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Abstract—Persistent memory (PM) exhibits a huge potential
to provide applications with a hybrid memory system where
both DRAM and PM are directly connected to a CPU. In
such a system, an efficient indexing data structure such as a
persistent tree becomes an indispensable component. Designing a
capable persistent tree, however, is challenging as it has to ensure
consistency, persistence, and scalability without substantially
degrading performance. Besides, it needs to prevent persistent
memory leaks. While hash table has been widely used for main
memory indexing due to its superior performance in random
query, ART (Adaptive Radix Tree) is inherently better than
B/B+-tree in most basic operations on both DRAM and PM. To
exploit their complementary merits, in this paper we propose
a novel concurrent and persistent tree called HART (Hash-
assisted ART), which employs a hash table to manage ARTs.
HART employs a selective consistency/persistence mechanism
and an enhanced persistent memory allocator, which can not
only optimize its performance but also prevent persistent memory
leaks. Experimental results show that in most cases HART
significantly outperforms WOART and FPTree, two state-of-the-
art persistent trees. Also, it scales well in concurrent scenarios.

Index Terms—ART, hash table, persistent tree, selective con-
sistency/persistence, concurrent access, persistent memory leak

I. INTRODUCTION

Persistent memory (PM, also called storage class memory

or SCM) is a byte-addressable non-volatile memory (NVM),

which can be directly connected to the main memory bus and

accessed by CPU through load/store instructions [1]. Emerging

PM technologies include 3D XPoint [2], phase change memory

(PCM), spin-transfer torque memory (STT-RAM), resistive

memory (RRAM), FeRAM, and memristor. Their near-DRAM

performance plus DRAM-like byte-addressability as well as

disk-like persistence and capacity inspire a DRAM-PM hybrid

memory system where PM is connected directly to a CPU [3].

In such a system, most modules of an operating system are

still running on DRAM while a PM-oriented file system (e.g.,

PMFS [1] or NOVA [4]) or a key-value store (e.g., HiKV [5])

managing user data on a PM device. Obviously, an efficient

persistent indexing data structure such as a persistent indexing

tree (hereafter, persistent tree) becomes indispensable.

This work is sponsored by the U.S. National Science Foundation under
grant CNS-1813485.

Designing a capable persistent tree, however, is challenging

[6]. Unlike its volatile counterpart, a persistent tree has to en-

sure data consistency when a system failure occurs. Otherwise,

if an update is being carried out on a data structure in PM

when a system crash happens, it could be left in a corrupted

state. Thus, a data consistency mechanism is required to solve

this problem. Unfortunately, prior studies found that most data

consistency mechanisms like logging or copy-on-write (CoW)

incur a significant performance penalty [6], [7]. Developing

a persistent tree that can ensure data consistency without

substantially degrading performance becomes a challenge.

Besides, a persistent tree needs to prevent persistent memory

leaks [8]. Memory leaks are more detrimental for PM than for

DRAM because they are persistent in PM [8].

Several persistent trees [3], [6]–[9] have been proposed

recently. Most of them are a variant of either a B-tree [3]

or a B+-tree [6], [8], [9]. Lee et al., however, proposed three

persistent trees that are variants of a radix tree [7]. In fact, a

radix tree is more appropriate to PM due to some of its unique

features. For example, the height of a radix tree depends on

the length of the keys rather than the number of records [10].

Besides, it does not demand tree re-balancing operations and

node granularity updates [10]. We found that existing B/B+-

tree based persistent trees [3], [6], [8], [9] face two dilemmas.

First, they are in a dilemma in deciding whether or not to keep

nodes sorted. In a traditional B/B+-tree, all keys in a node are

sorted so that a search operation can be quickly carried out.

However, the overhead of keeping nodes sorted in PM is high.

Therefore, NV-Tree [6] and FPTree (Fingerprinting Persistent

Tree) [8] choose to leave nodes unsorted in order to avoid

that overhead. As a result, their search performance is greatly

degraded. Since each leaf node in a radix tree only contains

one record, the dilemma does not exist in a radix tree. Second,

they are in a dilemma in whether or not to still maintain

tree balance, which is a critical property of a B/B+-tree. An

unbalanced B/B+-tree not only yields a degraded performance

but also wastes space. However, performing a tree re-balancing

operation such as a merge operation (i.e., two nodes with each

having keys no more than half of its capacity are merged into

one new node) in PM causes a noticeable cost. A radix tree

has no such issue.

In addition to various trees, hash table is another widely
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used indexing data structure in main memory. Without hash

collisions, the time complexity of a search/insertion operation

is O(1). In contrast, the time complexity of these operations

is O(h) for a tree structure where h is the height of the tree.

Therefore, compared with B+-trees and radix trees, hash table

can deliver better search performance for sparse keys [10].

However, hash table has its own limitations. First, since a hash

table scatters the keys through a hash function, its range query

performance is much worse than that of a tree. Second, the

scalability of a hash table is not as good as that of a tree. When

the number of records grows hash collision happens more

frequently, which is detrimental to its performance. Third,

its insertion performance is worse than that of a radix tree

under various workloads. To exploit the complementary merits

of a radix tree and a hash table, in this paper we propose

a novel concurrent and persistent tree called HART (Hash-

assisted Adaptive Radix Tree), which utilizes a hash table to

manage multiple adaptive radix trees (ARTs).

HART only stores the leaf nodes of ARTs in PM. The

hash table and the internal nodes of ARTs are all stored

in DRAM to achieve better performance. It employs an

enhanced persistent memory allocator to avoid performance

degradation caused by expensive persistent memory alloca-

tion operations. Algorithms of operations (e.g., insertion)

that require a memory allocation are carefully designed so

that persistent memory leaks are prevented. HART main-

tains a lock on each ART to enable concurrent writes on

different ARTs. We implemented HART, WOART (Write

Optimal Adaptive Radix Tree) [7], ART+CoW (Adaptive

Radix Tree with Copy-on-Write) [7], and FPTree [8]. Af-

ter using three workloads (i.e., Dictionary, Sequential, Ran-

dom) to evaluate them, we found that HART outperforms

WOART [7] and FPtree [8] in most cases. In the best sce-

narios, HART outperforms WOART [7], ART+CoW [7], and

FPTree [8] by 4.1x/3.3x/2.4x/2.3x, 5.4x/4.4x/2.4x/2.3x, and

4.0x/7.1x/4.6x/5.4x in insertion/search/update/deletion.

