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Abstract. Existing near-data processing (NDP) techniques have demon-
strated their strength for some specific data-intensive applications. How-
ever, they might be inadequate for a data center server, which normally
needs to perform a diverse range of applications from data-intensive to
compute-intensive. How to develop a versatile NDP-powered server to
support various data center applications remains an open question. Fur-
ther, a good understanding of the impact of NDP on data center appli-
cations is still missing. For example, can a compute-intensive application
also benefit from NDP? Which type of NDP engine is a better choice,
an FPGA-based engine or an ARM-based engine? To address these is-
sues, we first propose a new NDP server architecture that tightly couples
each SSD with a dedicated NDP engine to fully exploit the data transfer
bandwidth of an SSD array. Based on the architecture, two NDP servers
ANS (ARM-based NDP Server) and FNS (FPGA-based NDP Server)
are introduced. Next, we implement a single-engine prototype for each of
them. Finally, we measure performance, energy efficiency, and cost/per-
formance ratio of six typical data center applications running on the two
prototypes. Some new findings have been observed.

Keywords: Near data processing · data center server · FPGA · ARM
embedded processor · data-intensive · compute-intensive.

1 Introduction

A spectrum of near-data processing (NDP) work [1,3,6,10,17,16,24,18,27,29,30,24]
have been proposed recently. Although they target data at different levels of the
memory hierarchy, they share a common idea: deploying some hardware data
processing accelerators (hereafter, NDP engines) such as FPGAs and embedded
processors in or near memory devices to process data locally. NDP is a one-stone-
two-birds approach. It largely reduces the pressure of data transfer as the size of
processed data is normally smaller than that of raw data. Also, it alleviates the
burden of host CPUs by offloading part or all computations to NDP engines.

However, existing NDP techniques might not be able to provide a satisfying
solution to a data center server, which usually needs to perform a diverse range



of applications from data-intensive to compute-intensive. This is mainly because
they only aim at improving performance and energy-efficiency for some specific
data-intensive applications such as databases [11,15,17,27], word count [3], lin-
ear regression [3], and scan [3]. It is understandable that they concentrate on
data-intensive applications. After all, the major incentive of NDP is to reduce
the increasingly heavy data transfer pressure of data-intensive applications. Re-
cently, the processing power of NDP engines has been substantially increased
[20]. For example, ARM Cortex-A53, a state-of-the-art embedded processor, is a
quad-core 64-bit processor operating at 1.1 GHz [9]. The Xilinx VCU1525 FPGA
board released in 2017 is equipped with 16 GB DDR4 memory and a Kintex Ul-
traScale FPGA chip, which has 5k DSP slices, 1M logic cells, and 75.9 Mb block
RAM [28]. We argue that NDP now also has a potential to benefit compute-
intensive applications by considerably alleviating the computational burden of
host CPUs as well as reducing their data movement. Thus, building a versatile
NDP server that can benefit a wide range of data center applications becomes
feasible. Unfortunately, such NDP server is not available yet. Besides, a good
understanding of the impact of NDP on data center applications is still miss-
ing. For example, whether a compute-intensive application can also benefit from
NDP remains an open question. In addition, FPGAs [6,27,29] and embedded
processors (e.g., ARM processors) [3,24] are two main types of NDP engines.
Which type of NDP engine is a better choice for an NDP server? In order to
answer this question, a quantitative comparison between the two types of NDP
engines in terms of performance, energy efficiency, and cost/performance ratio
is required. Still, it cannot be found in the literature.

To address these issues, in this research we first propose a new versatile NDP
server architecture (see Figure 1a), which employs an array of NDP engines
between host CPUs and an SSD array. Based on the architecture, two NDP
servers called FNS (FPGA-based NDP Server) and ANS (ARM-based NDP
Server) are then introduced. In both ANS and FNS, there are multiple SSDs with
each having its corresponding NDP engine. Next, we implement a single-engine
prototype for each of them based on a conventional data center server (hereafter,
conventional server). While SANS (Single-engineANS) utilizes an ARMCortex-
A53 processor [9] as its NDP engine, SFNS (Single-engine FNS) employs FPGA
logic as its NDP engine (see Section 4). Further, we measure performance, energy
efficiency, and cost/performance ratio for six typical data center applications (see
Section 4.3) on the two prototypes. Finally, we obtain some new findings after
analyzing our experimental results. To the best of our knowledge, this is the first
study that provides a quantitative comparison between the two major types of
NDP engines. Also, this research is the first investigation on the impact of NDP
on compute-intensive applications.

2 Related Work

According to the location of NDP engines in the memory hierarchy, existing
NDP techniques can be generally divided into three groups: in-storage comput-

2



DRAMDRAMCPUs

m PCIe lanes
PCIe Switch

DRAM

SSD
#n-2

SSD
#n-1

SSD
#1

SSD
#0

NDPE
#n-1

(a)

NDPE
#n-2

NDPE
#1

NDPE
#0

k k k k 

n PCIe xk lanes

DRAMARM 
processor

DRAM

(b)

Interface  
to host

Interface  
to SSD

DRAMFPGA
logic

DRAM

(c)

Interface  
to host

Interface  
to SSD

Fig. 1: (a) NDP server; (b) ARM-based NDP engine; (c) FPGA-based NDP engine.

ing (ISC), in-memory computing (IMC), and near-storage computing (NSC).
Although various ISC and IMC techniques have shown their strength in the
laboratory, so far none of them is publicly available. NSC, however, is more
practical as one can develop an NSC-based computer using some commodity
products (e.g., a server and FPGA). Thus, in this research we employ NSC to
study the impact of NDP on data center applications.

