must be duplicated to store the requested data to both
mirror groups. Since mirror groups are created by partitioning
channels, the duplicate writes are guaranteed to execute on two
different channels. This ensures that the mirrored write
operations can happen in parallel, minimizing the overhead of
processing the additional operations.

A mirror field was added to the write operation meta-data
to indicate which mirror group the write operation is assigned
to. As the FTL is creating the write operations to service the
write request two identical write operations are created; one
write request has the mirror field set to 0 and one write request
has the mirror field set to 1. The updated allocation algorithm
described above will use the mirror field to constrain the
assignment of a physical page to the proper set of channels
based on the specified mirror group. Figure 3 illustrates the
conceptual flash memory state after a write request is issued on
a 2-channel SSD that previously contained no data. The write
operation illustrated is a request to write five pages worth of
data starting from logical page number (LPN) seven on an SSD
with two channels. This will result in ten individual write
operations, with five operations executing on each channel.

Figure 3 shows that LPNs seven through eleven have been

written to both channels. However, the relative location that a
particular LPN is stored within each channel is not the same.
This is a major difference between the RAID-1 and SIRF-1
implementations. In a traditional RAID the drives are managed
as identical mirrors. In SIRF-1, enabling the allocation
algorithm to independently place data within each mirror group
allows greater flexibility to optimize placement based on the

current IO state of the drive when the write operations are
actually carried out. To facilitate this flexibility, the page
mapping mechanism must be enhanced to record the location
of each logical page within each mirror group. Table 1 shows
the enhanced mapping structure resulting from the write
illustrated in Figure 3. Rather than a single mapping entry,
every LPN has a record of the associated PPN within each
mirror group.

To update a preexisting flash page, the FTL uses an out-of-
place write strategy that may first read an existing page from
flash memory in order to merge the existing data with the new
data to be written. Most SSDs include an IO buffer to improve
performance. This buffer leverages temporal locality to
minimize the number of read-before-write operations required.
When a write request arrives, the FTL will check if the
physical page associated with the LPN is in the cache. If the
page is not present in the cache, it must be read from flash
memory. When implementing mirroring, an update request will
result in pairs of associated write operations that operate on the
same data. Both write operations can be serviced by a single
cache entry. The buffer management algorithm was enhanced
to detect if either page is present and, if required, only perform
a single read operation from whichever mirror group is less
busy to service both mirrored write operations. This reduces
the amount of data required in the cache and lowers the
overhead of mirrored update operations.

TABLE I. MAPPING TABLE AFTER MIRRORED WRITES

LPN Mirror 0 PPN Mirror 1 PPN
7 02 26
8 11 21
9 07 32
10 14 17
11 04 25

C. Read Request Processing
The final high-level enhancement required to complete the

SIRF-1 mirroring scheme is the modification of the read
request processing algorithm. By distributing read requests
evenly across mirror groups the FTL can take increased
advantage of channel level parallelism. The approach
implemented in this research is a simple round-robin
distribution of read operations across mirror groups. As multi-
page read requests are processed, they are broken down into
individual page reads. When the requested LPN is resolved to a
PPN, the algorithm alternates between the two mirror group
entries in the mapping table. Table 2 illustrates the resolution
of PPNs to service a read request of LPNs seven through
eleven using the mapping table shown in Table 1. The current
approach guarantees that read operations will be evenly
distributed across mirror groups over time. However, a
potential enhancement would be to choose a channel based on
its state when the read is actually carried out.

The design for implementing SIRF-1 requires modifying
several components of the FTL. In order to implement SIRF-1
the read/write request processor, mapping table, and allocation
scheme of SSDSim were enhanced. By implementing this
design within the FTL, an SSD can effectively create and

Fig. 3. Data placement after mirrored writes.

Channel 0

Chip 0 / Die 0

Plane 0

Block 1

Block 0

Plane 1

Block 1

Block 0

01

02 7
03

04 11

09

10

11 8

13

14 10

15

05

06

07 9

12

16 08

Channel 1

Chip 0 / Die 0

Plane 0

Block 1

Block 0

Plane 1

Block 1

Block 0

17 10

18

19

20

25 11

26 7

27

29

30

31

21 8

22

23

28

32 9 24

Unique PPN Assigned LPN

346

manage mirrored data without requiring substantial changes to
its hardware. By limiting changes to the software/ firmware of
the SSD, our approach to SIRF-1 can be more easily integrated
into existing SSD designs.