The rest of this paper is organized as follows. Section II

explains the challenges for developing a persistent tree and

related work. Section III presents the design and implemen-

tation details of HART. Section IV evaluates the performance

of HART. Section V concludes this research.

II. BACKGROUND

In this section, we first briefly introduce ART. Next, we

explain the challenges of developing an efficient persistent

tree. Finally, we summarize existing persistent trees.

A. Adaptive Radix Tree (ART)

A radix tree exhibits several features desirable for PM (see

Section I). However, it has a poor utilization of memory

and cache space when the keys are sparsely distributed [7].

To solve this issue, Leis et al. proposed ART (Adaptive

Radix Tree), which adaptively chooses compact and efficient

data structures for internal nodes [10]. Since the number of

entries in a node could vary greatly, instead of enforcing all

nodes same size, ART employs four node types (i.e., NODE4,

NODE16, NODE48, and NODE256) to accommodate nodes

with different numbers of entries [10]. For example, NODE4

is the smallest node type, which uses two 4-element arrays to

store up to 4 keys and 4 child pointers, respectively. Along the

same line, NODE16 is used for storing between 5 and 16 keys

as well as child pointers. Path compression and lazy expansion

further allow ART to efficiently index long keys by collapsing

nodes, and thus, lowering the tree height [10]. More details of

ART can be found in [10].

B. Challenges of Developing A Persistent Tree

a) Data consistency guarantee: Data consistency is an

essential requirement for a persistent tree as it guarantees that

all data stored in the tree can survive a system failure like a

process crash or a power outage. However, current processors

only support a 8-byte atomic memory write [6]. Updating a

piece of data with a larger size requires some mechanisms

like logging or CoW [6]. To implement these mechanisms, a

certain write order has to be enforced. For example, to ensure a

pointer to a valid content, updating a pointer to a leaf node has

to be done after the leaf node itself is modified. Unfortunately,

memory writes could be reordered by CPU cache or memory

controller for performance purpose. Data consistency demands

a careful design of a persistent tree.

b) High data consistency overhead: An existing solution

to ensure ordered persistent memory writes is to employ a

sequence of {MFENCE, CLFLUSH, MFENCE} instructions

[6], [7]. The two instructions are supported by Intel processors.

However, a study discovered that CLFLUSH significantly

increases the number of cache misses, and thus, degrades

performance substantially [6]. How to ensure consistency

while minimizing its cost remains a difficult task.

c) Persistent memory leaks: Different from a memory

leak on DRAM, a persistent memory leak is much more severe

as the leaked memory cannot be reclaimed by restarting a

process or system. For example, assume a system crash occurs

right after a persistent leaf node of a tree is allocated. The

persistent memory allocator will mark the memory space as

used. However, the tree structure loses track of the leaf node.

Thus, the persistent memory space taken by the leaf node

can never be reclaimed, which results in a persistent memory

leak. To prevent it, a persistent tree has to maintain persistent

pointers to keep track of each persistent memory allocation.

C. Existing Persistent Trees

While HART and FPTree [8] target a DRAM-PM hybrid

memory system, all rest trees aim at a pure PM memory sys-

tem. CDDS B-Tree is a multi-version B-tree for PM [3]. The

side effect of versioning is that it could generate many dead

entries and dead notes. NV-Tree utilizes two new strategies:

an append-only update strategy and a selective consistency

strategy. Unfortunately, each split of the parent of the leaf

node leads to the reconstruction of the entire internal nodes,

which incurs a high overhead. A write atomic B+-tree called

wB+-Tree requires expensive logging or CoW for a node

split [9]. FPTree employs fingerprints, which are one-byte
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hashes of in-leaf keys [8]. By scanning a fingerprint first,

the number of in-leaf probed keys is limited to one, which

leads to a significant performance improvement [8]. The three

persistent trees WORT (Write Optimal Radix Tree), WOART,

and ART+CoW (an ART using CoW to ensure its consistency)

are all based on a radix tree [7]. Experimental results from

[7] show that they outperform NV-Tree [6], wB+-Tree [9], and

FPTree [8]. Among the three trees, WOART performs the best

in most cases [7]. Since WOART is also a variant of ART, we

select it as a competitor of HART. We compare HART with

FPTree as both target a DRAM-PM hybrid memory system.

None of the existing persistent trees is open-sourced.

III. HART DESIGN

In this section, we first present our design principles. Next,

we elaborate the algorithms of various operations.

A. Design Principles

1. Hash-assisted ARTs. After analyzing the characteristics

of hash table and ART, we find that integrating a hash table

into ARTs can generate a new indexing data structure that

can enjoy their complementary merits while avoiding their

respective shortcomings. On the one hand, the use of a hash

table can reduce the time complexity of operations on an

ART. On the other hand, using an ART can escape the three

limitations of a hash table (see Section I). HART limits the

length of each key in the hash table so that the performance

degradation caused by hash collisions is effectively reduced.

Assume that the length of each key is k bytes. In an ART,

the time complexity of an insertion/search operation is O(k)
when there is no key compression. In a HART, the first kh
bytes of a key are used as a hash key and the rest k−kh bytes

ae used as an ART key. Since kh is a predefined parameter

in HART, it will not grow when the key length k increases.

Thus, the hash collision rate is always in a low range and the

time complexity of an insertion/search operation in the hash

table is close to O(1). Therefore, the overall time complexity

of an insertion/search operation in a HART is k − kh + 1,

which is less than that of an ART when kh > 1. However,

hash table shows poorer insertion performance than ART.

