
A File System Bypassing Volatile Main Memory: Towards A
Single-Level Persistent Store

Deng Zhou
San Diego State University

San Diego, CA
dzhou.ustc@gmail.com

Wen Pan, Tao Xie
San Diego State University

San Diego, CA
{wpan,txie}@sdsu.edu

Wei Wang
Micron Technology Inc.

Milpitas, CA
wwanga@micron.com

ABSTRACT
Existing persistent memory (PM) based file systems rely on a DRAM
and PM hybrid store. Although a hybrid store does boost system per-
formance while avoiding some current PM limitations like limited
endurance, we envision that with more advances PM technologies
could provide applications with a single-level persistent store in the
not-so-distant future. As a first step to explore this direction, in this
paper we design, implement, and evaluate a new persistent memory
file system called SPFS (Single-level Persistent File System), which
completely bypasses conventional DRAM-based volatile main mem-
ory. Unlike all existing PM-based file systems, SPFS never leverages
DRAM to manage its metadata. Thus, redundant copies of metadata
in volatile main memory (e.g., a copy of an inode in DRAM) and
data movements between the two memories (e.g., copying an inode
from PM to DRAM) can be totally eliminated. The goal of this paper
is to explore how to manage files and their metadata with guaranteed
data consistency on PM without the support of DRAM, which makes
a first step towards the ultimate success of a single-level persistent
store. Our experimental results demonstrate that SPFS outperforms
traditional DRAM-based in-memory file systems ramfs and tmpfs in
most cases. Besides, its performance is only moderately worse than
that of NOVA, a state-of-the-art PM-based file system.

CCS CONCEPTS
• Software and its engineering File systems management;

KEYWORDS
file system, persistent memory, single-level persistent store, pool-
based metadata management, metadata dual-copy

ACM Reference Format:
Deng Zhou, Wen Pan, Tao Xie, and Wei Wang. 2018. A File System By-
passing Volatile Main Memory: Towards A Single-Level Persistent Store. In
CF ’18: CF ’18: Computing Frontiers Conference, May 8–10, 2018, Ischia,
Italy. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3203217.
3203277

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CF ’18, May 8–10, 2018, Ischia, Italy
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5761-6/18/05. . . $15.00
https://doi.org/10.1145/3203217.3203277

1 INTRODUCTION
Persistent memory (PM, also called storage class memory or SCM
[22]) is defined as a byte-addressable non-volatile memory (NVM)
that can be directly connected to the main memory bus [6]. Emerg-
ing PM technologies include 3D XPoint [3], phase change memory
(PCM) [10], spin-transfer torque memory (STT-RAM) [11], and
resistive memory (RRAM) [13]. They possess some desirable fea-
tures like byte-addressability, high-capacity, low cost as well as low
energy-consumption compared to DRAM, and latencies close to that
of DRAM [6][5]. For example, the latencies of PCM for read and
write reach 50 ns and 150 ns, respectively [16]. In January 2016, In-
tel revealed a 6 TB 3D XPoint DDR4 DIMM, which has 1,000 times
greater endurance than NAND flash and is 10 times denser than
DRAM [7]. In a nutshell, they exhibit a huge potential to become a
viable DRAM alternative.

To fully exploit the low latency and byte-addressability of PM,
much effort has been recently made to build a DRAM and PM
hybrid store where a PM device is placed side-by-side with DRAM
on the memory bus and can be accessed by a CPU through normal
load/store instructions [22][6][5][16][15][19][23]. In such a hybrid
store, most modules of an operating system (e.g., the virtual memory
manager) are still running on a DRAM system while a PM-based file
system is managing user data on a PM device [22][6][5][23]. The
two memories share a single address space but their space and data
are separately managed. Fig. 1a shows the architecture of a hybrid
store. Prior studies [22][6][5][4][23] show that a hybrid store can
greatly boost the performance of a PM-based file system as it allows
applications to fully exploit the complementary features of DRAM
and PM in terms of performance, durability, scalability, and energy
consumption. For example, in a hybrid store all existing PM-based
file systems leverage DRAM to manage their metadata so that two
major limitations of current PM, a relatively low speed and limited
endurance, can be avoided. In addition, there is no need to maintain
metadata consistency in DRAM.

However, DRAM is starting to hit the density and power ceiling
due to technology scaling challenges [19][17]. Limited capacity and
energy inefficiency make it hard for DRAM to meet the fast grow-
ing needs of data-intensive applications where TB-scale data are
generated and stored [21]. On the other hand, PM technologies are
generally more energy-efficient and denser than DRAM. Moreover,
they still have considerable room to further improve in various re-
spects (e.g., endurance [5]). Therefore, it is reasonable to speculate
that in the not-so-distant future PM could provide applications with a
single-level persistent store where only a PM device is used to serve
as main memory [14]. The structure of a single-level persistent store
is depicted in Fig. 1b. Although a hybrid store already demonstrated
its efficacy through the excellent performance of existing PM-based

97



CF ’18, May 8–10, 2018, Ischia, Italy Deng Zhou, Wen Pan, Tao Xie, and Wei Wang

Application

OS
file system

malloc/free POSIX interface

DRAM PM

CPU

OS VMM SPFS

CPU

PM

(a) (b)

Application

malloc/free POSIX interface

Storage partitionMemory 
partition

7.. "�1.�CBTFE

Figure 1: (a) Hybrid; (b) single-level persistent.

file systems [6][23], we argue that it is worth exploring the develop-
ment of a single-level persistent store now. In fact, compared with
its hybrid counterpart, a single-level persistent store has some de-
sirable advantages. First, redundant copies of metadata in DRAM
become unnecessary. Existing PM-based file systems [22][6][5][23]
generate redundant copies of metadata. For example, when a file
is opened a copy of its inode is created in DRAM to maintain its
status [23], an old fashion designed for traditional two-level storage
model (i.e., DRAM-based main memory and disk-based secondary
storage). However, the inode of the file actually already exists in a
PM device, which can also be directly accessed by the CPU. Elimi-
nating metadata redundancy not only saves memory space but also
simplifies their maintenance. Second, a single-level persistent store
has a higher energy efficiency. This is mainly because DRAM is
energy inefficient due to its inherent periodic refresh mechanism. In
addition, moving metadata between DRAM and PM wastes energy.
A study shows that a single-level persistent store can improve energy
efficiency by eliminating the instructions and data movement [14].
Third, a single-level persistent store can quickly recover from a soft-
ware failure as it can correct the software error without reinitializing
the system-wide memory space. Fast software failure recovery is
essential for a computing node in a cloud service or a data center
because failed nodes could result in a degraded level of service.
On the contrary, a hybrid store usually requires a long warming up
period as it needs to reinitialize the entire DRAM space and all OS
data structures.