TABLE II. SEQUENTIAL READ REQUEST PPNS

LPN PPN Channel
7 02 0
8 21 1
9 07 0
10 17 1
11 04 0

D. Garbage Collection
The enhancement of the FLT allows it to make read and

write decisions based on parallelism across channels. For write
operations, writes are mirrored to both mirror groups. For read
operations, reads are distributed to maximize parallelism. A
potential issue is that for the same effective storage, the SSD
has twice the physical storage it must perform garbage
collection on. If not accounted for, these extra garbage
collection operations could hinder the performance of the
drive. As noted above the mirrored writes, will be distributed
across channels, but the two mirrors may not be identical. For
this reason, garbage collection operations may also be
asymmetrical so that each mirror must be handled
independently. However, garbage collection operations are
constrained to operate within their mirror group. This allows
the garbage collection of both mirrors to execute
simultaneously in parallel. This ensures that a performance
penalty is not incurred due to the larger amount of physical
storage.

IV. PERFORMANCE EVALUATION
This section presents an assessment of the performance of

the SIRF-1 architecture, as well as the methodology for
performing the evaluation. Three primary metrics were
considered when evaluating performance. The first of these is
the mean response time (MRT), which is the mean time the
SSD required to service all requests of a single trace. The MRT
gives an overall assessment of how the SSD performed for a
given workload. The second performance metric is the mean
read response time (MRRT), which measures the average time
required to service all read requests. The final metric is the
mean write response time (MWRT), which measures the
average time required to service all write requests. While the
MRT describes overall performance metric, the MWRT and
MRRT give additional insight into how SIRF-1 will affect read
and write performance under different workloads

A. Simulation Environment
Analyzing the performance of the SIRF-1 mirroring

architecture requires the collection of performance data under
various enterprise-level workloads and configurations. Since it
would be impractical to build a custom hardware
implementation for each configuration, the evaluation was
carried out using an SSD simulator. Rather than developing a
new simulator, SIRF-1 was implemented within SSDSim.

SSDSim is an IO event driven SSD simulator previously
validated by comparing its performance predictions against
actual hardware devices [5]. Given a trace file, SSDSim
simulates the operation of a real SSD by calculating the time
required to service each request based on the configuration.

SSDSim was extended to support SIRF-1 by modifying
several functional areas of the simulator including the trace file
pre-processor, read request handler, write request handler,
mapping table, allocation algorithm and buffer management. In
total, approximately 750 lines of code were added and/or
modified in the existing codebase of approximately 15,000
lines of code. While, SSDSim was modified according to the
implementation strategy outlined in Section 3, there are several
items of consideration specific to the implementation within
SSDSim. First, SSDSim’s preprocessing mechanism scans the
entire trace file for all read operations and performs “pre-
simulation” write operations to simulate the presence of
preexisting data on the drive. This process was enhanced to
mirror the preprocessing write operations. SSDSim uses a
dynamic allocation scheme, which selects free pages based on
which channels and chips are either busy or idle. This
algorithm was enhanced to limit the choice of channels based
on the mirror group specified by the write request. Since
SSDSim implements a page-level mapping table, every page
write operation must update the mapping table for all mirror
groups. The buffer management modifications also were made
at the page level, since individual pages are stored in the
buffer, impacting both cache hit/miss evaluation and read-
before-update operations.