By distributing first kh bytes of each key in the hash table,

frequently inserting new keys in the hash table can be avoided.

In fact, for a sequential workload, the hash table only needs

to insert a new key periodically because the first kh bytes of

a key are expected to be identical for a period of time. For

a random workload, the frequency of inserting a new key to

the hash table decreases after more and more keys have been

inserted. Also, no update is needed as the value in a hash node

is the address to an ART, which remains the same unless a

reconstruction operation happens.

Fig. 1 shows the structure of HART. A key AABF is split

into AA (i.e., a hash key) and BF (i.e., an ART key). HART

first uses the hash key to locate the AA node in the hash table,

which contains a pointer to its corresponding ART (i.e., ART

1 shown in Fig. 1). All keys in ART 1 share the same prefix

AA. After ART 1 is located, the ART key BF is used to find

the leaf node that contains AABF. The complete key AABF

is stored in the leaf node for the purpose of failure recovery.

2. Selective consistency/persistence. Similar to FPTree [8],

HART also adopts a selective consistency/persistence strategy.

As shown in Fig. 1, HART keeps the leaf nodes on PM while

leaves all internal nodes and the hash table on DRAM. In

fact, an ART does not need to store a key in a leaf node

because the path to a leaf node represents the key of that

leaf. Still, HART persistently stores complete keys in leaf

nodes so that all critical information is durable. This selective

consistency/persistence strategy offers two benefits: First, the

performance (especially, write performance) of most existing

PM technologies is still much lower than that of DRAM. For

example, while the write latency of PCM is normally above

150 ns, DRAM write latency is only 15 ns [6]. Thus, storing

internal nodes in DRAM can improve the overall performance,

especially for insertion operations. Second, since HART can

rebuild reconstructable data (i.e., the hash table and internal

nodes) onto DRAM based on the critical data stored on PM

(i.e., leaf nodes), it only needs to maintain the consistency

of critical data on PM. Thus, a noticeable data consistency

maintenance overhead can be saved.

3. Concurrent access. A finer granularity of locking can in-

crease the concurrency of an indexing data structure. However,

it also raises lock maintenance overhead. To make a good

trade-off between concurrency and overhead, HART adopts a

locking mechanism that maintains a read/write lock on each

ART shown in Fig. 1. Thus, the maximal number of concurrent

writes allowed by a HART is equal to its number of ARTs.

4. An enhanced persistent memory allocator. Existing

persistent memory allocators exhibit poor performance when

allocating numerous small objects [11], [12]. We develop a

new persistent memory allocator called EPallocator (enhanced

persistent memory allocator) on top of an existing PM alloca-

tor. Each time EPallocator is called, instead of allocating only

one item (e.g., a leaf node or a value object), it allocates a

memory chunk with multiple items so that the average cost

of a single allocation is reduced. Unlike a B+-tree, leaf nodes

of an ART are not linked together, and thus, it cannot be

recovered after a system crash. An intuitive solution is to

Root

B CD E

F G H

AABF AACD AAEG AAEH

AA XY BM ...Hash table

ART 2 ART 3 ART n

ART 1

PM

DRAM

Fig. 1: The structure of HART.
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Chunk header PNext L1 L2 ... L56

56 leaf nodes
Leaf bitmap (56 bits)

Memory
chunk

Memory
chunk

Memory
chunk

...PNextA linked-list of 
memory chunks

A memory chunk

Full indicator 
(2 bits)

Next free leaf index
(6 bits)

00: Available
01: Full
10/11: Reserved

A chunk header

Fig. 2: A memory chunk of leaf nodes.

add a next pointer to each leaf node so that all leaf nodes

are traversable [8]. However, we found that the space and

performance overhead caused by maintaining a next pointer for

each leaf node on PM is high. To solve this issue, EPallocator

groups memory chunks in a singly linked-list so that one

persistent next pointer is needed for each memory chunk rather

than for each leaf node.

Fig. 2 shows a memory chunk of leaf nodes. Within each

memory chunk, in addition to the 56 leaf nodes, there are two

more fields: a 8-byte chunk header and a 8-byte pointer to

the next memory chunk (i.e., PNext). The first 7 bytes of a

chunk header serve as a leaf bitmap to indicate the status of

leaf nodes. If a bit is set to 1, the corresponding leaf node

is used. Otherwise, it is free. The last byte is split into two

parts: the first 6 bits are used as an index to the next free

leaf node in the 56-element leaf node array and the last 2 bits

are employed as an indicator, which shows whether or not a

free leaf node exists in a memory chunk (see Fig. 2). If ”full

indicator” is ”00”, the memory chunk has at least one free leaf

node. If it is ”01”, there is no free leaf node as the memory

chunk is already full. The rest two values (i.e., ”10” and ”11”)

are reserved.

5. Variable-size values support. HART also supports

variable-size values. Fig. 3 illustrates the layout of a leaf

node and a memory chunk of 56 value objects. Instead of

keeping the value of a key in a leaf node, HART stores a

8-byte pointer (i.e., p value) to the value in the leaf node.

Although this design choice incurs an extra cost as EPallocator

has to allocate and free PM space for the out-of-leaf value

objects, it supports variable-size values that many applications

require. As shown in Fig. 3, EPallocator manages PM space

for value objects in the same way as what it does for leaf

nodes. To support variable-size values, it maintains multiple

singly linked-lists of memory chunks of value objects so

that all value objects in one linked-list have the same size.

The structure of a value object memory chunk is the same

as that of a leaf node memory chunk as shown in Fig. 2.

For simplicity, HART currently only supports two sizes of

value objects: 8-byte values and 16-byte values. However, it

can be easily extended to support more sizes of values by

implementing more singly linked-lists of value object memory

chunks. Algorithm 2 shows how EPallocator allocates PM for

a leaf node or a value object.

