
RISP: A Reconfigurable In-Storage Processing Framework with Energy-Awareness

Xiaojia Song

San Diego State University
5500 Companile Drive

San Diego, USA
Email: xsong2@sdsu.edu

Tao Xie

San Diego State University
5500 Companile Drive

San Diego, USA
Email: txie@mail.sdsu.edu

Wen Pan

San Diego State University
5500 Companile Drive

San Diego, USA
Email: wpan@sdsu.edu

Abstract—Existing in-storage processing (ISP) techniques
mainly focus on maximizing data processing rate by always
utilizing total storage data processing resources for all appli-
cations. We find that this ”always running in full gear” strategy
wastes energy for some applications with a low data processing
complexity. In this paper we propose RISP (Reconfigurable
ISP), an energy-aware reconfigurable ISP framework that
employs FPGA as data processing cells and NVM controllers.
It can reconfigure storage data processing resources to achieve
a high energy-efficiency without any performance degradation
for big data analysis applications. RISP is modeled and then
validated on an FPGA board. Experimental results show
that compared with traditional host-CPU based computing
RISP (with 16 channels or more) improves performance by
1.6-25.4× while saving energy by a factor of 2.2-161. Further,
its reconfigurability can provide up to 77.2% additional energy
saving by judiciously enabling data processing resources that
are sufficient for an application.

Keywords-In-storage processing; FPGA; SSD; energy-aware.

I. INTRODUCTION

Big data analysis is the process of examining massive

data sets (e.g., scientific data, photographs and videos) to

discover useful information such as hidden patterns and

market trends. Typically, its first step is to filter/aggregate

a huge amount of raw data. The outcome of this pre-

processing step is usually a much smaller data set, which

will then be carefully examined by a particular algorithm.

Delivering these large raw data sets all the way from a

storage system to host CPU(s) puts a tremendous pressure

on a host-CPU based computing architecture as it incurs a

substantial data transfer latency and energy consumption [4].

One promising solution to alleviate the pressure is in-

storage processing (ISP, also called in-storage computing

or ISC) [1], which offloads part of conventional host-CPU

based computations to a storage device. A modern flash SSD

(solid state drive) now has a very high internal bandwidth

that often exceeds its external bandwidth by factors of 2-4×
[4]. Therefore, processing data in-storage could achieve a

higher performance and consume less energy than delivering

them all the way to the host CPU(s). This is mainly because

a modern flash SSD is normally equipped with a multi-

core general-purpose embedded CPU (e.g., two ARM Cortex

R7 cores [9]) and multiple channels. It has a considerable

data processing capability, which recently sparks a resur-

gent interest in developing NVM (non-volatile memory)-

based ISP techniques from both industry and academia

[4][7][9][12][13][14][15][21][22]. These ISP techniques all

have shown that they can significantly improve performance,

energy-efficiency, or both for some applications compared

with traditional host-CPU based computing. However, a

common issue among them is that they always utilize the

entire storage data processing resources (e.g., all channels

in an SSD) to serve a data-intensive application without

considering its data processing complexity, which in this

paper is defined as the number of CPU cycles per byte

or CPB [4]. An application with a higher CPB is more

compute-intensive as it demands more CPU cycles to pro-

cess its input data. We find that this ”always running in

full gear” strategy could cause two problems. First, it incurs

unnecessary energy consumption for some data-intensive

applications with a low CPB. For these applications, since

their in-storage data processing bandwidth could be higher

than the external data transfer bandwidth, data transfer from

a host interface to the host might become a bottleneck. Thus,

in-storage devices (e.g., channels and NVM controllers) have

to stay in a stand-by status to wait for the completion of data

transfer, which wastes energy. For instance, we discover that

Sobel [18], an image processing application with a low CPB,

only needs to use 10 of 64 channels in an SSD so that its

in-storage data processing bandwidth can match the external

data transfer bandwidth. Using more than 10 channels only

wastes energy without any further performance improvement

(see Section V-C). Second, more storage data processing

resources (e.g., channels) working simultaneously requires

more design efforts to solve issues like high peak current.

Excessive peak current could cause some problems (e.g.,

supply voltage drop, ground bounce, signal noise, etc.),

which lead to unreliable SSD operations [10].

To solve the common issue, in this paper we propose a

new ISP framework called RISP (reconfigurable in-storage

processing), which employs FPGA (field-programmable gate

array) as data processing cells and NVM controllers. It is

more energy-efficient than ISP techniques that use embedded

193

2018 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing

978-1-5386-5815-4/18/$31.00 ©2018 IEEE
DOI 10.1109/CCGRID.2018.00034

processors as data processing units because FPGA consumes

less energy than a general-purpose embedded processor

[3]. Besides, FPGA can easily realize massive pipelining

and parallelism [3]. It also avoids the two limitations of

embedded processors [4][21] (see Section II). RISP has two

desirable features. First, it can better serve an application

by implementing the application into its FPGA-based data

processing units (e.g., processing cell on each channel). It

only needs to be reconfigured when it starts to serve a new

application. We assume that within a given period of time it

only serves one application. In other words, simultaneously

serving multiple applications is not supported by RISP in

order to avoid frequent FPGA reconfigurations. Second,

it is the first ISP technique that can reconfigure storage

data processing resources according to the data processing

complexity of an application. In particular, for an application

with a low CPB it can provide further energy-saving by

judiciously enabling data processing resources that are suf-

ficient for the application. Next, we build performance and

energy consumption models for RISP and a conventional

host-CPU based computing architecture (hereafter, Base-

line). Further, we utilize three widely used data-intensive

applications (i.e., K-Means [17], Binarization [18], Sobel

[18]) with distinct CPBs to validate the models on a Linux

machine and a Xilinx FPGA board [24]. Finally, we leverage

them to evaluate RISP by comparing it with Baseline. We

also evaluate energy-saving brought by the reconfigurability

of RISP, which is defined as its capability of judiciously

selecting an appropriate number of channels to serve a

particular application. Experimental results show that RISP

improves performance by 1.6-25.4× while reducing energy

consumption by 2.2-161×. Its reconfigurability offers up to

77.2% additional energy-saving.

The rest of paper is organized as follows. Section II sum-

marizes related work. Section III presents RISP framework.

Section IV provides performance and energy consumption

models for RISP and Baseline. Section V evaluates RISP

followed by Section VI, which concludes the paper.