B. Experimental Setup
Simulations were performed using traces captured from

real-world systems. Table 3 illustrates the properties of the
various traces files used. The Exchange trace was obtained
from a Microsoft Exchange Email server [6]. The Build trace
was captured from a Microsoft Windows build server [3].
Both of these traces contain a low request arrival rate and a
fairly even distribution of read versus write requests. The TPC-
C trace was collected from a server connected to a Microsoft
SQL server over a storage area network. This trace contains a
relatively high request arrival rate, includes more read
operations than write operations and contains predominantly
random read/write access [11]. The Financial1 (hereafter,
Fin1) and Financial2 (hereafter, Fin2) traces both contain data
collected from on-line transaction processing systems. Both
traces provide a moderate request arrival rate and are
characterized by random read/write access. Finl contains
predominately write operations whereas Fin2 contains
predominately read operations [17].

TABLE III. CHARACTERISTICS OF THE TRACES

Trace Requests Write % Read
%

Avg. Reqts.
/ Sec

Avg.
Reqts.
Size

Exchange 67,087 69.7% 30.3% 14 12 KB
Build 209,020 28.1% 71.9% 28 8 KB

TPC-C 368,606 33.5% 66.5% 301 8 KB
Fin1 5,334,948 76.8% 23.2% 123 3 KB
Fin2 3,698,863 17.7% 82.3% 92 4 KB

347

Each workload was evaluated under a variety of SSD
configurations to analyze the impact of implementing SIRF-1
mirroring on drive performance. SSDSim provides a wide
array of configuration parameters. Many parameters were fixed
for all simulations, while others were varied to analyze the
scalability of the SIRF-1. Table 4 shows several of the key
simulation parameters.

TABLE IV. SIMULATION PARAMETERS

Parameter Value
Dies per Chip 4
Planes per Die 4

Blocks per Plane 1024
Pages per Block 64
Page size (KB) 4 – (2, 4, 8)

DRAM per GB of Storage 0.5MB
Block erase latency 1500�s
Page write latency 200�s
Page read latency 20�s

Table 5 shows the test configurations that were used during
simulation and the values of the parameters that were varied
for each test. All tests used the fixed parameters shown in
Figure 4. Test configurations are named by the number of
channels and a ‘C’ followed by either an ‘M’ if mirroring was
enabled, or an ‘NM’ if mirroring was disabled, followed by a
“-“ and the total amount of flash memory in gigabytes. For
example the 1CNM-64 configuration used 1 channel, no
mirroring, and 64GB of flash memory. Similarly, the 2CM-128
configuration used 2 channels, with mirroring enabled and
128GB total flash memory.

Test configurations were executed in pairs to evaluate the
performance impacts of adding mirroring to various
configurations. Each pair contains one non-mirrored and one
mirrored test configuration. Both tests in a given pair yield the
same effective storage capacity to the user. A test pair (TP) is
identified with a test pair ID (TP ID) that is simply the letters
“TP” followed by a single digit (e.g. TP1). TP1 through TP3
explore the scalability SIRF-1 as the number of channels is
increased in an SSD with a fixed effective storage capacity.
TP4 through TP6 explore the scalability of SIRF-1 as the
capacity of the SSD is increased while fixing the amount of
flash memory per channel. The latter is achieved by fixing the
number of channels contributing to the effective storage
capacity within each test set. For all tests, the number of
channels is doubled when mirroring is enabled.

C. Experimental Result Analysis
To evaluate the performance of SIRF-1, each workload was

simulated using all configurations listed in Table 5. Several
statistics were captured that were used to calculate the three
key metrics used to evaluate performance. The most important
of these metrics is the mean response time (MRT), which
measures the average time to serve all requests in the trace file.
By analyzing the MRT between the two tests in a test pair for a
particular workload, a comparison of the overall performance
of the two configurations can be made. Additionally, the mean

read response time (MRRT) and mean write response time
(MWRT) were also computed. The MRRT and MRWT
measure the average time required to service all read requests
and write requests, respectively, in the trace file. These two
metrics give greater insight into how the different
configurations affect the read and write operations
independently. The MRRT and MWRT metrics are especially
useful since it is well understood how existing RAID level
impact read and write performance. The MRRT and MWRT
metrics allow for a more natural comparison between the
corresponding levels of SIRF and RAID. Additionally, by
comparing the MRRT and the MWRT with the read/write
composition of the workloads, more insightful conclusions can
be drawn as to how future workloads might perform based on
the predicted read/write characteristics.