The single-level persistent store architecture, however, changes
the assumptions that motivated the design of current operating sys-
tems, and thus, requires a new design of OS [4]. Designing a com-
pletely new OS devoted to a single-level persistent store is our long
term goal, which is out of the scope of this research. In this paper,
we design, implement, and evaluate a new file system called SPFS
(Single-level Persistent File System), which is dedicated to a single-
level persistent store. Since a file system is an integral part of an
OS, SPFS makes a first step towards our long term goal. Unlike all
existing PM-based file systems [22][6][5][23], SPFS completely by-
passes the traditional DRAM-based volatile main memory. It never
leverages DRAM to manage its metadata. Rather, all operations on
its metadata are carried out only on a PM device. For compatibility
reasons, SPFS also adopts the POSIX file system interfaces so that
all existing applications can work on it. However, unlike all existing
PM-based file systems [22][6][5][23], SPFS assumes that there is

only one underlying PM device on which both the other parts of an
OS and itself are running. The single PM device is logically split
into two partitions during a system boot. The memory partition is
used as a main memory and the storage partition is considered as
a storage device for a file system (see Fig. 1b). The capacities of
the two partitions can be dynamically tuned based on applications’
requirements. To fully exploit the random access capability and
byte-addressability of PM, SPFS employs a pool-based metadata
management strategy (see Section 4.2). To ensure metadata consis-
tency and reliability, SPFS maintains two copies of each file system
metadata (see Section 4.3). For data consistency, SPFS leverages
the copy-on-write (CoW) scheme (see Section 4.3). SPFS targets
single-node systems. We implement SPFS in Linux 3.14 kernel and
evaluate it under two benchmarks.

The rest of this paper is organized as follows. Section 2 briefly
introduces the related work and the motivation. The design and
implementation details are presented in Section 3 and Section 4,
respectively. Section 5 evaluates the performance of SPFS. Section
6 concludes this research.

2 BACKGROUND AND MOTIVATION
Conventional in-memory file systems can be generally categorized
into two camps: DRAM-based [1][2][20] and PM-based [22][6][5][23].
ramfs is a simple file system that exports Linux’s disk caching mech-
anisms (e.g., page cache) as a dynamically resizable RAM-based
file system [2]. ramdisk, on the other hand, emulates a disk drive
by using the normal DRAM in main memory [1]. Rather than using
dedicated physical memory such as a "RAM Disk", tmpfs uses the
operating system page cache for file data [20]. It is a file system
based on SunOS virtual memory resources.

With the advances of PM, four PM-based file systems have been
proposed in chronological order: BPFS [5], SCMFS [22], PMFS
[6], and NOVA [23]. Condit et al. proposed BPFS, which uses a
technique called short-circuit shadow paging to provide atomic, fine-
grained updates to persistent storage [5]. There is no kernel level
implementation of BPFS. Wu and Reddy developed SCMFS, which
is directly built on virtual memory space and lays out files as large
contiguous virtual address ranges [22]. However, it lacks of a mecha-
nism to ensure data/metadata consistency [22][23]. PMFS developed
by Dulloor et al. manages a PM device completely independent of
the operating system’s virtual memory management [6]. It employs
the conventional block file system data layout and management
scheme for a PM device [6]. NOVA, a state-of-the-art PM-based file
system, extends traditional log-structured file system techniques to
exploit the characteristics of a hybrid memory system [23]. Xu and
Swanson demonstrated that NOVA outperforms PMFS in almost
all cases [23]. All of them except BPFS [5] maintain the traditional
POSIX file system interface. They all exhibited significant perfor-
mance improvements compared with either traditional DRAM-based
in-memory file systems [22] (e.g., ramfs [2] and tmpfs [20]) or block
file systems like Windows NTFS on a RAM disk [5] and Linux Ext4
on an Intel PMDB (persistent memory block driver) platform [6][23].
NOVA [23] is the only one that has ever been compared with one of
its peers. Only PMFS [6] and NOVA [23] are open source.

All existing PM-based file systems [22][6][5][23] target a hybrid
store so that the complementary benefits of DRAM and PM can be

98



A File System Bypassing Volatile Main Memory: Towards A Single-Level Persistent Store CF ’18, May 8–10, 2018, Ischia, Italy

reaped. They all shed new light on how to exploit the characteristics
of PM to boost file system performance. In this research, however,
we explore a different route. Instead of developing one more hybrid
store supported PM-based file system whose performance can beat
all existing ones, the enormous potential of a single-level persistent
store and its desirable advantages motivate us to implement a file
system dedicated to a single-level persistent store, which is a first
step towards our long term goal. To the best of our knowledge, SPFS
is the first in its kind.

3 SPFS DESIGN OVERVIEW
In a traditional computer system (e.g., a hybrid store system em-
ployed in [22][6][5][23]), all kernel data structures (e.g., process
related data structures, file system related data structures, etc.) stay
in the DRAM. In particular, Linux employs a virtual file system
(VFS) to manage all file system related data structures including
page caching, file system metadata (e.g., superblock, inodes, bitmap),
and dentry, which is created on-the-fly to facilitate a file search. In
an existing PM-based file system like PMFS [6] or NOVA [23], page
caching has been eliminated as the CPU can directly access files.
However, its file system metadata still have a copy in DRAM. When-
ever there is an update on a metadata copy in DRAM, the system
has to synchronize the update to the metadata on PM. In addition,
dentry has to be created again in DRAM after each reboot. Thus, the
system has a long warming up period before it can provide service.