II. RELATED WORK

ISP techniques leverage analytical modeling [4][21], hard-

ware prototyping [7][9][12][13][14][15], or both [22] to

quantify their performance or energy gains compared with

traditional host-CPU based computing. For modeling-based

ISP techniques [4][21], it is very hard for a third-party to

reproduce their experimental results although their models

and major parameters are provided [9]. This is mainly

because the detailed information about how to integrate these

models to generate the reported results is unclear. Besides,

the parameters (e.g., data transfer rate per NVM channel

and clock frequency of an embedded CPU) used in these

prior studies [4][21] are already outdated. Prototyping-based

ISP techniques [7][9][12][13][14][15] employ a customized

hardware prototype. Unfortunately, these prototypes are nor-

mally not publicly available. In short, none of existing ISP

techniques is open source in the sense that its results can be

reproduced by a third-party.

In addition, ISP techniques normally target different ap-

plications running on distinct architectures. For example,

while iSSD [4] focuses on some common data-intensive

application kernels (e.g., K-means [17], a mean-based data

partitioning method) running on an enterprise server, Active

Flash [21] concentrates on high performance computing

(HPC) simulations (e.g., astrophysics and climate) per-

formed on a supercomputer like Gordon. Biscuit [9], Caribou

[12], BlueDBM [14], and YourSQL [13], however, focus

on how to integrate ISP in a database system. Summarizer

[15] designs a set of application programming interfaces

(APIs) that can be used by a host application to offload

a task to the SSD processor. The huge differences among

these applications and architectures also make a comparison

between two ISP techniques challenging. These huge differ-

ences plus non-open-source explained why all existing ISP

techniques used the traditional host-CPU based computing

as a competitor and none of them compared its performance

with one of its peers. In this paper, we also compare RISP

with the conventional host-CPU based computing.

Part of existing ISP techniques [4][9][21] utilize em-

bedded processors as in-storage CPUs to process data in-

situ. For example, in order to translate raw flash memory

bandwidth into high data processing rates, an iSSD adds

an embedded processor and a stream processor into an

FMC (flash memory controller) processing unit on each

flash memory channel [4]. Similarly, Biscuit incorporates

a hardware pattern matcher on each flash memory channel

of an SSD to rapidly scan large datasets on-the-fly [9]. On

the other hand, Active Flash employs many compute nodes

to achieve a high performance with each node being an SSD

with one ARM core as its data processing unit [21].

However, they share two limitations. First, a typical em-

bedded CPU is a 32-bit RISC processor clocked at 200 to

800 MHz [4]. It is not optimized to carry out computa-

tions, and thus, running compute-intensive algorithms on it

incurs extra instructions, which creates a new performance

bottleneck [21]. Second, there is a data transfer bottleneck

between an on-device DRAM and an embedded processor

[4]. To avoid these limitations, Minerva uses FPGA-based

storage controllers as data processing units for a PCM (phase

change memory)-based SSD [7]. Still, it adopts the ”always

running in full gear” strategy, which wastes energy for some

applications with a low data processing complexity. .

III. THE RISP FRAMEWORK

The architecture of RISP is illustrated in the Fig. 1 a. The

difference between a conventional SSD and a RISP-based

SSD is that the latter has a reconfigurable unit (RU), which

194

NVM array

SRAM
H

os
t i

nt
er

fa
ce

CPU

Processing cell

Processing cell

DRAM
controller

DRAM

Host
CPU(s)

...

Reconfigurable Unit (RU)RISP
P

ub
lic

 p
ro

ce
ss

in
g

ce
ll

NVMC
...

NVMC
...

RISP Channel 0

RISP Channel n-1

① ② ③

④⑤⑥

Sub
Center1.x1

Pointer1.x1...

Mul
Add

Cmp

Switch
Center1

Center8

Sub Pointer1.x9Mul
Center1.x9

Sub
Center8.x1

Pointer1.x1...

Mul
Add

Sub Pointer1.x9
Mul

Center8.x9

...

...

...

Centernew_1, npointer_1

Centernew_n-1, npointer_n-1

Add

Add

Div

Processing Cell 0

Processing Cell n-1

Centernew_x

npointer_x

New Centers

Switch ...

...

P
ub

lic
 p

ro
ce

ss
in

g
ce

ll

Host memroy Global memroy Local memory Private memory

(a) The architecture and memory model of RISP (b) The implementation of K-Means in RU

Figure 1: The architecture of RISP.

is located between an array of NVM chips and embedded

CPU(s). The RU is composed of three components: a pro-

cessing cell and an NVM controller (hereafter, NVMC) on

each channel as well as a public processing cell shared by all

channels. A processing cell processes data on a channel by

running the algorithm of a particular application. Similar to a

conventional SSD, an NVMC here executes basic operations

like read/write on the NVM array. It takes commands issued

by a processing cell on the same channel to either fetch data

from or write data to the NVM array. A processing cell, an

NVMC, and NVM chips on the same channel are combined

together as a basic data processing unit called a RISP

channel (see Fig. 1a). Although RISP channels can work

independently from each other, many applications require

a further processing of results generated from each RISP

channel or data exchange between different channels. For

example, in K-Means (See Fig. 1b) intermediate results from

all RISP channels after an iteration need to be aggregated

and processed to get the new cluster centers before next

iteration can be launched [17]. Therefore, RISP incorporates

a public processing cell, which acts as a ”coordinator” to

conduct a further processing of intermediate results from

RISP channels (e.g., an aggregation of these results) or serve

as a shared memory providing communications among RISP

channels. Eventually, the public processing cell delivers the

final results of data processing to the on-device DRAM,

which serves as a buffer. The final results are then transferred

to the host through DMA (direct memory access). Since

RISP only needs to output the results whose size is usually

much smaller than that of the raw data, the time and energy

used to transfer raw data to the host can be largely saved.

Note that RU can work in two modes: regular mode and ISP

mode. In the regular mode, it works as a data path between

on-device DRAM and NVM and there is no data processing

logic in RU. In this mode, RISP is just like a regular SSD

without any ISP capability. In the ISP mode, RU is in charge

of in-storage data processing as described above.

The three components of RU are all implemented on

FPGA fabric. Fig. 1b manifests a reconfigurable public

processing cell instance (blue box) and a reconfigurable pro-

cessing cell instance (red box) for K-Means [17]. While an

FTL (flash translation layer) module runs on the embedded

CPU, an application (e.g., K-Means) is executed on the RU.

All RISP channels are reconfigurable hardware resources.