TABLE V. VARIED SIMULATION PARAMETERS

TP ID Test
ID

of
Channels

Flash
Memory

Storage
Capacity DRAM

TP1 1CNM-64 1 64GB 64GB 32MB
TP1 2CM-128 2 128GB 64GB 64MB
TP2 2CNM-64 2 64GB 64GB 32MB
TP2 4CM-128 4 128GB 64GB 64MB
TP3 4CNM-64 4 64GB 64GB 32MB
TP3 8CM-128 8 128GB 64GB 64MB

TP4 4CNM-32 4 32GB 32GB 16MB
TP4 8CNM-64 8 64GB 32GB 32MB
TP5 4CNM-64 4 64GB 64GB 32MB
TP5 8CM-128 8 128GB 64GB 64MB
TP6 4CNM-128 4 128GB 128GB 64MB
TP6 8CM-256 8 256GB 128GB 128MB

Figure 4 illustrates how SIRF-1 performs in terms of MRT
across the five workloads as the number of channels is
increased. TP1 contains 1 channel per mirror, TP2 contains 2
channels per mirror, and TP3 contains 4 channels per mirror.
Table 6 shows additional detail by providing the percent
change in performance between the two tests in each pair for
the MRT, MRRT, and MRWT. The percent change stated is
the performance of the SIRF-1 configuration relative to the
non-mirrored configuration.

Several general trends can be seen in these results. First,
performance improves across all tests as the number of
channels increases, because there is more channel-level
parallelism for the drive to exploit. Second, the most benefit is
achieved in TP1 where the non-mirrored configuration only
has 1 channel. In this case the non-mirrored drive has no
channel-level parallelism to take advantage of. Adding the
mirror dramatically improves performance since it introduces
channel-level parallelism where the non-mirrored configuration
had none. Lastly, in general MRRT improved more than
MRWT. Other test pairs show less improvement since the SSD
already had some measure of channel-level parallelism to
leverage. It is intuitive that read performance is improved since
reads can be distributed across the channels in the two mirror
groups. It is less obvious why write performance would
improve at all given that the major change in write handling is
to duplicate the write operations required to service a write
request. On the surface, this approach would be expected to

348

cause an overall decrease in write performance. However, the
unique functionality of SSDs leads to a counterintuitive result.

Similar to read operations, duplicated mirror write
operations are distributed across mirror groups and will
therefore utilize different channels. This allows the mirrored
write operations to execute in parallel. While there is some
processing overhead required for the controller to create and
issue the additional write operation, much of the two
operations can execute simultaneously. Additionally, in update
scenarios, a read operation must be performed in order to
retrieve existing page data before the new page data can be
written to flash memory. The write operation will be blocked
until this read operation is completed. Given that the read
performance of the SSD is increased dramatically due to
mirroring, the amount of time the write request is blocked
waiting for its read-before-update operation to complete is
actually reduced. In addition, the FTL was modified to require
only one page read to service both mirrored write operations,
again reducing the overhead of duplicating the write operations
to maintain the mirror.

Beyond the general trends, insight can be gained from the
differences in the way each workload performed. Unlike all
other workloads, Fin1 shows a decrease in overall MRT. Fin1
is a heavily write predominant workload with small,
randomized IO operations. The benefit gained in MRRT is still
20.7%, however there are so few read operations as compared
to write operations that the performance gain in MRRT alone
does not significantly impact the overall MRT. Furthermore the
write requests are received at a moderate pace and are mostly
random, resulting in many more cache misses and therefore
many more read-before-update operations. With more read-
before-update and write operations consuming the drive, there
is less opportunity to exploit parallelism during writes. Without
the benefit of parallelism in writes, only the penalty incurred

from duplicating write operations is left to influence the
MWRT.