Our first design choice is to transfer file system metadata manage-
ment from DRAM to PM. Thus, all file system related data structures,
which are originally maintained in DRAM, are now managed in PM.
We believe that decoupling a file system from DRAM-based main
memory is an initial step towards a new OS dedicated for a single-
level persistent store where DRAM does not exist. Since all metadata
are managed in-place within the file system, a DRAM copy is no
longer needed. The I/O path is also simplified as the DRAM layer is
not needed to manage file system metadata. Besides, dentry does not
have to be created on-the-fly after each reboot as it now stays in PM.
This design choice allows the system to have a shorter warming up
period as tasks such as loading file system metadata to DRAM and
creating dentry on-the-fly can be skipped.

Our second design choice is to use a partition of a PM device (i.e.,
memory partition shown in Fig. 1b) to hold all non-VFS modules of
an OS (e.g., process management, main memory management, etc.)
and their data structures as DRAM no longer exists in a single-level
persistent store. The main consideration is to reuse all existing non-
VFS modules of an OS so that the modifications of an existing OS
can be minimized. Note that all these non-VFS modules treat the
memory partition as DRAM. Similar to an existing computer system,
all these modules (i.e., their executable files and configure files)
are initially stored in the storage partition of the same PM device.
During a system reboot, theses modules are loaded into the memory
partition and then build their data structures on-the-fly there. If any
of them fails or runs into an error, a system reboot takes place to
re-initialize and re-build all data structures of these modules, just like
a current computer system does. Thus, there is no need to maintain a
consistent status for their related data structures. When there are free
spaces in the storage partition, the capacity of the memory partition

ino: 4B

rec_len: 2B

name_len: 2B

“ dir.c”:5B

ino: 4B

rec_len: 2B
name_len: 2B

“readme.txt”:10B

13B

18B

...

ino: 4B

rec_len: 2B

name_len: 2B

“dir.c”: 256B

ino: 4B

rec_len: 2B
name_len: 2B

“ readme.txt”: 256B

264B

264B

...

(b) varied size(a) fixed size

d_list: 16B

status: 4B

name_len: 4B

d_ino: 8B 64B

off_set: 8B

name: 24B

...

(c) Pool based

Figure 2: The structure of dentry.

can be increased in real-time based on an application’s needs, which
offers users a great flexibility in system configuration.

Our third design choice is to abandon traditional block-oriented
metadata management techniques. We find that there are two prob-
lems of a block-oriented on-disk layout. First, conventional directory
management techniques are inefficient. For a traditional Unix/Linux
file system, there are two design options for dentry management. The
first one uses a fixed size entry that can accommodate the longest
file name (e.g., Ext4 allows up to a 255-byte long file name) for all
files (see Fig. 2a). Clearly, this option could waste memory space
when most files have a short name. The second option employs
a flexible entry size scheme where each entry has a variable (i.e.,
rec_len in Ext2) to record its size (see Fig. 2b). Although it can save
space, it demands a full scan of all data blocks of a directory, which
is time-consuming. Second, space reservation techniques used in
current metadata management fail to dynamically respond to the
changes of workloads. For instance, it is difficult to re-configure
a formatted volume/partition. In order to fully exploit the random
access capability and byte-addressability of PM, SPFS employs var-
ious pools to manage file system metadata. The sizes of the pools
can be dynamically adjusted whenever needed. As a result, SPFS
dentry data structure design (see Fig. 2c) does not have the problems
associated with Ext2 and Ext4 dentry management (see Section 4.2).
We argue that it is more appropriate to use a memory management
method rather than a block-oriented technique to manage file system
metadata in PM. Although pool-based memory management [12] is
not new, we are the first to use it to manage filesystem metadata.

4 SPFS IMPLEMENTATION
We implement SPFS in Linux kernel 3.14.15 of x86_64 architecture.
It has about 8,000 lines of C code. In this section, we first explain how
SPFS manages space. Next, we describe its metadata management
strategy followed by data and metadata consistency mechanisms.

4.1 Space Management
SPFS employs zones to manage its space. However, unlike a tra-
ditional Linux zone technique, the number of zones in SPFS can
be configured initially and each zone is acting as a partition for
data isolation. Since the buddy allocator used in a Linux kernel has
proved to be an efficient space allocator, SPFS uses it to manage its
free space. When a write request arrives, if its size is smaller than 2

99



CF ’18, May 8–10, 2018, Ischia, Italy Deng Zhou, Wen Pan, Tao Xie, and Wei Wang

MB SPFS always allocates a data block that contains n 4-KB pages,
where n is a power of 2. Note that the size of the newly allocated data
block should be the smallest value that is no less than the request’s
size. For example, assume that the size of the request is 12 KB.
SPFS tries to allocate a 16 KB data block (i.e., 4 4-KB pages) for
it. If a write request’s size is larger than 2 MB, SPFS will allocate
multiple 2-MB data blocks to accommodate it. A volume is a file
system instance that has its own metadata and namespace. In our
design, while one SPFS volume has to be located within a particular
zone, one zone can have multiple SPFS volumes. Each volume is
essentially a virtualized file system.

4.2 Metadata Management
Each file system instance/volume maintains a series of pools includ-
ing an inode pool, multiple name pools, and a number of extent
node pools. SPFS utilizes a uniform pool structure for all metadata
and each pool can be configured during the initialization process.
The structure of a pool is shown in Fig. 3. All free metadata entries
are indexed by free lists. Thus, allocating or freeing a metadata en-
try (hereafter, meta entry) can be finished in O(1) time. Each pool
contains a spectrum of variables to record its type ("Entry type",
e.g., inode), its size ("Entry size", the size of meta entries), the total
number of meta entries ("Total count"), the number of free meta
entries ("Free count"), an exclusive lock ("Pool lock") for serializing
update operations on these pool-level variables (e.g., "Total count"),
a pointer to the currently active block ("Active block index"), and
a pointer to the head of the block list ("Block list head"). Since
files that are created and have been accessed together will have a
high possibility to be accessed together again in the future, SPFS
tries to allocate the metadata of these files to the same block, which
improves the TLB (translation lookaside buffer) hit rate. Therefore,
in each pool structure SPFS maintains a pointer called "Active block
index", which always points to a block with free meta entries.