For a radix tree and its variants, key length directly deter-

mines the height of a tree if a compression technique is not

utilized. Even with a compression technique, for a radix tree

with a random or dense key distribution key length is still

a leading factor that determines its height. Although HART

supports variable-size keys, it sets a limit on the maximal key

length. The maximal key length supported by HART is 24

bytes, which could generate 2192 distinct keys.

6. Memory leak prevention. A persistent memory leak is

more severe than a volatile memory leak as the leaked memory

cannot be reclaimed through a system reboot. EPallocator can

prevent persistent memory leaks. The memory chunk data

structure shown in Fig. 2 is stored on PM so that the addresses

of items are durable. The bitmap of a memory chunk is used

to maintain the status of each item (i.e., either a leaf node or

a value object). HART only sets the corresponding bit in the

bitmap after an item is successfully inserted to it. If a system

crash happens after a leaf node is allocated but before it is

inserted to the tree, the space of the allocated leaf node can

be reused as its bit in the leaf bitmap indicates that its status

is still free. For value update and memory chunk recycling,

HART utilizes a log mechanism to ensure consistency (see

Algorithm 3 and Algorithm 6).

B. Algorithms of Operations

In this section, we present the algorithms of the four

basic operations (i.e., insertion, update, search, and deletion)

plus recovery. Similar to existing persistent trees [6]–[8], we

use a sequence of {MFENCE, CLFLUSH, MFENCE} as

a persistent flush instruction, which is called persistent().
Also, we explain EPMalloc() and EPRecycle(), which are

two components of EPallocator. They are used for persistent

memory allocation and freeing, respectively.

1. Insertion. Algorithm 1 presents the pseudo code of an

insertion operation. The first step of an insertion is to find

an ART based on a hash key, which is the first several bytes

of a complete key K (line 1-2). If the ART is not found, a

new ART is initialized and then linked to the corresponding

hash node (line 3-5). Next, a search operation on the ART is

performed (line 6). If a leaf node with the same key K exists,

the Update() function is called to update its value (line 7-8).

The algorithm of Update() is shown in Algorithm 3. If the leaf

node is not found, a new leaf node and a space for its value

(i.e., a value object) are then allocated through EPMalloc()
(line 10-11). The EPMalloc() function is shown in Algorithm

2. It can allocate two types of objects: LEAF (i.e., a leaf node)

Chunk header PNext V1 ... Vm ... V56A memory chunk

56 value objects8 bytes

Fig. 3: Leaf node layout and a memory chunk of value objects.
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and VALUE (i.e., a value object). After the value and the

pointer to the value become persistent, the corresponding bit

in the value bitmap (see Fig. 3, hereafter, the value bit) is set

(line 12-14). Next, the key and its length are updated (line

15-16). The new leaf node is then inserted into HART in a

way similar to a conventional ART insertion operation (line

17), which might lead to multiple internal node creations or

expansions. Finally, the corresponding bit in the bitmap for the

leaf node (hereafter, the leaf bit) is set. If a failure happens

between line 14 and line 18, the value bit has been set but the

leaf bit has not, which implies an exception. When EPallocator

tries to allocate the same leaf node next time, it will detect

the exception. As a result, it frees the PM space for the value

object (line 14-15 of Algorithm 2).

EPallocator allocates PM space for both a leaf node and its

value. As shown in Algorithm 2, EPMalloc() searches through

a linked-list of leaf/value memory chunks to find a memory

chunk that contains a free object (line 1-7). If no such memory

chunk is found, a new memory chunk is allocated and then

added to the linked-list. Next, a free object is obtained from the

newly allocated memory chunk (line 8-11). If the allocation is

for a leaf node, before EPMalloc() returns a free leaf object it

has to check whether there is a value linked to the leaf object

due to a prior incomplete insertion or deletion operation. If

there is a value linked to the leaf object, EPMalloc() simply

resets the value bit to make the value object available for a

future allocation (line 12-16).

Algorithm 1 Insertion(Key K, Value V, HART HT)

1: HashKey, ARTKey = SplitKey(K)

2: T = HashFind(HashKey, HT)

3: if !T then
4: T = NewART()

5: HashInsert(HashKey, T)

6: leaf = SearchNode(ARTKey, HT)

7: if leaf then
8: Update(ARTKey, V, leaf)

9: else
10: leaf = EPMalloc(LEAF)

11: value = EPMalloc(VALUE)

12: value = V; persistent(value)

13: leaf.p value = &value; persistent(leaf.p value)

14: Set and persistent() the corresponding value bit

15: leaf.key = K; persistent(leaf.key);

16: leaf.key len = len(K); persistent(leaf.key len)

17: Insert2Tree(T, leaf)

18: Set and persistent() the corresponding leaf bit

2. Update. HART employs an out-of-place update mechanism.

To ensure consistency and prevent memory leaks, it requires

an update log, which contains three persistent pointers: PLeaf,
POldV and PNewV. First, the address of the leaf node to be

updated is recorded in PLeaf and then the address of the leaf

node’s old value is stored in POldV (line 2-3 in Algorithm 3).

Next, the new value is written into a newly allocated space

Algorithm 2 EPMalloc(Type type)

1: current chunk = GetChunkHead(type)

2: while current chunk != NULL do
3: object = GetFreeObject(current chunk)

4: if object != NULL then
5: break

6: else
7: current chunk = current chunk.PNext

8: if object == NULL then
9: new chunk = AllocMemChunk(type)

10: Insert2ChunkList(GetChunkHead(type), new chunk)

11: object = GetFreeObject(new chunk)

12: if type == LEAF then
13: if object.p value && GetBitmap(object.p value) then
14: Reset and persistent() the value bit

15: EPRecycle(MemChunkOf(object.p value))

16: object.p value = NULL

17: return object

(line 4-5). Further, PNewV is set to the address of the new

value, after which HART sets the value bit for the new value

and then updates the value pointer in the leaf node (line 7-8).