Fig. 1a shows how data are processed in six steps. When

a request of an application arrives, the host CPU collects

information including identification code, the address of

data, and other parameters. The identification code enables

the embedded CPU in RISP to know which application

image to select to configure the RU. Next, the host CPU

packages all the information into a request, which is then

sent to RISP through the host interface (Step 1). After the

embedded CPU receives and decodes the request, it launches

the configuration of the RU according to the identification

code. Once the configuration is done, the embedded CPU

initializes the RU by writing the application’s parameters and

data address to the RU. When the initialization is completed,

the embedded CPU triggers data processing in RU (Step

2). Now, all RISP channels work concurrently to process

raw data fetched from NVM chips. The public processing

cell works as a coordinator of all RISP channels as we

explained before (Step 3). When the RU is ready to output

the final results, these data will be aggregated to on-device

DRAM through the public processing cell (Step 4). After

the results are ready in the on-device DRAM, the embedded

CPU informs the host CPU through an interrupt event. Next,

it waits for the response of the host-CPU (Step 5). After the

host CPU receives a data-ready interrupt from RISP, it reads

the results from the on-device DRAM in the RISP (Step 6).

To maintain memory consistency and smooth data transfer

between host and RISP, RISP employs a memory model

(see Fig. 1a), which divides the entire memory system into

four parts: host memory, global memory, local memory, and

private memory. The host memory is the DRAM-based main

195

memory of the host and it can only be accessed by the host

CPUs. Global memory is the on-device DRAM of an SSD,

which can be accessed by both the host CPUs and RISP.

However, at a given time only one of them can visit it. Local

memory is the block RAM in the FPGA fabric and it can

only be accessed by RISP. It is used to share data between

different RISP channels. The private memory is provided

by the registers in the FPGA fabric and it is accessible to a

processing cell only.

An application can use user-space I/O operations to access

data on an external storage device so that the OS and

file system can be bypassed [2]. This function makes it

possible for an application to send its requests directly to

the embedded CPU in RISP. After the configuration of

an algorithm in RU is done, RISP can deliver a stable

acceleration for it. The algorithm accelerated in RU normally

generates a small size configuration file (i.e., bitstream).

For example, none of the three applications (i.e., K-Means,

Binarization, Sobel) has a configuration file larger than 4

MB. It will take around 10 ms for the configuration of

a 4 MB bitstream using a 32-bit-wide slave mode at 100

Mhz CCLK (Configuration Clock) [25]. Thus, the CPU time

overhead caused by a reconfiguration is trivial compared to

the data processing time. Besides, for an application with a

less than 4 MB bitstream, the power of an FPGA dynamic

partial reconfiguration does not exceed 400 mW [16]. The

energy overhead of a reconfiguration can be estimated by

10 ms × 400 mW = 4 mJ, which is pretty tiny compared

to the energy consumed by data processing. Therefore, the

overhead of CPU time and energy consumption caused by

a reconfiguration of RISP can be ignored.

IV. MODELS AND VALIDATIONS

A. Performance and energy models

In this section, we will develop performance and energy

consumption models for each component of Baseline and

RISP. Next, the models will be validated. In Section V, we

will leverage these models to evaluate the benefits of RISP.

Since performance is mainly determined by data transfer

time and data analysis time, we calculate these two metrics

for each stage of Baseline and RISP so that we can obtain

their overall execution times.

For Baseline, data transfer time from NVM to on-device

DRAM is

tch2DRAM =
D

nch ∗ bch , (1)

where D is the size of raw data that have been evenly

split among all channels. nch and bch are number of NVM

channels and read bandwidth of each channel, respectively.

Data transfer time from on-device DRAM to Host can be

calculated as

tDRAM2host =
D

bhostIO
, (2)

where bhostIO is the bandwidth of the host interface. Since

the two data transfer stages are organized in a pipelined

manner, the overall data transfer time is determined by

ttotalXsfer = max {tch2DRAM , tDRAM2host} . (3)

Assume that a host has ncpu CPUs and each needs to spend

CPB (cycles per byte) cycles to process one byte of data.

Hence, data analysis time on the host can be obtained by

thostComp =
CPB ∗D

fhostcpu ∗ ncpu
, (4)

where fhostcpu is the frequency of each CPU. Thus, the total

data processing time for Baseline is

TBaseline = ttotalXsfer + thostComp. (5)

For RISP, data transfer time from NVM to RU is denoted

by tch2RU , which is equal to tch2DRAM in Baseline. Unlike

a host CPU, FPGA provides massive pipelining and paral-

lelism. Hence, data analysis time in RU is

tRUComp =
D/(α ∗ nch) + ndelay

fRU
, (6)

where α is the number of bytes that can be fed into a RISP

channel per clock cycle, fRU is FPGA running frequency,

and ndelay is the time delay between the input data arriving

RU and the output data (i.e., results) starting to leave RU.

Note that ndelay is calculated in clock cycles. After data

analysis is completed in RU, the public processing cell

aggregates all results and then writes them to the on-device

DRAM. The time taken by this step is decided by

tRU2DRAM =
D

β ∗ bDRAM
, (7)

where β is a reduction factor, which is the ratio of raw data

size to the size of results. Its value depends on the feature

of an application. bDRAM is the bandwidth of on-device

DRAM. Since data processing through these steps in FPGA

could be easily organized in a pipelined manner, the total

execution time can be obtained by

TRISP = max{tch2RU , tRUComp, tRU2DRAM}. (8)

Now, we estimate energy consumption for each com-

ponent of Baseline and RISP. Since at any given time

a component could be in one of the three statuses (i.e.,

active, idle, and power-off), total energy consumption can

be computed by

Esys =
∑

i∈sys

(Pi active ∗ ti active + Pi idle ∗ ti idle), (9)

where Pi active, Pi idle, ti active, ti idle are power and

duration of each component in either an active or an idle

status. For Baseline, sys ={NVM, on-device DRAM, SSD

196

controller, host interface, host DRAM, and host chipset}. For

RISP, sys ={NVM, RU, on-device DRAM, SSD chipset}.

In Baseline, the SSD controller includes the embedded

CPU(s) and SSD chipset. Assume that energy consumption

for each CPU cycle is EPC (energy per cycle) and it needs

total ncycle cycles from all ncpu CPUs to finish data analysis

for one application. So, energy consumption of host CPUs

is EhostCPU , which is the product of EPC and ncycle. The

energy consumption of Baseline can be obtained by

EBaseline = Esys + EhostCPU (10)

For NVM, on-device DRAM, and SSD chipset in RISP,

we use the same methods as Baseline to estimate their energy

consumption. As for RU, its energy consumption is mainly

decided by the utilization of FPGA and we use an FPGA

design tool Vivado [23] to estimate the energy consumption

of RU. Table III summarizes all energy-related parameters

that are used in our experiments.