After a block is allocated, it is inserted into the block list. Each
block has a block head, which maintains multiple block-level vari-
ables. While "Total entry account" logs the total number of meta
entries within a block, "Free entry count" records the number of free
meta entries within a block. "Block entry type" is inherited from the

Entry type

Entry size

…
Meta entry n

Block 1 Block 2 Block m

Block headBlock head Meta entry 1 Meta entry 2 ...

...

Total entry count

Free entry count

Free countBlock entry type

Block lock

Block size

Entry head

Entry ptr

Free countEntry status

Block type

Entry info

Entry 
(e.g., inode, 

dentry, name)

Pool

Entry array

Block list head

Free head

Total count

Free count

Block list 
head

Active 
block index

Pool lock

...

Meta entry 2

Meta entry j

Meta entry i Free

Used

Block ptr

Figure 3: The structure of a pool.

pool-level variable "Entry type" (see Fig. 3). "Block lock" makes
sure that in a particular block only one meta entry can be updated
by a thread at a time. However, multiple threads can update meta
entries in distinct blocks simultaneously. Note that when a thread
updates a meta entry in a block it does not need to hold the "Pool
lock". However, after a thread grabs a free meta entry from a block, it
needs to acquire the "Pool lock" in order to update the value of "Free
count". The size of a block (i.e., "Block size") is configurable and is
set to 2 MB in current SPFS implementation. The number of blocks
in a pool can be dynamically changed based on the requirements of
applications. In order to improve the allocation efficiency and reduce
TLB misses, SPFS ensures that the size of each block is relatively
large. A large block size enables SPFS to map a metadata block
using the huge-page mapping technique, which alleviates the TLB
miss problem.

Each meta entry has two parts: OOB (out-of-band) area and
metadata area (see Fig. 3). Two important items in the OOB area
are "Entry head" and "Entry status". The "Entry head" field keeps a
pointer to the meta entry block that an meta entry belongs to so that
it can be returned to the block when it is freed. The "Entry status"
field is used to trace the status of an meta entry. For example, when
a meta entry is just allocated and has not been linked to a file system
yet, this field is marked as allocated. When it is freed, this field
is then changed to unused. When it is under an editing condition
(e.g., an inode is being updated in Fig. 4b), this field is logged as
editing. After the editing has been done (e.g., the updates of an inode
have been flushed from cache lines to PM), the field then restores to
consistent. This field can enhance SPFS metadata consistency.

Dentry: In order to fully exploit the random access capability of
PM, we re-design dentry management. The length of each dentry is
fixed to 64 bytes. In addition to the inode id and file name, an entry
also contains multiple other variables.

File Name: In order to manage and search file names more effi-
ciently, SPFS uses an array of pools to manage long file names. To
avoid wasting memory space, several pools are provided to serve file
names with various lengths (i.e., less than 64 bytes, between 64 and
127 bytes, between 128 and 191 bytes, between 192 and 255 bytes,
and above 256 bytes). SPFS optionally provides a hash table for
name indexing. This option enables the file system to avoid storing
the same file name multiple times. In addition, with this option in
hand, the administrator can force the file system to store all the file
names in the name pools regardless of the length. As a result, each
entry can use the space that is originally assigned for a file name to
store a list node and a directory inode id. Thus, a file system is able
to search a file name from the hash table instead of going through
data block of the parent directory.

Super Block, Inode, and Directory: Since synchronization oper-
ations increase the risk of inconsistency, each SPFS volume stores a
super block within its data structure. When a file system is mounted,
it directly uses its super block instead of applying for a super block
from the kernel. Unlike a traditional file system, SPFS uses only
one inode for a file for all of its operations. Since the inode of the
in-memory copy has extra information that can be obtained on-the-
fly, SPFS divides the inode information into two parts: persistent
part maintained by a file system and memory part used by memory
management. The two parts are stored separately. In particular, SPFS
uses different pools to manage each part of the inode information.

100



A File System Bypassing Volatile Main Memory: Towards A Single-Level Persistent Store CF ’18, May 8–10, 2018, Ischia, Italy

Blk 1 Blk 2Blk 0 

Inode

test.txt

Extent nodes

 A write request 
(start addr: 88KB, 

size: 34KB)Extent nodes
Inode bak

64KB 32KB 16KB

Old block
Migrated data
New block

Unused

(a) Before write
Extent nodes

Copy
Blk 1 Blk 2Blk 0 

Inode
Extent nodes

64KB 32KB 16KB

Blk 1Blk 1

Inode bak

64KB
Newly allocated block 24KB

(b) During write

test.txt

Extent nodes

Blk 0 

Inode
Extent nodes

64KB

Blk 1Blk 1

Inode bak

64KB

24KB

(c) After write

test.txt

Figure 4: An example of data consistency maintenance.

For a large-size directory (i.e., a directory with more than 64 items
in it), similar to a traditional dentry allocation scheme, SPFS allo-
cates one or more 4 KB data blocks for it. For a small-size directory
(i.e., a directory with no more than 64 items in it), SPFS employs a
pool-based dentry allocation strategy. SPFS divides small-size direc-
tories into three categories: 16 items or fewer, between 17 items and
32 items, more than 32 items but no more than 64 items. The pool-
based dentry allocation strategy has the following benefits. First, it
allows all directories that are created or modified during the same
period of time to stay in one 2 MB block. Consequently, TLB misses
caused by directory data accesses can be reduced. Second, in the
traditional dentry allocation scheme, since each 4 KB page requires
a page table entry, there are 2,048 entries in the page table when
2,048 such small-size directories are managed. However, there is
only one entry in the page table when a pool-based dentry allocation
strategy is employed. Obviously, the pool-based dentry allocation
strategy can largely decrease the number of entries in the page table,
which in turn improves the TLB hit rate. Third, it saves memory
space. For example, the traditional dentry allocation scheme needs
a 8 MB memory space to store 2,048 such small-size directories.
However, the pool-based dentry allocation strategy only requires a
2 MB memory space. Thus, it saves 75% memory space. Finally, it
reduces the use of 4 KB data blocks, and thus, alleviates the memory
fragmentation problem.