While the Exchange workload is also write dominant, it
contains a less skewed distribution of operations and has a
much lower average request arrival rate. With a lower request
rate, the SSD has greater opportunity to exploit parallelism for
all operations. The Build, TPC-C, and Fin2 workloads all
contain a majority of read operations and therefore consistently
show an overall increase in performance with mirroring
enabled. Interestingly, the Fin2 workload gains less
performance than the Build workload due to the smaller
average request size of the Fin2 workload. Smaller requests are
less able to leverage parallelism. For example if a request can
be handled with a single page read operation, then the entire
request can be handled with a single channel. The presence of a
mirror channel will be of little benefit to that specific request.
Furthermore, with only a moderate request arrival rate, the
odds of a particular channel being busy when a request is
received is also reduced, again minimizing the need for
parallelism. These factors limit the amount of performance
gain achieved in the Fin2 workload as compared to the other
read dominant workloads.

The second set of tests, pairs TP4 through TP6, evaluate the
scalability of SIRF-1 as the capacity of the drive is increased
while holding the number of channels per mirror group fixed.
Figure 5 illustrates how the MRT changes for each workload as
the amount of effective storage is increased from 32GB to
64GB and finally to 128GB. Note that in the SIRF-1
configuration the actual capacity of the SSD is 64GB, 128GB,
and 265GB respectively.

In general, the performance gains presented for the second
set of tests are less pronounced than in the first set. The main
contributing factor to this is that the channel configuration used

TABLE VI. RELATIVE PERFORMANCE IMPROVEMENTS FROM TEST PAIRS 1 THROUGH 3

 TP1 (1CNM-64 v. 2CM-128) TP2 (2CNM-64 v. 4CM-128) TP3 (4CNM-64 v. 8CM-128)
Trace �MRT �MRRT �MWRT �MRT �MRRT �MWRT �MRT �MRRT �MWRT

Exchange 33.6% 48.6% 17.2% 13.6% 9.9% 16.4% 12.3% 8.8% 14.4%

Build 39.5% 44.5% 3.9% 14.7% 17.0% 2.6% 11.4% 13.7% 2.0%
TPC-C 36.4% 46.9% 13.7% 30.8% 39.8% 12.7% 24.9% 31.8% 12.7%

Fin1 -5.5% 20.7% -14.3% 0.4% 16.1% -5.2% -2.3% 10.4% -7.3%
Fin2 27.3% 28.2% 15.7% 13.7% 13.6% 14.6% 10.0% 9.6% 14.1%

Fig. 4. Performance with channel scalability.

0

100

200

300

400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Non-Mirrored
Mirrored

349

for the second set of tests is identical to those used in TP3
above, which yielded the least amount of performance gain.
This configuration was selected because the 4-channel and 8-
channel configurations used in TP3 are more representative of
the number of channels utilized in the SSDs on the market at
the time this paper was written. Furthermore, the relative
performance of the five workloads is consistent with the first
three test pairs. Fin1 still pays an overall MRT penalty due the
duplication of write request while the other four tests see an
overall improvement in the MRT. Another general trend is that
the performance of both the non-mirrored and SIRF-1
configurations increases as the capacity of the SSD increases.
This is expected, as the SSD will have more room to perform
out-of-place updates. This will reduce the amount and
frequency of the garbage collection.

Several insights can be observed from Figure 5. For the
Fin1, TPC-C and Exchange traces, the performance between
the non-mirrored and SIRF-1 configurations actually improves
as the SSD’s capacity grows. While initially unintuitive, this
can be understood by examining the use of the cache for these
traces. These workloads are predominately random access in
nature. This means that the cache will be strained to provide
performance benefits due to the weaker locality of the data
access. The simulation configurations of the SSD proscribe that
the amount of DRAM scales linearly with the capacity of the
drive, as is the case in most commercially available drives.
However, since the amount of data in the trace file remains the
same, as the SSD capacity increases, the size of the cache with
respect to the amount of the data in the trace increases,
providing more cache coverage. In the SIRF-1 configuration,
the DRAM is doubled from the non-mirrored configuration
since the capacity of the SSD is doubled. However, the
effective capacity of the SSD remains the same, further
widening the margin of extra DRAM available for caching.

These factors lead to many more cache hits and far fewer read-
before-update operations, which greatly improve the MWRT
and MRT of the SIRF-1 configurations.