B. Model validations

To examine the impact of data processing complexity of

an application on performance and energy gains of RISP,

three applications with distinct CPB values (see Table I) are

selected to validate the models. We run the three applications

on a 3.1 GHz Intel Core i5 iMac computer to validate the

performance model of Baseline. The parameters used in

the Baseline performance model can be found in the Table

II. We demonstrate how to obtain the CPB for Eq. (4)

for each application. We introduce three parameters (CPI ,

Table I: Applications

Applications CPI IPB CPU frequancy ratio
K-Means [17] 0.502 131.5462 1.096

Binarization [18] 0.601 24.8411 1.104
Sobel filter [18] 0.438 224.2452 1.085

IPB and CPUfrequencyratio) to calculate CPB for each

application. These parameters are provided by Vtune [19],

a performance analysis tool from Intel. CPI (cycles per in-

structions) is closely related to machine setting and a higher

CPI value implies a higher latency. IPB (instruction per

byte) indicates the computational complexity of an applica-

tion and a higher IPB value means more compute-intensive.

CPUfrequencyratio is the ratio between the actual and

the nominal CPU frequencies. A value above 1.0 indicates

that the CPU is operating in a turbo boost mode. CPB
is calculated by: CPB=CPI*IPB*CPUfrequencyratio.

Therefore, the CPB value is 72.3757, 16.4822, and 106.5680

for K-Means, Binarization, and Sobel, respectively.

Fig. 2 shows the real execution time measured from the

iMac computer and the execution time calculated by Eq.

5. A performance gap is the value of an execution time

calculated by an equation (i.e., execution time from a model)

�	
���

	����
�	����

�

��

�
�

���

����� ������ ����� ������ ����� ������

��
��

��
��

��
�

��
�!

"�

#$����!��������������%&��'&(�������������������)�*���

+!/�'�����
2��3�����

Figure 2: Baseline performance model validation.

subtracted by a real execution time. A performance error is

defined as a ratio between a performance gap and a real

execution time. We found that there is a high correlation

between a performance error and the size of the data set.

Fig. 2 shows that K-means yields a performance error of

9.39% as it analyzes a small data set. On the other hand,

Binarization has a very small performance error of 0.66%

because it processes a large data set (see Table II). The

average performance error of the three applications is 5.68%,

which is a reasonable value. The implication is that the

Baseline performance model is valid.

We leverage a Xilinx Virtex-7 FPGA platform [24] to val-

idate the performance model of RISP. The three applications

are implemented in Verilog to obtain their data processing

parameters (e.g., α, β, and ndelay in Table II) needed for

the RISP performance model. We use the on-chip RAM to

emulate the NVM and on-device DRAM. We found that

the implementation precision of all three applications on

the FPGA platform is in one clock cycle. Therefore, the

parameters used in the RISP performance model (see Table

II), which are extracted from the implementations of the

three applications on the FPGA platform, are accurate. The

energy consumption models of Baseline and RISP adopt the

same energy modeling paradigm proposed by [5], which has

proved to have a 8% error from real SSDs. In this paper, we

directly use these validated energy consumption models.

V. EVALUATION

In this section, we first evaluate RISP by comparing it with

Baseline in terms of performance and energy consumption.

Next, we present the reconfigurability of RISP. Table II

provides the parameters of the hardware platform and the

three applications. K-Means is a method of vector quan-

tization that is popular for cluster analysis in data mining

[17]. Binarization is an algorithm used in image processing

to convert each pixel of an image into one bit (i.e., ’1’ or

’0’) [18]. Sobel is used in image processing and computer

vision, particularly within edge detection algorithms where

it creates an image emphasising edges [18]. We select the

three applications because they are widely used algorithms

in big data analysis and their data processing complexities

(i.e., CPB) are quite different (see Table II). All experimental

results are obtained by plugging the parameters shown in

197

Table II, Table III, and Table IV into the validated models

presented in Section IV.

A. Performance evaluation

n statistics

Slices
Reg

LUTs DSP48E

-69120 -69120 -64
3914 4773

-5.66% -6.91%

9 (<1%)
23
(<1%)

6 (<1%) 2

9 (<1%)
22
(<1%)

16 (<1%) 4

O impact on the host-processing

2 4 6 8 12 16 24

3 (4%)

0

Slices
17280)

Delay

(CLK)
1483
8.58%)

0 3

2.2

2.4

2.6

2.8

3

3.2

2 4 6 8 12 16 24 32 48 64

Pr
oc

es
ss

in
g

ba
nd

w
id

th
lo

g1
0

(G
B/

s)

Number of channels in Baseline

K-Means/SATA3.2 K-Means/PCIex4
K-Means/PCIex16 Binarization/SATA3.2
Binarization/PCIex4 Binarization/PCIex16
Sobel/SATA3.2 Sobel/PCIex4
Sobel/PCIex16

Figure 3: Impact of host I/O bandwidth on Baseline.

We first examine how the host I/O bandwidth and number

of NVM channels impact the performance of Baseline. Next,

we measure the sensitivity of RISP performance to various

resources (e.g., the number of NVM channels, FPGA clock

frequency, etc.). Finally, performance comparisons between

Baseline and RISP are provided.

To understand the impact of host I/O bandwidth on the

performance of Baseline, we utilize three I/O interfaces

(i.e., SATA3.2, PCIex4, and PCIx16) to test their impact

on Baseline when the number of channels varies from

2 to 64. The results are shown in Fig. 3. The general

trend is that the processing bandwidth of Baseline increases

when the number of channels goes up. However, after a

certain number of channels (e.g., 12 for Binarization with

a PCIe-4G interface) Baseline processing bandwidth stops

increasing. The reason is that each I/O interface has its own

data transfer upper bound (e.g., SATA3.2 is 1.97 GB/s and

PCIex4 is 3.938 GB/s [4]). After the internal bandwidth

reaches the data transfer upper bound of a host I/O interface,

further increasing NVM channels cannot enlarge Baseline

processing bandwidth as at this point the host I/O bandwidth

becomes a bottleneck.