4.3 Data and Metadata Consistency
In this sub-section, we first explain how SPFS enforces write order-
ing and atomicity. Next, we use an example to illustrate how SPFS
ensures consistency for data and metadata.

Enforcing ordering and atomicity: Both caches and memory
controllers can re-order writes before they arrive in memory in order
to enhance performance [5]. However, write re-ordering could lead
a file system to an inconsistent state if a crash happens before all
data have been written back to PM [5]. Similar to SCMFS [22],
SPFS also adopts the combination of MFENCE and CLFLUSH. The
main reason is that it does not require any specific hardware. Also,
the two instructions are currently available. One drawback of it is
that its performance penalty could be high [23]. Many file system
operations require atomicity in the sense that either all steps of a file
operation are successfully carried out or none of them has ever been
executed [23]. Without an atomicity guarantee, a power outage can
leave a data in an inconsistent state. Like BPFS [5] and NOVA [23],

SPFS uses 8-byte atomic update instructions to ensure the atomicity
of small writes like updating a pointer.

Data consistency: File systems normally use one of the following
two methods to support consistency [5]: journaling [23] and copy-on-
write (CoW) [5]. Apparently, journaling becomes less attractive due
to its double copy overhead and the associated write amplification
problem. Thus, similar to BPFS [5], SPFS also adopts CoW to
support data consistency. Besides, it always maintains two copies of
all file system metadata (e.g., inode, dentry, and indexing block) in
order to ensure meatadata consistency and reliability. For example,
each file has two copies of its inode: a primary inode and a backup
inode. We use an example in Fig. 4 to illustrate how SPFS maintains
data consistency.

Assume there is a file named test.txt, which consists of three data
blocks: 64 KB, 32 KB, and 16 KB (see Fig. 4a). It has two copies
of inode: a primary inode (i.e., Inode) and a backup inode (i.e.,
Inode bak). The contents of the extent nodes of these two inodes are
identical as they are pointers to the same three data blocks (see Fig.
4a). Also, the two inodes both have consistent in their "Entry status"
fields (see Fig. 3). Now, assume that a write request arrives. Its size
is 34 KB and its start address is 88 KB (i.e., an offset within the
file) (see Fig. 4a). In order to execute the write request, SPFS first
uses SPFS_recursive_alloc_blocks() to allocate a new 64 KB data
block for it (see Fig. 4b). Note that a data migration process will be
triggered if partial content of an old data block will be overwritten
by a write request. This is because SPFS needs to keep the valid
data (i.e., untouched data) of the old data block by copying it to
a newly allocated data block. In this example, 24 KB data (area
in grey) of the old data block Blk 1 needs to be migrated into the
newly allocated data block Blk 1 (see Fig. 4b). And then SPFS
writes the new data of 34 KB into the newly allocated data block Blk
1. Next, a number of 8-byte atomic write operations on Inode bak
separated by MFENCE instructions are carried out in the following
order: mfence()! changing the "Entry status" field of Inode bak
from consistent to editing indicating that an editing process on Inode
bak is about to begin ! mfence() ! logging the size of the new
data block! mefence()! updating the file size! mefence()!
updating the modification timestamp! mfence()! updating the
pointer of the second extent node to the new data block! mfence()
! changing its "Entry status" field back to consistent! mfence().
Only after all these 8-byte atomic metadata updating operations are
successfully committed on inode bak can SPFS start to modify the
contents of the primary inode accordingly (see Fig. 4c). Similarly,

101



CF ’18, May 8–10, 2018, Ischia, Italy Deng Zhou, Wen Pan, Tao Xie, and Wei Wang

before SPFS begins to update Inode, it first changes its "Entry status"
field from consistent to editing. After all updates have been done, its
"Entry status" then returns to consistent. Next, SPFS sends a positive
response to the caller to inform him that the write request has been
successfully executed. While the outlined diamond area in the new
data block Blk1 shown in Fig. 4c represents the 34 KB new data, the
diagonal stripe area stands for unused space. Note that for each file
an unused space can only exist in its last data block.

If a failure like a process crash or a power outage happens during
the process of writing the new data of 34 KB into the newly allocated
data block Blk 1 (see Fig. 4b), SPFS has no chance to send a positive
response to the caller. Thus, the caller knows that the write request
fails. Data consistency of the file is still guaranteed because the old
data of the file are untouched and the "Entry status" fields of the two
inodes are all in a consistent status (i.e., the pointers in both Inode
and Inode bak all point to the old data blocks). In next paragraph,
we explain how metadata consistency can also be guaranteed.

Metadata consistency and reliability: For a small size metadata
update such as updating a 64-bit pointer in the backup inode (i.e.,
Inode bak, see Fig. 4b), SPFS uses an atomic 8-byte write supported
by the processor to ensure its consistency. For each piece of file
system metadata, SPFS always maintains two copies of it to ensure
its consistency and reliability. We still use the example shown in
Fig. 4 to illustrate how a metadata dual-copy technique can ensure
metadata consistency. Since Inode and Inode bak are always updated
sequentially, at any time it is impossible that both of them are in an
editing status. If a power outage happens when SPFS is updating
one of them, after a system reboot only the following three cases
could exist: (1) Inode is in a consistent status while Inode bak is
in an editing status; in this case SPFS simply recovers Inode bak
by copying Inode to it; (2) Inode is in an editing status while Inode
bak is in a consistent status; in this scenario SPFS uses Inode bak to
re-construct Inode; (3) both Inode and Inode bak are in a consistent
status but Inode bak pointing to the new data block while Inode still
pointing to the old data; this rare situation takes place only when a
power outage happens right after SPFS finishes updating Inode bak
and just before it starts to change Inode accordingly; in this extreme
scenario SPFS uses Inode to overwrite Inode bak so that the two
copies are synchronized again. Note that only after both copies of
the inode have been successfully updated can SPFS inform the caller
that the write request is done. Otherwise, the caller can never receive
a "job done" response, in which case he knows that the request fails.