The value bit for the old value is then reset and EPRecycle()
(see Algorithm 6) checks whether the memory chunk that the

old value belongs to can be freed (line 9-10). Finally, the

update log is reclaimed (Line 11).

After a system crash happens, a failure recovery process

checks the update log. If only PLeaf is valid, it simply resets

the log. If both PLeaf and POldV are valid but PNewV is

invalid, the crash happened between line 3 and line 6. In this

case, since the old value is still valid and the space for the new

value can be reused as its value bit has not been set, the failure

recovery process simply resets the update log. If all three

pointers are valid, the system crash must happen somewhere

between line 7 and line 10. In this case, the recovery process

resumes the update process from line 7.

Algorithm 3 Update(Key K, Value V, Leaf Node L)

1: ulog = GetMicroLog(UPDATE)

2: ulog.PLeaf = &L; persistent(ulog.PLeaf)

3: ulog.POldV = L.p value; persistent(ulog.POldV)

4: new value = EPMalloc(VALUE)

5: new value = V; persistent(new value)

6: ulog.PNewV = &new value; persistent(ulog.PNewV)

7: Set the bit in the bitmap for new value

8: L.p value = &new value; persistent(L.p value)

9: Reset the bit in the bitmap for the old value

10: EPRecycle(MemChunkOf(L.p value))

11: LogReclaim(ulog)

3. Search. First step of the search algorithm (Algorithm 4)

is to find the corresponding ART by the searching the hash

table (line 1-2). After an ART is found, the search algorithm is

similar to an ART search algorithm. The only difference is that
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after a leaf node is found, HART will check the corresponding

bitmap to make sure that it is a valid leaf node (line 9-10).

Algorithm 4 Search(Key K, HATRT HT)

1: HashKey, ARTKey = SplitKey(K)

2: T = HashFind(HashKey, HT)

3: if !T then
4: return NOT FOUND

5: leaf = SearchNode(ARTKey, T)

6: if !leaf then
7: return NOT FOUND

8: else
9: if The corresponding leaf bit is set then

10: return leaf.p value

11: else
12: return NOT FOUND

4. Deletion. A deletion operation is illustrated in Algorithm

5. First, the corresponding ART is found through the hash

table (line 2). Second, HART uses a conventional ART search

function to locate the leaf node to be deleted (line 5). After

the leaf node is found, it is first removed from the tree (line

9). Third, HART resets the leaf bit and the value bit (line

11-12). Next, EPRecycle() is called to check whether the

corresponding memory chunks can be reclaimed (line 13-14).

Finally, HART will free the ART if it becomes empty after

the leaf is successfully deleted (line 15-16).

Algorithm 5 Deletion(Key K, HART HT)

1: HashKey, ARTKey = SplitKey(K)

2: T = HashFind(HashKey, HT)

3: if !T then
4: return NOT FOUND

5: leaf = SearchNode(ARTKey, T)

6: if !leaf then
7: return NOT FOUND

8: else
9: DeleteFromTree(T, leaf)

10: value = leaf.p value

11: Reset and persistent()the leaf bit

12: Reset and persistent() the value bit

13: EPRecycle(MemChunkOf(value))

14: EPRecycle(MemChunkOf(leaf))

15: if is empty(T) then
16: free(T)

Each time EPRecycle() is called an object is deleted from

the tree. Algorithm 6 shows its procedure. Before recycling

a memory chunk, EPRecycle() has to make sure that there is

no used object in it (line 1-2 in Algorithm 6). To remove the

memory chunk from the memory chunk linked-list, a persistent

recycle log is needed to ensure the consistency of the linked-

list. The recycle log contains two persistent pointers: PPrev,

and PCurrent. First, PCurrent is set to point to the memory

chunk to be deleted (line 4). If PCurrent is not PHead, which

is a pointer to the head of a linked-list (see Fig. 2), then the

address of PPrev is also stored in the log (line 8-9). Next, the

next pointer of previous memory chunk is updated (line 10),

after which the memory chunk is freed and the log is reset

(line 11-12). If a failure happens before the log is reclaimed,

a failure recovery process will check the log. If both PPrev
and PCurrent are set, the deletion can be resumed from line

10. If only PCurrent is valid, the failure recovery process has

to compare it with PHead. If PCurrent = PHead, the deletion

can be resumed from line 6. If PCurrent.PNext = PHead, the

deletion can be resumed from line 11.

Algorithm 6 EPRecycle(Mem Chunk mem chunk)

1: if mem chunk has a used object then
2: return

3: rlog = GetMicroLog(RECYCLE)

4: rlog.PCurrent = &mem chunk; persistent(rlog.PCurrent)

5: if rlog.PCurrent == PHead then
6: PHead = mem chunk.PNext; Persist(PHead);

7: else
8: pre = GetPrev(mem chunk)

9: rlog.PPrev = &pre chunk; persistent(rlog.PPrev)

10: pre.PNext = mem chunk.PNext; persistent(pre.PNext)

11: pfree(mem chunk)

12: LogReclaim(rlog)

5. Recovery. Since HART only stores leaf nodes on PM, all

internal nodes need to be recovered after a system crash or

a system reboot. Recovering a HART is much faster than

building a new HART from scratch because the leaf nodes

and values are already on PM before a recovery process

starts. As shown in Algorithm 7, the recovery process first

initialize a new HART (see line 1), which allocates space for

the hash table. Then the recovery process traverses all memory

chunks through the memory chunk list to recover a HART.

For each memory chunk, only the leaf nodes whose leaf bits

are in a ”set” status will be inserted to the tree. Function

Insert2HART() in line 6 is similar to Algorithm 1.

Algorithm 7 Recovery(HART HT)

1: InitializeHART(HT)

2: current chunk = GetChunkHeade(LEAF)

3: while current chunk do
4: for i = 0; i < NUM OBJECTS PER CHUNK; i++ do
5: if The corresponding bit in the bitmap is set then
6: Insert2HART(HT, &(current chunk.leaf array[i]))

IV. EVALUATION

In this section, we first introduce experimental setup. Next,

we discuss our experimental results of the four trees.