Fig. 4 also exhibits the same trend. In this figure, SATA3.2

Table II: System and application parameters [4][6]

nch 4-64 fRU 100-500 MHz
bch 400 MB/s fhostCPU 3.10 GHz
bDRAM 15 GB/s nCPU 8
bhostIO SATA3.2 (1.97 GB/s), PCIex4 (3.938 GB/s)

PCIex16 (15.754 GB/s)

K-Means [17], Binarization [18], Sobel [18]
D 0.3, 1.4, 0.5 (GB) α 9, 1, 1 (Byte)

β 3.6466, 3, 1 ndelay 15, 2, 4 (clock cycle)
CPB 72.3757, 16.4822, 106.5680 (for CPU)

is used in all scenarios. The impact of the host I/O bandwidth

bottleneck on performance can be easily observed in Fig.

4a. When the number of channels is smaller than six, the

performance of the three applications all improves with an

increased number of NVM channels. However, after that

none of them can noticeably improve performance. From

Fig. 4b we can see that when the number of channels is

smaller than six the external bandwidth is decided by the

internal bandwidth. However, when it is more than six,

the external bandwidth is immediately limited by the upper

bound of the host I/O interface bandwidth, which is 1.97

GB/s.

��

4�

5�

6�

5� 7� :� ;�45� 5� 7� :� ;�4:� 5� 7� :� ;�4:�

�<
��
��

=�
��
�
��
	

��

���
���=���������
�
	���%�
������

������
��%��������=�����=
���

2=�������
�
��������

��
4�
5�
6�
7�
>�
:�
?�

5� 7� :� ;� 4:��

��
��

��
��
��

@�
�	�

%�

�

��

���
���=���������
�
	
���
����
������@��

��@������
 =
@��!���@�������
�<@������

Figure 4: Impact of host I/O and internal bandwidth.

Another observation is that Binarization is more sensitive

to the host I/O bandwidth. From Fig. 3 we can see that using

different types of host I/O interfaces Baseline can deliver

processing bandwidth ranging from 940 MB/s to 1,580 MB/s

for Binarization. However, for K-Means and Sobel, it can

only offer bandwidth in the ranges of 300-350 MB/s and

230-260 MB/s, respectively. Further, the variances of pro-

cessing bandwidth for Binarization, K-Means, and Soble are

640 MB/s, 50 MB/s, 30 MB/s, respectively. This is because

compared with K-means and Sobel who have a higher CPB
value, Binarization is an I/O-bound application in which data

transfer time is a major part of its execution time. Fig. 4a

shows that the data transfer time for Binarization accounts

for 50% of its execution time even when 16 NVM channels

are used. Thus, increasing data transfer bandwidth between

host and SSD can improve the performance of Binarization

more obviously than the other two applications.

Next, we examine the impact of the number of NVM

channels and FPGA clock frequency on the performance of

RISP in Fig. 5. In particular, we measure the performance

of the three applications running on RISP at two different

FPGA clock frequencies: 200 MHz (Fig. 5a) and 500 MHz

(Fig. 5b). Note that this clock only affects data analysis

rate, which determines the computing time (i.e., ”Comp

time” in Fig. 5) of an application running on RISP. As

we explained in Section IV, RISP fully leverages pipelining

for both data transfer and data analysis. Take Binarization

with four RISP channels as an example (see Fig. 5a), its

198

data analysis takes a much longer time (grey bar) than its

data transfer (white bar) does. Thus, its execution time (i.e.,

”Exec time” in black bar) is only decided by its data analysis

time (i.e., ”Comp time”). Several observations can be made.

First, we notice that when the number of RISP channels is

increased both data transfer time and data processing time

decrease, which is quite different from Baseline where only

data transfer time declines (see Fig. 4a). The explanation

of the difference is that each RISP channel consists of a

processing cell and an NVM channel. Thus, bandwidths of

data transfer and data analysis are both increased with an

increased number of RISP channels. Secondly, we can see

that the performance of the three applications running on

RISP continuously improves with the increment of channels

(see Fig. 5). However, these performance improvements

almost do not exist in Baseline (see Fig. 4a). In fact, after the

number of channels exceeds six, there is no further execution

time decrease in Baseline because the data transfer band-

width hits the ceiling of the host I/O interface bandwidth.

The conclusion is that RISP has a good scalability. The

last observation is that when computing time determines

the execution time of an application, optimization of RU

(e.g., increasing the FPGA clock frequency) helps improve

the application’s performance. For instance, the execution

time of Binarization with four RISP channels decreases

by 52.5% when the FPGA clock frequency is increased

from 200 MHz to 500 MHz. However, when execution

time of an application is decided by its data transfer time

(see Binarization in Fig. 5b), the NVM channel interface

becomes a bottleneck. So, further increasing FPGA clock

frequency would incur more energy consumption without

any performance improvement.

Finally, we compare the performance of RISP and Base-

6 0.18708 0.392334247 0.392334 6 0.18708 0.156934 0.18708
8 0.14031 0.294250689 0.294251 8 0.14031 0.1177 0.14031

16 0.070155 0.147125352 0.147125 16 0.070155 0.05885 0.070155

Internal_baInterface_Band External_bandwidth
2 800 2017.28 800
4 1600 2017.28 1600
6 2400 2017.28 2017.28
8 3200 2017.28 2017.28

16 6400 2017.28 2017.28

1 400 2017.28 400
10 4000 2017.28 2017.28
12 4800 2017.28 2017.28

6 2400 2017.28 2017.28

On host CoISC-R
means 2 1.156862 1.00761604

4 0.976687 0.503808027
6 0.939417 0.335872022

12 0.939417 0.167936018
24 0.939417 0.083968016
64 0.939417 0.031488014

arizaiton 2 2.453874 3.53100014
4 1.612018 1.765500073
6 1.437878 1.17700005

12 1.437878 0.588500028
24 1.437878 0.294250016
64 1.437878 0.110343759

bel 2 2.279754 1.17700271
4 1.999134 0.588501363
6 1.941087 0.392334247

12 1 941087 0 196167131

mparison of host and ISC_R (FPGA run on 200 M

nd width bottle neck(FPGA Run o

0

0.5

1

1.5

2

2.5

3

3.5

2 4 6 12 24 64 2 4 6 12 24 64 2 4 6 12 24 64

K-means Binarizaiton Sobel

Ex
ec

ut
io

n
tim

e
(s

)

Number of channels

On host Comp
ISC-R

0
1
2
3
4

2 4 6 8 16 2 4 6 8 16 2 4 6 8 16

Ti
m

e
(s

)

Number of RISP channels
(a) At 200 MHz

K-Means Binarizarion Sobel

Xsfer time
Comp time
Exec time

0

1

2

2 4 6 8 16 2 4 6 8 16 2 4 6 8 16

Ti
m

e
(s

)

K-Means Binarization Sobel
Number of RISP channels

(b) At 500 MHz

Figure 5: Performance of Binarization on RISP.