Our proposed metadata dual-copy technique not only ensures
metadata consistency but also enhances their reliability. Our design
decision is made based on following considerations. First, the CPU
overhead caused by journaling or CoW is comparable to that of
maintaining dual copies of metadata. For example, an update needs
to be written twice in journaling, which is similar to dual-copy
metadata updating. Second, the size of metadata is normally very
small compared with the data size in a file system. For instance,
the metadata overhead of most file systems including NTFS and
Ext4 is less than 3.5% [8]. In our SPFS experiments, we find that
in the worst case (i.e., Postmark) the extra copies of all metadata
only take 2.9% space of the entire file system. Besides, a PM device
normally has a larger capacity than a DRAM system. Thus, the
space cost of maintaining a dual copy for each file system metadata
is acceptable. Third, metadata normally are frequently updated. As

a result, metadata are more likely to be corrupted than normal data.
Obviously, having a second copy of a piece of metadata can enhance
its availability and reliability. In case a PM hardware failure corrupts
one copy of an inode, SPFS can simply use the other copy to re-
construct it in a new location. Note that in an existing PM-based
file system there are also two copies of metadata (i.e., one inode
in DRAM and one inode in PM). However, they are just redundant
copies, which can neither ensure metadata consistency nor enhance
metadata reliability.

5 EVALUATION
In this section, we evaluate the performance of SPFS. Like SCMFS
[22], we compare SPFS with two existing memory based file systems
ramfs [2] and tmpfs [20] as well as one block file system Ext2fs
running on a ramdisk [1]. Since SCMFS was also compared with the
three file systems under the same two benchmarks [22], we indirectly
compare SPFS with SCMFS. The comparisons between SCMFS and
SPFS are not accurate as the two file systems plus the three baselines
are tested under two different experimental setups. Still, they provide
us with some insights. Also, we conduct a group of experiments to
compare SPFS with NOVA [23]. The commit number of NOVA is
356a492 and we use its default configurations except memmap =
8G!8G. In fact, it is evident that SPFS is at a disadvantage relative to
its hybrid counterparts [22][6][5][23] in terms of performance. After
all, they do not need to guarantee metadata consistency in volatile
DRAM. On the other hand, maintaining metadata consistency in PM
incurs a high overhead in SPFS.

5.1 Experimental Setup
Due to the lack of real PM hardware, similar to existing PM-based
file systems [22][6][23], SPFS also uses volatile DRAM to emulate
a PM device. In other words, all experiments in this paper were
conducted on DRAM only. Since the Intel PMDB platform is not
publicly available and open-sourced NOVA does not provide an
interface to inject PM latencies, one has to use DRAM to emulate a
PM device in order to run NOVA. Thus, like SCMFS [22] as well
as open-sourced PMFS [6] and NOVA [23], all experimental results
presented in this section are based on the latency and bandwidth
of DRAM. All experiments are conducted on an iMac Mid 2011
computer, which has a quad core i5-2400 CPU (3.1 GHz) equipped
with 32 GB DRAM (four 8GB DDR3 PC3-10600 1333MHz 204Pin),
a 256 GB SSD, and a 2 TB hard disk. The maximal bandwidth of
DRAM is 21.2 GB/s. An Ubuntu 14.04 is running on the computer
with a customized Linux kernel. Since DRAM is volatile, we store
the entire PM partition as an image to the hard disk before a power
off and copy it back after a booting.

Since operating system needs enough memory space to ensure
a stable performance, we configure half of the total memory (i.e.,
16 GB) as the storage partition while the other half is used as main
memory partition. We use both IOzone [18] and Postmark [9] as
benchmarks in our experiments. In order to mimic an aged file
system, we run both benchmarks twice before we begin to collect
the results. Based on our observations, results of IOzone vary in
different running instances, so we run each configuration 10 times
and calculate an average value to represent a stable performance.
Postmark, however, shows us stable results on a configuration. Based

102



A File System Bypassing Volatile Main Memory: Towards A Single-Level Persistent Store CF ’18, May 8–10, 2018, Ischia, Italy

0

2

4

6

8

10

12

4K 8K 16K 32K 64K 128K 256K 512K 1M 2M 4M

Th
ro

ug
hp

ut
 (G

B
/s

)

Record length (byte)

SPFS ramfs tmpfs Ext2fs

(a) Sequential read

0

2

4

6

8

10

12

4K 8K 16K 32K 64K 128K 256K 512K 1M 2M 4M

Th
ro

ug
hp

ut
 (G

B
/s

)

Record length (byte)

SPFS ramfs tmpfs Ext2fs

(b) Random read

0

2

4

6

8

10

12

4K 8K 16K 32K 64K 128K 256K 512K 1M 2M 4M

Th
ro

ug
hp

ut
 (G

B
/s

)

Record length (byte)

SPFS ramfs tmpfs Ext2fs

(c) Reread

Figure 5: IOzone read performance.

0

2

4

6

8

10

12

4K 8K 16K 32K 64K 128K 256K 512K 1M 2M 4M

Th
ro

ug
hp

ut
 (G

B
/s

)

Record length (byte)

SPFS ramfs tmpfs Ext2fs

(a) Sequential write

0

2

4

6

8

10

12

4K 8K 16K 32K 64K 128K 256K 512K 1M 2M 4M

Th
ro

ug
hp

ut
 (G

B
/s

)

Record length (byte)

SPFS ramfs tmpfs Ext2fs

(b) Random write

0

2

4

6

8

10

12

4K 8K 16K 32K 64K 128K 256K 512K 1M 2M 4M

Th
ro

ug
hp

ut
 (G

B
/s

)

Record length (byte)

SPFS ramfs tmpfs Ext2fs

(c) Rewrite

Figure 6: IOzone write performance.