A. Experimental Setup

We implemented HART and three existing persistent trees

(i.e., WOART [7], FPTree [8], and ART+CoW [7]) in C
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language. The source code of HART is available on GitHub

(https://github.com/CASL-SDSU/HART). While the imple-

mented FPTree is based on an open-source implementation

of B+-Tree [13], the rest three trees were implemented based

on an open-source implementation of ART [14]. We did

not compare HART with HiKV [5] because some critical

implementation details (e.g., the hash function used) were not

disclosed in [5].

Existing PM research studies [1], [4], [7], [12] have to

leverage a PM emulator due to the lack of real PM hardware.

Intel PMEP (Persistent Memory Emulator Platform) [1], [15]

and Quartz [16] are two commonly used PM emulators.

However, Intel PMEP was no longer public available at the

time of this research. As for Quartz, we found that when it was

running in the DRAM-PM hybrid mode it needs to frequently

call numa alloc onnode(), which emulates an allocation of

a piece of PM by executing a DRAM allocation on a remote

node. Unfortunately, we observed that when the number of

invocations of numa alloc onnode() was large enough (e.g.,

more than 10 million) the experimental results provided by

Quartz became meaningless as they were greatly distorted. We

discovered that this is because the software latencies of Quartz

caused by numa alloc onnode() became dominant such that

real PM latencies were concealed. Therefore, we employed

two methods to emulate PM write latencies and PM read

latencies, respectively. To emulate PM write latency, similar to

current work [5], [16], we added the write latency difference

between PM and DRAM to each invocation of persistent(),
which flushes a piece of data from CPU cache to memory. To

emulate PM read latency, we have to consider the effect of

CPU cache hits. We calculated the extra latency caused by the

read latency difference between DRAM and PM by using the

following two equations proposed by [15], [16]:

δstall cycles = S ∗ (LPM − LDRAM )/LDRAM , (1)

δr latency = δstall cycles/CPU frequency, (2)

where δstall cycles is the extra number of CPU stall cycles

caused by the read latency difference between DRAM and

PM, S is the total number of CPU cycles that a processor has

stalled due to serving all LOAD memory requests on a remote

node during an experiment, LDRAM is the latency of DRAM,

LPM is the desired PM latency, and δr latency is the extra

latency caused by the read latency difference between DRAM

and PM. Fortunately, Quartz [16] provides the statistics of S.

Thus, we run it to conduct an experiment so that we can obtain

S to calculate additional read latency off-line. Authors of [17]

also adopted this PM read latency off-line adding method.

We conducted all experiments on a Mercury RM102 1U

Rackmount Server running Ubuntu 16.04 with Kernel 4.4.0.

It has two sockets each equipped with one Intel Xeon E5-

2640 v3 2.6 GHz processor. Each processor has 8 cores, a

shared 20 MB L3 cache, and 32 GB DRAM. The server

is organized into 2 NUMA nodes (i.e., node 0 and node 1)

with each having a processor and 32 GB local memory. All

single-threaded experiments were running on node 0 (i.e., the

local node) whose local DRAM is treated as DRAM. The

DRAM in the remote node (i.e., node 1) is taken as PM. A

PM allocation is emulated by calling numa alloc onnode(),
which in fact allocates a DRAM space from the remote node.

We measured the local DRAM latency and remote DRAM

latency. They are about 100 ns and 150 ns, respectively. To

avoid the problem associated with numa alloc onnode(), we

run each experiment in two rounds. In the fist round, we

run it in a pure DRAM environment (i.e., each invocation of

numa alloc onnode() was replaced by a calling to malloc())
to obtain a baseline execution time of the experiment. In the

second round, we run the experiment again in a DRAM-PM

hybrid environment (i.e., enabling numa alloc onnode()) so

that we can obtain the total number of CPU stall cycles S.

The write latency difference between DRAM and PM has

been added to each invocation of persistent() in the first

round because the execution time measured in the second

round cannot be used. Next, we employed the two equations to

obtain the extra latency caused by the read latency difference

between DRAM and PM, which was then added to the baseline

execution time. Finally, we obtained the execution time of the

experiment on an emulated DRAM-PM memory system.

We compiled all four tree implementations using GCC 5.4.0.

For HART, the hash key length is set to 2 in our experiments.

We used three workloads, namely, Dictionary [19], Sequential,

and Random. Dictionary is a collection of 466,544 different

English words [19]. Sequential and Random are two synthetic

traces generated by ourselves. Sequential contains sequential

strings, whereas Random includes random strings with vari-

able sizes from 5 to 16 bytes. For Sequential and Random,

each character in a key is chosen from the 52 alphabetic

characters (i.e., A to Z and a to z) and 10 Arabic numerals (i.e.,

0 to 9). A typical range of PM latencies is from several ns to

1,000 ns [20]. Since we use DRAM to emulate PM, we can

only imitate PM latency larger than or equal to 100 ns, which

is the measured DRAM latency on the server that we used.

Three PM write/read latency configurations were employed in

our experiments: 300 ns/100 ns, 300 ns/300 ns, and 600 ns/300

ns. Similar PM write/read latency settings have been used in

existing PM research such as FPTree [8] and NOVA [4]. For

simplicity, hereafter the three latency configurations are called

300/100, 300/300, and 600/300, respectively. For 300/100, the

default number of records on Sequential and Random is set to

100 million. For the other two PM latency configurations, we

set the default number of records to 1 million for Sequential

and Random to prevent memory allocation failures caused by

numa alloc onnode(). Note that in 300/100 we only need

to run each experiment in the first round because in this

configuration the read latency of PM is equal to that of DRAM.

Thus, the problem of numa alloc onnode() does not exist

as a call for the function is not needed. That is why we can

test up to 100 million records in 300/100. We measured the

performance of the four persistent trees in terms of average

time per operation for four basic operations: insertion, search,
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Fig. 4: Insertion performance comparisons.
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Fig. 5: Search performance comparisons.

update, and deletion. We also tested range query, memory

consumption, recovery, and scalability of HART.