FPGA_freq 2 4 6 8 12 16 24 32 48 64 2
s 100Mhz -74.1981 -3.166783736 28.49349 46.37012 64.24674 73.18506 82.12337 86.59253 91.06168 93.29626 0.574059 0

300Mhz 41.93397 65.61107209 76.1645 82.12337 88.08225 91.06169 94.04112 95.53084 97.02056 97.76542 1.722177 2
500Mhz 65.16038 79.36664325 85.6987 89.27402 92.84935 94.63701 96.42467 97.31851 98.21234 98.65925 2.870295 4

tion 100 MHz -187.79 -119.0421709 -63.7135 -22.7851 18.14327 38.60745 59.07163 69.30373 79.53582 84.65186 0.347476 0
300 MHz 4.070068 26.98594302 45.42885 59.07163 72.71442 79.53582 86.35721 89.76791 93.17861 94.88395 1.042428 1
500 MHz 31.38557 47.77627699 60.96767 70.72575 80.48383 85.36288 90.24192 92.68144 95.12096 96.34072 1.457419 1
200 MHz -43.8949 -9.521085468 18.14327 38.60745 59.07163 69.30373 79.53582 84.65186 89.76791 92.32593 0.694952 0
100Mhz -3.25701 41.12438143 59.57583 69.68187 79.78791 84.84094 89.89396 92.42047 94.94698 96.21023 0.968457 1
300Mhz 65.581 80.37479381 86.52528 89.89396 93.26264 94.94698 96.63132 97.47349 98.31566 98.73674 2.905372 5
500Mhz 75.38161 85.96295903 90.36213 92.7716 95.18106 96.3858 97.59053 98.1929 98.79527 99.09645 4.062004 7

Xsfer time Comp time
s 2 0.360352 0.796510718

4 0.180176 0.796510718

Channel number
ement

tions run on host

0

10

20

30

2 4 8 16 32 64

Im
pr

ov
em

en
t (

tim
e)

(a) Three applications
Number of channels

K-Means
Binarization
Sobel

0

10

20

30

2 4 8 16 32 64

(b) Binarization
Number of channels

100 MHz
200 MHz
300 MHz
500 MHz

Figure 6: Performance improvements.

line using the three applications with each processing a

particular data set (see Table II). Fig. 6a shows performance

improvements of the three applications compared with Base-

line when the FPGA clock frequency is set to 100 MHz. The

general trend is that all applications continuously improve

their performance when the number of channels goes up.

When the number of channels is 16 (i.e., a common case

for modern SSDs), Sobel, K-Means, and Binarization reduce

execution time by a factor of 6.6, 3.9, and 1.6, respectively.

Among the three applications, Binarization always requires

more channels in order to achieve a performance improve-

ment similar to that of K-Means and Sobel (see Fig. 6a). This

is because it is an I/O-bound application, and thus, adding

more channels can reduce its execution time in Baseline

more than the other two applications. Hence, its performance

improvement is reduced. The three applications follow the

order of Sobel > K-Means > Binarization in terms of

CPB. Since an application with a larger CPB can receive

a higher performance improvement due to an increase of

channels, Sobel always achieves the highest performance

improvements. We also test the performance improvements

of Binarization when the FPGA clock frequency varies from

100 MHz to 500 MHz (see Fig. 6b). Clearly, a higher FPGA

clock frequency always leads to a better performance for

Binarization.

B. Energy consumption evaluation

We evaluate how much energy can be saved if the three

applications are running on RISP instead of Baseline. We

also measure energy-saving due to the reconfigurability of

RISP. Table.III contains all energy-related parameters.

An energy consumption comparison between Baseline and

RISP without enabling RISP’s reconfigurability is examined

first. Fig. 7a shows the breakdowns of energy consumption

of the three applications in Baseline. The energy consump-

tion of each application in Baseline is a function of the D and

CPB. Data analysis with a larger data set and higher CPB
costs more energy. We can see that energy consumed by the

199

�������
�� � � ����������
���

������� EE�KLBOG L�LGHFLEG L�LEHHFIHLB L�LOIFKO

L�
IL�
GL�

!�
��
'*

�R+
T�

R�T������	���

�������� �	���	��,��� �������

L�
EL�
IL�

R�T������

�������� �	���	��,��� ������

Figure 7: Energy consumption.

CPU(s) takes the largest portions, which are 74.37%, 56.5%,

and 74.28% for K-Means, Binarization, and Sobel, respec-

tively. Due to the great differences between CPU and FPGA

in computational architecture, the computational complexity

and energy consumption of an application running on a host

CPU are quite different from running on FPGA.

Fig. 7b shows the breakdowns of the energy consumption

of the three applications when they are executed on RISP.

Table II and Table IV demonstrate the differences in terms of

computational complexity for the three applications running

on Baseline and RISP. An application’s FPGA utilization

indicates its computational complexity on RISP. The FPGA

utilization of an application is mainly determined by the

number of slices, LUTs (lookup table), and DSP48E (digital

signal processing 48E) that have been used by the applica-

tion. All values shown in Table IV are obtained by running

the Vivado [23] tool for the three applications. By comparing

these two tables, we can see that Soble has the highest

CPB value when it runs on Baseline. However, K-Means

has the highest computational complexity when it runs on

RISP because its FPGA utilization is the highest (see Table

IV). Energy consumption of an application is also correlated

to FPGA utilization when it is running on RISP. Thus, K-

Means has the highest power as shown in Table IV.

For K-Means, RU consumes the most energy. For Bina-

rization and Sobel, their energy consumption taken by RU

only accounts for around 50% of total energy consumption.

By comparing Fig. 7a and Fig. 7b, we find that compared

to Baseline processing the same data set with 16 channels

RISP could reduce energy consumption by 2.2× , 32×, and

161× for K-Means, Binarization, and Sobel respectively. We

can find the values of CPB from Table II and derive FPGA

utilization from Table IV. From these two tables, we notice

that Sobel has the highest CPB value but lowest FPGA

utilization, which implies that more energy consumption can

be saved by using RISP. That is why Sobel enjoys the highest

energy efficiency. This also explains why K-Means receives

the lowest energy consumption reduction (i.e., 2.2x).