0
2
4
6
8
10
12

Seq.
write

Rewrite Seq.
read

Reread Random
read

Random
write

Av
er
ag
et
hr
ou
gh
pu
t(
G
B/
s)

SPFS NOVA

(a) NOVA and SPFS in IOzone

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.5K 1K 2K 4K 8K 16K 32K

Th
ro

ug
hp

ut
 (G

B
/s

)

Request size (byte)

SPFS ramfs tmpfs Ext2fs

(b) Postmark Read

0.0

0.1

1.0

10.0

0.5K 1K 2K 4K 8K 16K 32K

Th
ro

ug
hp

ut
 (G

B
/s

)

Request size (byte)

SPFS ramfs tmpfs Ext2fs

(c) Postmark Write

Figure 7: Comparisons with NOVA and Postmark performance.

on experimental results, we find that ramfs performs best in general
among all three baseline file systems.

5.2 IOzone Results
The IOzone benchmark creates a file with a configured size at the
beginning of each execution and then it runs an array of performance
tests on the file [18]. In the experiments, we measure performance of
sequential write and read, random read and write, as well as reread
and rewrite in terms of throughput. In our configurations, the file
size is set to 16 MB while the length of a record varies from 4 KB
(i.e., the smallest size IOzone allowed) to 4 MB. In fact, we find that
SPFS still outperforms the three baseline file systems when the file
size is set to 512 MB or even larger.

The results from IOzone are shown in Fig. 5, Fig. 6, and Fig. 7a.
In general, the performance of all four file systems improves as the
record length increases from 4 KB to 512 KB. All of them show their
peak throughput when the record length changes between 512 KB to
2 MB. The reason is that when record length is small CPU time on
pre-processing and post-processing takes a large percentage of the

total data accessing time. In addition, the two figures also show that
different file systems have a similar read throughput. This is because
a read process is similar among the four file systems. We notice that
when the record length is 4 KB, SPFS performs even worse than
Ext2fs in both read and write. In terms of read, this is because Ext2fs
can fully exploit page caching when the record length is 4 KB. In
terms of write, the reason is that when the record length is very small
the CPU overhead caused by SPFS metadata dual-copy technique
becomes dominant.

Fig. 5a shows that SPFS performs better than other file systems
in most cases on sequential read except 4 KB. On average, SPFS
improves the sequential read performance by 22.1%, 33.8%, 28.3%
over ramfs, tmpfs, and Ext2fs, respectively. The improvement comes
from SPFS XIP read optimization, which enables copying multiple
contiguous pages of data at a time. From Fig. 5b, compared with
ramfs, SPFS on average decreases performance by 4.4% under ran-
dom read workloads. From results in [22], we find that on average
SCMFS outperforms ramfs in random read by around 10%. The im-
plication is that SCMFS is moderately better than SPFS in random

103



CF ’18, May 8–10, 2018, Ischia, Italy Deng Zhou, Wen Pan, Tao Xie, and Wei Wang

read. In reread shown in Fig. 5c, SPFS outperforms ramfs, tmpfs,
and Ext2fs by 17%, 31%, and 28%, respectively.

The four file systems exhibit very different write performance.
In sequential write (see Fig. 6a), SPFS achieves the highest perfor-
mance improvement compared with ramfs. For example, in 2 MB
case its throughput improves 164% over ramfs while SCMFS only
improves around 15% [22]. On average, SPFS has a 75%, 87%, and
498% performance improvement compared to ramfs, tmpfs, and
Ext2fs, respectively (see Fig. 6a). In terms of random write, SPFS
performs worse than tmpfs when record size is no larger than 32 KB
(see Fig. 6b). However, it performs best in all other scenarios. On av-
erage, it improves performance by 81% compared to ramfs. However,
SCMFS was outperformed by both ramfs and tmpfs in most cases in
random write [22]. Even Ext2fs performs better than SCMFS when
the record length was between 64 KB and 512 KB [22]. In rewrite,
SPFS is able to raise performance by 33%, 30%, 79% on average
compared to ramfs, tmpfs, Ext2fs, respectively (see Fig. 6c). The
reason is that SPFS supports contiguous blocks copying.

We also compared the performance of NOVA and SPFS under
the IOzone benchmark. Experimental results of the two file systems
under IOzone are shown in Fig. 7a. The results demonstrate that
when the record length varies from 4 KB to 4 MB, on average
NOVA outperforms SPFS by 14.4%, 16.9%, 12.4%, 15.8%, 3.7% in
sequential read, random read, sequential write, reread, and rewrite,
respectively. In random write, on average SPFS outperforms NOVA
by 16.2%. This is because SPFS employs a pool-based metadata
management that can improve the locality of metadata.

5.3 Postmark Results
Postmark was designed to create a large pool of continually changing
files and to measure the transaction rates for a workload approximat-
ing a large Internet electronic mail server [9]. It is an I/O intensive
benchmark [22]. In our experiments, the number of files is set to
20,000 for read tests (see Fig. 7b) and 200,000 for write tests (see
Fig. 7c) within one directory. The size of files is in the range of 8
KB to 40 KB. The number of transactions is set to 1,000,000 for
both read and write tests. To measure read throughput, we disabled
the create/delete option. The general trend for all four file systems
is that read performance improves as the request size grows (see
Fig. 7b). From 2 KB onward, SPFS becomes the best player. On
average, SPFS outperforms ramfs, tmpfs, and Ext2fs by 3.2%, 7.6%,
and 14%, respectively. Since the write throughput of Ext2fs is much
smaller than all others, we use a log scale in the Y axis in Fig. 7c.
SPFS outperforms Ext2fs by 190%. However, compared with the
two memory file systems ramfs and tmpfs, the write throughput of
SPFS decreases by 22.2% and 18.1%, respectively. This is because
the two memory file systems do not need to enforce data/metadata
consistency, which incurs a noticeable performance penalty. We find
that the performance degradation of SPFS is mainly caused by the
metadata dual-copy technique, which requires SPFS to update two
copies of a metadata serially.