B. Performance of Four Basic Operations

Insertion: Fig. 4 shows the four persistent trees’ average

times of inserting one record under the three workloads and

three PM write/read latency configurations. Results from Fig.

4 demonstrate that HART consistently outperforms all its

competitors. Compared with WOART, in the best case HART

is 4.0x faster under Dictionary in 300/300 (Fig. 4a). In the

worse case, HART is 1.4x faster under Sequential in 600/300

(Fig. 4b). This is because HART stores internal nodes in

DRAM while WOART keeps them on PM. Therefore, HART

does not need to maintain the consistency for internal nodes,

and thus, that overhead can be saved. Compared with FPTree,

in the best case HART is 4.0x faster under Sequential in

300/300. In the worst case, HART is still 1.9x faster under

Random in 600/300 (Fig. 4c). HART performs much better

than FPTree because it does not need to search on unsorted

leaf nodes. In short, the performance differences between

DRAM and PM as well as the reductions of persistent() calls

substantially boost the insertion performance of HART. Fig. 4

shows that in most cases ART+CoW performs the worst. The

main reason is that its CoW overhead is very high.

Search: Fig. 5 illustrates the search performance of the four

persistent trees. HART shows better search performance under

300/300 and 600/300 across all three workloads. We notice

that when PM read latency is equal to that of DRAM (i.e.,

300/100), WOART achieves better performance than HART.

The reason is that for a read-only operation, HART consumes

more memory, which results in a lower cache hit rate. We

also find that FPTree is faster than WOART under Dictionary

in 300/300 and 600/300. The reason is that Dictionary has

a relatively small number of records, and thus, the height

of FPTree is also small. However, the height of WOART

is independent of the number of records. FPTree performs

much better under Sequential than under Random because its

performance is closely related to the cache hit rate as each

leaf node contains multiple records.

Update: In our implementations, we used a similar update

mechanism for HART, WOART, and ART+CoW: since all

three support variable-size values, only the pointer to a value is

stored in each leaf node. During an update, a new PM space

is allocated for the new value. A pointer to that new value

is updated as the last step to ensure consistency. Although

the update functions are similar in the three ART-based trees,

we can see from Fig. 6 that HART still outperforms WOART

and ART+CoW in most cases. The performance improvements

of HART come from its capability of quickly searching an

existing leaf node. For the same reason, HART outperforms

FPTree in all cases.

Deletion: A deletion operation requires a search operation

to find the leaf to be deleted. Fig. 7 shows that under

Dictionary FPTree achieves the best performance. The reason

is twofold. First, Dictionary has a relatively small amount

of records (i.e., 466,544 records), which makes the height

of FPTree low. Thus, the search operation can be finished

quickly. Second, FPTree does not perform tree re-balancing

on leaf nodes, which accelerates a deletion. Under Random

and Sequential, since FPTree no longer has the tree height

advantage as the number of records in each workload is at

least one million, it shows the worst performance. In general,

HART exhibits its strength when the PM latency is set higher

than that of DRAM for a larger data set.

To understand the impact of the number of records on the

performance of the four basic operations, we evaluate the four
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Fig. 6: Update performance comparisons.
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Fig. 7: Deletion performance comparisons.
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Fig. 8: Impact of the number of records on the four basic operations.

trees in Fig. 8 when the number of records increases from

1 million to 100 million under Random in 300/100. Fig. 8a

shows that HART exhibits a much better scalability in terms

of insertion. In search, FPTree shows the worst performance

because it has to conduct key comparisons (see Fig. 8b). The

three ART-based trees deliver very similar performance in

search and update (see Fig. 8b and Fig. 8c). In deletion, there

are little differences among HART, WOART, and FPTree (see

Fig. 8d). Note that the latency differences between DRAM and

PM are not substantial in 300/100. That is why HART shows

a performance similar to that of WOART in three operations.

However, after the latency differences enlarge (i.e., 300/300

or 600/300) HART offers a much better performance than

WOART and FPTree (see Fig. 4 - Fig. 7).

C. Performance of Mixed Workloads

To understand the performance of HART under realistic

benchmarks, we measured the performance of the four trees

using three typical cloud database workloads generated by

YCSB (Yahoo! Cloud Serving Benchmark) [21]. YCSB is a

standard benchmarking framework to evaluate various cloud

key-value stores that provide online read/write access to data

[21]. Each workload generated by YCSB represents a par-

ticular mix of read/write operations and a specific request

distribution, which decides which record in a database to read

or write. The three mixed workloads that were used in our

experiments all employ a Uniform request distribution, which

means that all records in the database are equally likely to

be chosen when a read or write request arrives [21]. They

cover three typical online database workload scenarios: (1)

Read-Intensive: a workload with 10% insertion, 70% search,

10% update, and 10% deletion; (2) Read-Modified-Write:

a workload with 50% search and 50% update; (3) Write-

Intensive: a workload with 20% search, 40% insertion, and

40% update. While Read-Intensive and Write-Intensive stand

for two extreme cases, Read-Modified-Write represents a read-

write-balanced scenario. Experimental results from the three

mixed workloads are presented in Fig. 9, which shows that

HART outperforms its three competitors in almost all cases.

The only exception is for the Read-Modified-Write workload

under 300/100 (see Fig. 9b). WOART and ART+COW per-

forms better than HART in that case because they exhibit a

lower latency in both search (see Fig. 5) and update (see Fig.

6) operations under 300/100. Other than the 300/100 setting,
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Fig. 10: Performance in range query, memory consumption, recovery, and HART scalability.

HART is 2.0x to 2.6x faster compared with WOART under all

three mixed workloads. Also, it is 2.4x to 5.7x faster compared

with FPTree under all three mixed workloads. The conclusion

is that HART outperforms its three competitors under realistic

workloads in almost all cases.