The purpose of the last group of tests is to understand the
performance impacts of page size on SIRF-1. We only show
page size impacts in TP1 configuration. Figure 6 demonstrates
that the overall results are consistent with previous results with
TP1. The results for the Exchange, Build, TPC-C, and Fin2
show significant improvements whereas the Fin1 shows only
minimal improvements or a reduced overall performance for
the same reasons as discussed earlier. It should be noted that
all other parameters were held constant while the page size was
varied. As the page size is increased, the capacity of the SSD is
increased while the amount of DRAM cache is held constant.
This results in an overall relative performance reduction as the
page size is increased. Another interesting discovery is that
while the results are still positive overall, the improvement is
reduced as the page size is increased from 2KB to 8KB. The
reason for this is that the larger page size actually reduces the
opportunity for parallelism. Consider a request for 6KB of
data from the operating system. With a page size of 2KB the
request will be decomposed in to 3 individual page requests,
which can be spread across the mirrored channels. However, if
the page size is set to 8KB, then the request from the operating
system will be handled by a single read request, which reduces
the gain from parallelization.

V. CONCLUSIONS
The goal of this research was to evaluate the potential to

improve the reliability and performance of SSDs by
introducing internal RAID-1 style mirroring. SIRF-1 leverages
the internal parallelism afforded by the flash memory
organization of an SSD to mirror data in an efficient manner.

TABLE VII. RELATIVE PERFORMANCE IMPROVEMENTS FROM TEST PAIRS 4 THROUGH 6

 TP4 (4CNM-32 v. 8CNM-64) TP5 (4CNM-64 v. 8CM-128) TP6 (4CNM-128 v. 8CM-256)

Trace �MRT �MRRT �MWRT �MRT �MRRT �MWRT �MRT �MRRT �MWRT

Exchange 10.2% 13.7% 8.2% 12.7% 9.0% 14.8% 25.3% 8.6% 36.4%

Build 16.8% 20.3% 4.0% 9.5% 11.8% 1.9% 7.2% 8.5% 2.8%
TPC-C 21.1% 29.5% 6.1% 31.5% 31.5% 12.7% 33.8% 33.8% 27.5%

Fin1 -3.5% 10.1% -8.7% -2.3% 10.4% -7.3% -0.1% 12.1% -5.0%
Fin2 9.8% 9.8% 10.4% 10.0% 9.6% 14.1% 9.6% 8.8% 19.5%

Fig. 5. Performance with capacity scalability.

0

50

100

150

200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Non-Mirrored
Mirrored

350

Improving the reliability of SSDs will allow them to support
the vital need for reliable storage in mobile devices as they
continue to support functions in business, mission critical, and
personal use cases.

To evaluate SIRF-1, an existing validated SSD simulator
SSDSim has been extended to implement it. The performance
of SIRF-1 is evaluated by running several real-world
workloads using the modified simulator. Finally, the
performance implications of SIRF-1 are collected, presented,
and analyzed. An average performance increase in MRT of
15% is observed across all tests and workloads. The best-case
improvement observed for configurations that contained 2 or
more channels was shown to be 39.5%. Workloads consisting
of high rates of random reads benefit the most due to additional
parallelism that overshadowed cache gains due to weak request
locality. In the worst-case, a 5.5% decrease in performance is
shown for a write-intensive trace. Enabling SIRF-1 will halve
the effective capacity of the SSD. Therefore a penalty will be
paid in either capacity, if the cost must be held constant, or in
cost, if capacity must be maintained. This is the same trade-off
scenario that is well understood in RAID implementations.
Fortunately, the price of flash memory is dropping quickly,
which makes SIRF-1 become increasingly practical.

In the future, SIRF-1 will be compared to other SIRF /
RAID levels such as RAID-4 and RAID-5[7]. Each of the
additional SIRF levels should be analyzed to determine the
corresponding reliability, performance, and cost trade-offs.
Future research will also investigate the interplay between
SIRF methods and other SSD design choices.

ACKNOWLEDGMENT
This work was supported by the U.S. National Science

Foundation under grant CNS (CAREER)-0845105.

REFERENCES
[1] N. Agrawal, et al., “Design Tradeoffs for SSD Performance,” Proc.