6 CONCLUSIONS
SPFS is the first single-level persistent file system that completely
bypasses conventional volatile main memory. It outperforms two
traditional DRAM-based in-memory file systems ramfs and tmpfs

in most cases. Although its performance in most cases is lower than
that of NOVA, SPFS provides two unique benefits. First, it is more
energy-efficient as power-hungry DRAM is longer needed. Second,
it leads to a shorter system warming up period. Our next step is to
transfer other OS modules from DRAM to PM.

7 ACKNOWLEDGMENTS
The authors thank their shepherd Kristian Rietveld and anonymous
reviewers for their constructive comments. This research is spon-
sored by US National Science Foundation under grant CNS-1320738.

REFERENCES
[1] 2004. Using the RAM disk block device with Linux. https://kernel.org/doc/

Documentation/blockdev/ramdisk.txt. (2004).
[2] 2013. ramfs. https://wiki.debian.org/ramfs. (2013).
[3] 2017. Intel To Launch 3D XPoint DIMMs in 2H 2018. https://www.anandtech.

com/show/12041/intel-to-launch-3d-xpoint-dimms-in-2h-2018. (2017).
[4] Katelin Bailey, Luis Ceze, Steven D Gribble, and Henry M Levy. 2011. Operating

System Implications of Fast, Cheap, NVM.. In HotOS, Vol. 13. 2–2.
[5] Jeremy Condit, Edmund B Nightingale, Christopher Frost, Engin Ipek, Benjamin

Lee, Doug Burger, and Derrick Coetzee. 2009. Better I/O through byte-addressable,
persistent memory. In Proceedings of the ACM SIGOPS 22nd symposium on
Operating systems principles. ACM, 133–146.

[6] Subramanya R Dulloor, Sanjay Kumar, Anil Keshavamurthy, Philip Lantz, Dheeraj
Reddy, Rajesh Sankaran, and Jeff Jackson. 2014. System software for persistent
memory. In Proceedings of the Ninth EuroSys. ACM, 15.

[7] Coulter Garreffa. 2016. Intel’s 3D X-Point technology enables up to 6TB of
system memory. http://www.tweaktown.com/news/49408/. (2016).

[8] Jones. 2009. Filesystem Metadata Overhead. https://rwmj.wordpress.com/2009/
11/08/filesystem-metadata-overhead/. (2009). [Online; accessed April-2016].

[9] Jeffrey Katcher. 1997. Postmark: A new file system benchmark. www.netapp.
com/tech_library/3022.html. (1997). [Online; accessed 15-April-2015].

[10] Hyojun Kim, Sangeetha Seshadri, Clement L Dickey, and Lawrence Chiu. 2014.
Evaluating phase change memory for enterprise storage systems: A study of
caching and tiering approaches. In Proceedings of the 12th USENIX Conference
on File and Storage Technologies (FAST 14). 33–45.

[11] Emre Kultursay, Mahmut Kandemir, Anand Sivasubramaniam, and Onur Mutlu.
2013. Evaluating STT-RAM as an energy-efficient main memory alternative. In
Performance Analysis of Systems and Software (ISPASS), 2013 IEEE International
Symposium on. IEEE, 256–267.

[12] Chris Lattner and Vikram Adve. 2005. Automatic pool allocation: improving
performance by controlling data structure layout in the heap. In Proceedings of
ACM SIGPLAN conference on PLDI. ACM, 129–142.

[13] L. Mearian. 2014. A terabyte on a postage stamp: RRAM heads into commercial-
ization. www.computerworld. (2014). [Online; accessed 15-April-2015].

[14] Justin Meza, Yixin Luo, Samira Khan, Jishen Zhao, Yuan Xie, and Onur Mutlu.
2013. A case for efficient hardware/software cooperative management of storage
and memory. Proceedings of the Workshop on Energy-Efficient Design (2013).

[15] Jeffrey C Mogul, Eduardo Argollo, Mehul A Shah, and Paolo Faraboschi. 2009.
Operating System Support for NVM+ DRAM Hybrid Main Memory.. In HotOS.

[16] Iulian Moraru, David G Andersen, Michael Kaminsky, Niraj Tolia, Parthasarathy
Ranganathan, and Nathan Binkert. 2013. Consistent, durable, and safe memory
management for byte-addressable non volatile main memory. In Proceedings of
ACM SIGOPS Conference on Timely Results in Operating Systems. ACM, 1.

[17] Onur Mutlu. 2013. Memory scaling: A systems architecture perspective. In
Memory Workshop (IMW), 2013 5th IEEE International. IEEE, 21–25.

[18] William D Norcott and Don Capps. 2003. Iozone filesystem benchmark. URL:
www. iozone. org 55 (2003).

[19] Moinuddin K Qureshi, Vijayalakshmi Srinivasan, and Jude A Rivers. 2009. Scal-
able high performance main memory system using phase-change memory technol-
ogy. ACM SIGARCH Computer Architecture News 37, 3 (2009), 24–33.

[20] Peter Snyder. 1990. tmpfs: A virtual memory file system. In Proceedings of the
Autumn 1990 EUUG Conference. 241–248.

[21] Alexander S Szalay, Gordon C Bell, H Howie Huang, Andreas Terzis, and Alainna
White. 2010. Low-power amdahl-balanced blades for data intensive computing.
ACM SIGOPS Operating Systems Review 44, 1 (2010), 71–75.

[22] Xiaojian Wu and AL Reddy. 2011. SCMFS: a file system for storage class
memory. In Proceedings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis. ACM, 39.

[23] Jian Xu and Steven Swanson. 2016. NOVA: A Log-structured File System for
Hybrid Volatile/Non-volatile Main Memories. In 14th USENIX Conference on
File and Storage Technologies (FAST 16). USENIX Association, 323–338.

104