D. Performance of Range Query

We tested the range query performance by querying 100,000

records for the four persistent trees under Sequential. In fact,

the range query function in the three ART-based trees are

simply implemented by calling a search function for each

key. For FPTree, since its leaf nodes are ordered in the

linked-list, it shows the best range query performance in Fig.

10a. Compared with FPTree, the range query performance of

HART is 2.6x, 2.3x, 2.3x slower under 300/100, 300/300, and

600/300, respectively. Nevertheless, compared with WOART

and ART+CoW, HART still shows a much better performance

when the PM read latency is set to be higher than that of

DRAM (i.e., higher than 100 ns). In fact, the side-effect of

hash on range query of HART is very limited because the

main part of HART are multiple ART trees (see Fig. 1).

E. Memory Consumption

We also measured the memory consumption of the four

data trees. Due to space limit, we only show results under

Sequential with 100 million records in Fig. 10b. Note that

WOART and ART+CoW do not use any DRAM. We found

that compared with FPTree, HART consumes much more

DRAM. The major reason is that each character in a key

is chosen from 62 different characters (i.e., A to Z, a to z,

and 0 to 9). Thus, many nodes of the NODE256 type are

needed as NODE48 has an insufficient space to accommodate

these keys. Also, the hash table in HART takes extra DRAM

space. FPTree consumes more PM space than HART does.

The reason is that the fingerprints in FPTree take a large PM

space. Also, FPTree does not coalesce a leaf node with its

neighbor when the number of available keys in it is less than

half of its capacity.

F. Performance of Recovery

Since both WOART and ART+CoW are a pure PM tree,

they have no need to recover nodes after a system failure or

a normal reboot. Thus, we only evaluated the recovery times

for HART and FPTree in Fig. 10c. Also, we tested their build

times. The build time of HART or FPTree is the time taken

to generate a new HART or FPTree by sequentially inserting

a number of records. All experiments were conducted under

Random with 300/100. The number of records to be rebuilt

varies form 1 million to 100 million. We noticed that for both

trees their recovery times are shorter than their build times. On

average, HART recovery is 2.4x faster than its build. However,

the recovery time of FPTree is much shorter than that of

HART. The reason is that each FPTree leaf node contains

multiple records while a HART leaf node only has one record.

As a result, FPTree needs much less insertions than HART

does, which leads to a much shorter recovery time. However,

we argue that tree recovery is normally not a frequent event.

G. Multi-threaded Results

To allow concurrent accesses, HART maintains an exclusive

write lock and a sharable read lock for each of its ART

(e.g., ART1 shown in Fig. 1). It employs the POSIX threads

library (i.e., pthread ) to implement its feature of supporting

concurrent accesses. For each operation (e.g., a read operation

like a search or a write operation like an insertion), HART

assigns a thread to accomplish it. HART only supports concur-

rent writes that target distinctive ARTs. For concurrent reads,

such restriction does not exist. On each ART, HART allows
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multiple read threads (e.g., search or scan) to share the read

lock so that they can operate concurrently on the same ART.

However, on each ART it allows only one write thread (e.g.,

insertion, update, deletion) to hold the exclusive write lock

at any time. Besides, when a write thread is working on an

ART all incoming read threads on the same ART are blocked.

For an incoming write operation, HART first checks whether

the read lock on its destination ART is currently free. If it

is not free, the write operation is blocked. Otherwise, HART

further checks whether the exclusive write lock on the write

operation’s destination ART is presently held by another write

thread. If so, the write operation is blocked until the exclusive

write lock is freed. If not, a thread (i.e., a write thread) is

assigned to the write operation and then the exclusive write

lock is acquired by the write thread. For an incoming read

operation, HART checks whether the exclusive write lock is

free. If not, the read operation is blocked. Otherwise, a thread

(i.e., a read thread) is assigned to the read operation. The read

thread starts to work after either acquiring the free read lock or

sharing it with other ongoing read threads on the same ART.

All experimental results shown from Fig. 4 to Fig. 10c

were obtained when HART was executed in a single-threaded

mode. We evaluated its concurrent access performance in

terms of MIOPS (million I/O operations per second) using

the 300/100 latency configuration and 100 million Random

records in Fig. 10d. All threads were running on a single

socket, which has 8 physical cores. Using Hyper-Threading,

each physical core can support 2 threads. Thus, a single socket

can support up to 16 threads. Fig. 10d shows that compared

with single-threaded scenarios the performance of HART on

2 threads is increased by a factor of 1.96/1.94/1.93/1.93 for

insertion/search/update/deletion, respectively. Also, the perfor-

mance of HART increases by a factor of 7.18/7.30/7.13/7.09

for the four operations when the number of threads increases to

8 (see Fig. 10d). In fact, when the number of threads increases

from 2 to 8, the performance of HART almost increases pro-

portionally to the number of threads. However, compared with

the single-threaded cases the performance of HART with 16

threads is only increased by a factor of 10.7/11.9/11.3/10.8 for

the insertion/search/update/deletion, respectively. The reason

is that when using 16 threads each physical core is abstracted

as two logical cores by Hyper-Threading. The performance of

a logical core is lower than that of a physical core. We also

found that the performance improvement of search is higher

than that of other three operations. This is because concurrent

read threads do not block each other. Fig. 10d demonstrates

that HART scales well in concurrent situations.

V. CONCLUSIONS

In this paper, we design, implement, and evaluate a persis-

tent indexing data structure called HART. Our comprehensive

experimental results demonstrate the strength of HART. Com-

pared with WOART, HART can not only provide much better

performance in most cases but also prevent persistent memory

leaks, which has not been addressed in WOART. Although

both FPTree and HART target a DRAM-PM hybrid memory

system, HART significantly outperforms FPTree in the four

basic operations due to the inherent advantages of an ART

over a B+ tree. In terms of range query and tree recovery,

however, FPTree exhibits a better performance than HART.

Besides, it consumes less DRAM. We will release the source

code of HART for public use in the near future.
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