USENIX Annual Technical Conference, pp. 57-70, 2008.
[2] M. Balakrishnan, A. Kadav, V. Prabhakaran, and D. Malkhi.

"Differential RAID: rethinking RAID for SSD reliability." ACM Trans.
on Storage, Vol. 6, No. 2 (2010): 4.

[3] Build Server Trace, SNIA IOTTA Repository,
http://iotta.snia.org/traces/158, Accessed 2010-04-20.

[4] F. Chen, R. Lee, and X. Zhang, “Essential roles of exploiting internal
parallelism of flash memory based solid state drives in high-speed data
processing,” HPCA, 2011.

[5] Y. Hu, et al. "Performance impact and interplay of SSD parallelism
through advanced commands, allocation strategy and data granularity."
In Proceedings of the international conference on Supercomputing, pp.
96-107. ACM, 2011.

[6] Exchange Trace, SNIA IOTTA Repository,
http://iotta.snia.org/traces/130, Accessed 2010-04-20.

[7] K. Greenan, et al. "Building flexible, fault-tolerant flash-based storage
systems," The Fifth Workshop on Hot Topics in Dependability
(HotDep’09), 2009.

[8] L.M.Grupp, A.M. Caulfield, J. Coburn, S. Swanson, E. Yaakobi, P.H.
Siegel, and J. K. Wolf. "Characterizing flash memory: anomalies,
observations, and applications." In Microarchitecture, 2009. MICRO-42.
42nd Annual IEEE/ACM International Symposium, pp. 24-33. IEEE,
2009.

[9] A. Gupta, Y. Kim, and B. Urgaonkar. “DFTL: a flash translation layer
employing demand-based selective caching of page-level address
mappings”, ASPLOS, 2009.

[10] S. Im, D. Shin, "Flash-Aware RAID Techniques for Dependable and
High-Performance Flash Memory SSD," IEEE Trans. on Computers,
vol.60, no.1, pp. 80-92, Jan 2011

[11] S.T. Leutenegger and D. Dias, “A modeling study of the TPC-C
benchmark,” in Proc. ACM Int’l Conf. Management of Data, 22(2), pp.
22-31, 1993.

[12] S. Moon, N. Reddy, "Don’t Let RAID Raid the Lifetime of Your SSD
Array," Proc. of HotStroage 2013, 2013.

[13] W. Pan, F. Liu, T. Xie, Y. Gao, Y. Ouyang, and T. Chen, “SPD-RAID4:
Splitting Parity Disk for RAID4 Structured Parallel SSD Arrays,” Proc.
15th IEEE Int’l Conf. High Performance Computing and
Communications (HPCC), Zhangjiajie, China, November 13-15, 2013.

[14] K. Park, D. Lee, Y. Woo, G. Lee, J. Lee, and D. Kim. “Reliability and
performance enhancement technique for SSD array storage system using
RAID mechanism.” Proc. 9th IEEE Int’l Symposium on
Communications and Information Technology, pp. 140-145, 2009.

[15] S. Park, E. Seo, J.Y. Shin, S. Maeng, and J. Lee, “Exploiting Internal
Parallelism of Flash-based SSDs,” IEEE Computer Architecture Letters,
Vol. 9, No. 1, pp. 9-12, 2010.

[16] D.A. Patterson, G. Gibson, and R.H. Katz, “A Case for Redundant
Arrays of Inexpensive Disks (RAID),” ACM SIGMOD 88, Vol. 17, No.
3, pp. 109-116, June 1988.

[17] J. Shin, et al., “FTL design exploration in reconfigurable high-
performance SSD for server applications,” Proc. of the 23rd Int’l Conf.
Supercomputing, 2009.

[18] J.M. Smith, “The doctor will see you ALWAYS,” IEEE Spectrum, Vol.
48, No. 10, pp. 56-62, October 2011.

[19] Department of Defense Mobile Device Strategy,
http://www.defense.gov/news/dodmobilitystrategy.pdf, 2012.

0

100

200

300

400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Non-Mirrored
Mirrored

Fig. 6. Performance impacts of page size.

351