C. Reconfigurablity of RISP

In this section, we demonstrate how RISP can judiciously

select an appropriate number of channels to serve an appli-

cation under a constraint of power or a bandwidth bottleneck

of the host interface. Based on the performance model for

RISP (see Eq. (8)), we can see that for each application

there is a correlation between the number of channels used

and data processing (including both data transfer and data

analysis) bandwidth, which is equal to D (i.e., the size of raw

data) divided by TRISP (see Eq. (8)). Similarly, based on

the energy consumption model (see Eq. (9)) and Table III,

for each application running on RISP there is a correlation

between power of RISP and the number of channels used.

The power of RISP for an application is defined as the total

energy consumed by the application divided by its execution

time TRISP . Hence, for a particular application running on

RISP, the following two general functions can be used to

describe the two correlations.

Power = fpower(nch). (11)

Processing bandwidth = fpb(nch). (12)

When the host CPU packages all information of an

application into a request (see Step 1 in Fig. 1a), the two

functions are also included. The embedded processor then

configures RU (see Step 2 in Fig. 1) based on the two

functions to decide an appropriate number of channels to use

in order to satisfy either a power constraint or a host interface

bandwidth bottleneck. To discover two specific functions for

a particular application to replace the two general functions,

we first calculate data processing bandwidth in terms of

GB/second and power in terms of Watt for the three appli-

cations running on RISP at FPGA clock frequency of 100

MHz based on the performance model (i.e., Eq. (8)) and

energy consumption model (i.e., Eq. (9)). Fig. 8 shows the

results of these two metrics when the number of channels

varies from 4 to 64. For each application, from Fig. 8 one

can see that there exist two hidden curves: one is formed by

the values of data processing bandwidth (i.e., the heights of

data processing bandwidth bars in Fig. 8a) and the other is

created by the values of power (i.e., the heights of power

bars in Fig. 8b).

Therefore, two linear regression functions can be obtained

by curve-fitting. For example, the two linear regression

functions for Sobel are presented in Eq. (13) and Eq.

Table III: Energy parameters [8][11]

PNV M active 66 mW PNV M idle 16.5 mW
PDRAM active 500 mW PDRAM idle 350 mW
Pcontroller active 150 mW Pcontroller idle 75 mW
PDDR 360.4 mW PhostChipset 6 W
EPC 0.9 nJ/Ins PRUidle 24 mw
PRUactive See Table IV
PIO active SATA: 7 W, PCIex4: 35 W

Table IV: FPGA utilization and power for 16 channels

Applications Slices LUTs DSP48E Power (w)
K −Means 23728 76368 0 30.8864
Binarization 144 96 48 1.20016

Sobel 144 256 0 1.20016

200

(a) Processing bandwidth (b) Power

0

5

10

15

4 8 16 32 64

Ba
nd

w
id

th
 (G

B/
s)

Number of channels
K-Means Binarization Sobel

1

10

100

1000

4 8 16 32 64

Po
w

er
 (W

) l
og

10

Number of channels
K-Means Binarization Sobel

Figure 8: Processing bandwidth and power.

(14), respectively. Now, we use Sobel as an example to

illustrate how a 64-channel RISP-based SSD leverages its

reconfigurability to meet the power constraint. Base on our

experimental results, for Sobel the power of RISP varies

from 1.9 to 3.8 Watts when RU is running at 100 MHz.

Since the power budget of a typical modern SSD is normally

3 Watts [20], RISP will adjust the number of channels so that

the power constraint will not be violated. From Eq. (13) we

can derive that the number of channels should be no more

than 36 in order not to exceed the 3-Watt constraint. After

36 is plugged into Eq. (14), we find that the maximal data

processing bandwidth of RISP is 6.9 GB/s. Thus, RISP only

activates 36 channels while powering off all rest 28 channels

to satisfy the power constraint.

Power = 1.858 + 0.032 ∗ nch (13)

Processing bandwidth = 0.19 ∗ nch (14)

If power is not a concern for an application, is it a good

idea to use all RISP channels to run an application? We find

that the answer is no. The reason is that if the host interface

bandwidth becomes a performance bottleneck using all RISP

channels for a low data processing complexity application

(e.g., Sobel) could waste energy without any performance

gains. Assume that RISP has 64 channels and the host

interface in Fig. 1a is SATA3.2 whose bandwidth is 1.97

GB/s (see Table II). With 64 RISP channels, based on Eq.

(14) RISP could deliver a data processing bandwidth of

12.16 GB/s for Sobel, which is denoted as PB. Then the

output bandwidth of the results should be PB/β = 12.16

GB/s (β=1 for Sobel, see Table II), which is higher than

the host interface bandwidth (i.e., 1.97 GB/s). Consequently,

some RISP channels will be in an idle status, which simply

wastes energy without any performance improvement. In

this scenario, RISP only needs to provide a data processing

bandwidth that matches the host interface bandwidth. Thus,

based on Eq. (14), it only needs to activate 10 out of 64

channels for Sobel to reach the host interface bandwidth

bottleneck. Therefore, RISP only configures the 10 process-

ing cells on the 10 channels. In other words, only the FPGA

fabric resources (i.e., LUTs, DSP, etc.) of the 10 channels

are deployed. Under this situation, the 10 processing cells

Table V: The impact of reconfigurability on energy

Deactive RF Active RF Reduction
nch E(J) nch E(J)

K-Means 64 11.7001 51 11.6801 0.17%
Binarization 64 0.7183 31 0.4274 40.50%

Sobel 64 0.624 10 0.1425 77.17%

need to process all data from the 64 channels and the public

processing cell is in charge of switching a group of channels

to a particular processing cell. For example, processing cell

on RISP channel 0 processes data from channel 0 to channel

5, processing cell on RISP channel 6 takes care of data from

channel 6 to 11, and so forth.

Based on Eq. (13) and Eq. (9), RISP provides an ad-

ditional 77.2% energy saving for Sobel due to its re-

configurability. Under the same host interface bandwidth

bottleneck and settings, the reconfigurability of RISP could

save additional energy by 40.5% (31 out of 64 channels) for

Binarization and 0.2% (51 out of 64 channels) for K-Means.

Table V summarizes energy savings due to the reconfigura-

bility of RISP. RF in Table V stands for reconfigurability.

VI. CONCLUSION

Big data analysis increasingly demands a high perfor-

mance data processing architecture. Although existing ISP

techniques can substantially improve data processing per-

formance, they unnecessarily use all NVM channels for

all applications all the time. In this paper, we propose a

reconfigurable ISP technique called RISP, which can save

energy without any performance degradation due to its

reconfigurability. In the future work, we plan to investigate

how to utilize features of emerging NVM technologies like

byte addressability to further improve ISP efficiency.

VII. ACKNOWLEDGMENTS

This work is sponsored by the U.S. National Science

Foundation under grant CNS-1320738.

REFERENCES

[1] A. Acharya, M. Uysal, and J. Saltz. Active disks:

Programming model, algorithms and evaluation. ACM
SIGPLAN Notices, 33(11):81–91, 1998.

[2] A. M. Caulfield, T. I. Mollov, L. A. Eisner, A. De,

J. Coburn, and S. Swanson. Providing safe, user

space access to fast, solid state disks. ACM SIGARCH
Computer Architecture News, 40(1):387–400, 2012.

[3] S. Che, J. Li, J. W. Sheaffer, K. Skadron, and J. Lach.

Accelerating compute-intensive applications with gpus

and fpgas. In Application Specific Processors, 2008.
SASP 2008. Symposium on, pages 101–107. IEEE,

2008.

[4] S. Cho, C. Park, H. Oh, S. Kim, Y. Yi, and G. R.

Ganger. Active disk meets flash: A case for intelligent

201

ssds. In Proceedings of the 27th international ACM
conference on International conference on supercom-
puting, pages 91–102. ACM, 2013.

[5] S. Cho, C. Park, Y. Won, S. Kang, J. Cha, S. Yoon, and

J. Choi. Design tradeoffs of ssds: From energy con-

sumptions perspective. ACM Transactions on Storage
(TOS), 11(2):8, 2015.

[6] K. Czechowski, V. W. Lee, E. Grochowski, R. Ronen,

R. Singhal, R. Vuduc, and P. Dubey. Improving the

energy efficiency of big cores. In ACM SIGARCH
Computer Architecture News, volume 42, pages 493–

504. IEEE Press, 2014.

[7] A. De, M. Gokhale, R. Gupta, and S. Swanson.

Minerva: Accelerating data analysis in next-generation

ssds. In Field-Programmable Custom Computing Ma-
chines (FCCM), 2013 IEEE 21st Annual International
Symposium on, pages 9–16. IEEE, 2013.

[8] E. Grochowski and M. Annavaram. Energy per instruc-

tion trends in intel microprocessors. Technology@ Intel
Magazine, 4(3):1–8, 2006.

[9] B. Gu, A. S. Yoon, D.-H. Bae, I. Jo, J. Lee, J. Yoon,

J.-U. Kang, M. Kwon, C. Yoon, S. Cho, et al. Biscuit:

A framework for near-data processing of big data

workloads. In Computer Architecture (ISCA), 2016
ACM/IEEE 43rd Annual International Symposium on,

pages 153–165. IEEE, 2016.

[10] G. Hong et al. Analysis of peak current consumption

for large-scale, parallel flash memory. In Workshop
for Operating System Support for Non-Volatile RAM
(NVRAMOS 2011 Spring)(Jeju, Korea, April 2011),
2011.

[11] Intel. Intel ssd data center tool. https:

//downloadcenter.intel.com/download/23931/

Intel-Solid-State-Drive-Data-Center-Tool, 2016.

[12] Z. István, D. Sidler, and G. Alonso. Caribou: intel-

ligent distributed storage. Proceedings of the VLDB
Endowment, 10(11):1202–1213, 2017.

[13] I. Jo, D.-H. Bae, A. S. Yoon, J.-U. Kang, S. Cho,

D. D. Lee, and J. Jeong. Yoursql: a high-performance

database system leveraging in-storage computing. Pro-
ceedings of the VLDB Endowment, 9(12):924–935,

2016.

[14] S.-W. Jun, M. Liu, S. Lee, J. Hicks, J. Ankcorn,

M. King, S. Xu, et al. Bluedbm: An appliance for big

data analytics. In Computer Architecture (ISCA), 2015
ACM/IEEE 42nd Annual International Symposium on,

pages 1–13. IEEE, 2015.

[15] G. Koo, K. K. Matam, H. Narra, J. Li, H.-W. Tseng,

S. Swanson, M. Annavaram, et al. Summarizer: trad-

ing communication with computing near storage. In

Proceedings of the 50th Annual IEEE/ACM Interna-

tional Symposium on Microarchitecture, pages 219–

231. ACM, 2017.

[16] A. Nafkha and Y. Louet. Accurate measurement of

power consumption overhead during fpga dynamic

partial reconfiguration. In Wireless Communication
Systems (ISWCS), 2016 International Symposium on,

pages 586–591. IEEE, 2016.

[17] R. Narayanan, B. Ozisikyilmaz, J. Zambreno,

G. Memik, and A. Choudhary. Minebench: A

benchmark suite for data mining workloads. In

Workload Characterization, 2006 IEEE International
Symposium on, pages 182–188. IEEE, 2006.

[18] I. Pitas. Digital image processing algorithms and
applications. John Wiley & Sons, 2000.

[19] J. Reinders. VTune performance analyzer essentials,

volume 14. Intel Press, 2005.

[20] Samsung. Solid state drives. http://www.samsung.

com/us/computing/memory-storage/solid-state-drives/

s/ /n-10+11+hv22y+zq29m/, 2017.

[21] D. Tiwari, S. Boboila, S. S. Vazhkudai, Y. Kim, X. Ma,

P. Desnoyers, and Y. Solihin. Active flash: towards

energy-efficient, in-situ data analytics on extreme-scale

machines. In FAST, pages 119–132, 2013.

[22] J. Wang, D. Park, Y.-S. Kee, Y. Papakonstantinou,

and S. Swanson. Ssd in-storage computing for list

intersection. In Proceedings of the 12th International
Workshop on Data Management on New Hardware,

page 4. ACM, 2016.

[23] Xilinx. https://www.xilinx.com/products/design-tools/

vivado.html.

[24] Xilinx. Xilinx virtex-7 fpga vc707 evaluation

kit. https://www.xilinx.com/products/boards-and-kits/

ek-v7-vc707-g.html#hardware.

[25] Xilinx. 7 series fpgas configuration user guide.

https://www.xilinx.com/support/documentation/user

guides/ug470 7Series Config.pdf, 2017.

202