NSC techniques usually insert computing devices on the path between stor-
age devices (e.g., SSDs) and host CPUs to accelerate data processing. Ibex [27]
is developed as an FPGA-based SQL engine that accelerates relational database
management systems, whereas Netezza [5] builds a server equipped with one
FPGA between main memory and storage to extract useful data. Firebox [2] con-
sists of many fine-grained components of SoCs and memory modules connected
with high-radix switches. Hewlett-Packard utilizes configurable fine-grained pro-
cessing cores and memory pools to build a "machine" by connecting them with
a photonic network [26]. Interconnected-FPGAs [29] proposes to build a com-
puter system with one FPGA-based NDP engine to accelerate join operations
in a database. While all existing NSC techniques only utilize one NDP engine in
a server, ANS/FNS adds an NDP engine for each SSD of an SSD array to fully
exploit the parallelism among the SSDs.

3 NDP Server Architecture

In this section, we first introduce the architecture of a conventional server. Next,
we propose a versatile NDP server architecture, which inspires ANS and FNS.

3.1 The architecture of a conventional server

The architecture of a conventional server with all flash storage can be envisioned
from Figure 1a by removing the NDP engine (i.e., NDPE) array. Its main compo-
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nents include one or multiple multi-core CPUs, DRAM, PCIe bus, PCIe switch,
an array of SSDs, and network interface. The PCIe bus provides a high band-
width data path between the CPUs and SSDs. There are k PCIe lanes (k > 1)
for each SSD. A PCIe switch is in charge of the data path between CPUs and
SSDs. The host CPUs concurrently access all SSDs through the PCIe switch.

Two limitations exist in a conventional server architecture. First, data trans-
fer bandwidth provided by an array of SSDs is underutilized because the number
of PCIe lanes from SSDs to the PCIe switch (i.e., n×k) is usually much larger
than that number from the PCIe switch to CPUs (i.e., m). Consequently, data
transfer may become a performance bottleneck for a data-intensive application
as the full bandwidth of the SSD array cannot be exposed to the CPUs. Another
limitation is that for a compute-intensive application a performance bottleneck
could occur on the CPUs. It seems that allocating engines (e.g., FPGAs) near
host CPUs could also alleviate this limitation. However, doing so would require
all raw data to be transferred from SSDs to the DRAM of host CPUs through
the PCIe bus and PCIe switch (see Figure 1a), which decreases the performance
and energy-efficiency. Besides, deploying engines close to host CPUs is useless
for a data-intensive application as its data transfer bottleneck cannot be solved.

To address the two limitations, we propose a new NDP server architecture
that employs an NDP engine array between the PCIe switch and the SSD array
so that each SSD is coupled with an NDP engine (see Figure 1a). The rationale
behind the new architecture is that deploying data processing engines near SSDs
could benefit both data-intensive and compute-intensive applications. In addi-
tion, tightly coupling one SSD with one NDP engine enables an NDP server to
fully exploit the storage bandwidth. Also, it makes the server scale well. Based
on this new architecture, two NDP servers (i.e., ANS and FNS) are introduced.

3.2 The new NDP server architecture

Figure 1a shows the architecture of our proposed NDP server. The only difference
between a conventional server and an NDP server based on the new architecture
is that the latter has an extra layer of NDP engines. Each NDP engine consists
of four key components: a processing element (PE), DRAM, an interface to host,
and an interface to SSD. For an ANS, a PE is simply an embedded processor
like an ARM Cortex-A53 (see Figure 1b). For an FNS, the FPGA logic used
by an application kernel (i.e., a partition of an FPGA chip) serves as a PE (see
Figure 1c). This is because an FPGA chip is relatively expensive. Multiple SSDs
sharing one FPGA chip is more practical than each SSD owning an FPGA chip.
Note that application kernels generated from one FPGA chip can concurrently
process data from distinctive SSDs. The DRAM stores metadata. Also, it works
as a buffer for data movement among an SSD, an NDP engine, and host CPUs.

A data processing procedure is always launched by host CPUs, which are in
charge of the following tasks: (1) managing the operating system of the server;
(2) monitoring the statuses of all NDP engines; (3) executing the host-side ap-
plication; (4) offloading the application kernel to all NDP engines; (5) writing

4



DRAMDRAMCPUs

PCIe Switch

DRAM

SSD
#n-2

SSD
#n-1

SSD
#1

SSD
#0

NDPE
#n-1

NDPE
#n-2

NDPE
#1

NDPE
#0

k k k k 

1 2m

DRAMDRAMCPUs

PCIe Switch

DRAM

SSD
#n-2

SSD
#n-1

SSD
#1

SSD
#0

NDPE
#n-1

NDPE
#n-2

NDPE
#1

NDPE
#0

k k k k 

1

2m

Fig. 2: Data transfer in an NDP server.

the arguments to an application kernel in an NDP engine and then enabling it
to read and process the data from its corresponding SSD.

In the NDP architecture proposed by [29], each server (called computing node
in [29]) only has one NDP engine and NDP engines belong to different servers
are interconnected in order to reduce the communication cost caused by data
exchange between different NDP engines. In our proposed NDP server architec-
ture, however, NDP engines are not directly connected to each other because
doing so will make hardware connection routing very complicated considering
that each NDP server proposed in this research can have dozens of NDP engines.

Instead, when an NDP engine has a need to transfer data to one of its peers,
it leverages a PCIe peer-to-peer (P2P) communication strategy [19], which is a
part of the PCIe specification. The PCIe P2P communication enables regular
PCIe devices (i.e., NDP engines in our case) to establish direct data transfer
without the need to use host memory as a temporary storage or use the host-
CPU for data movement. Thus, data transfer from a source NDP engine to a
destination NDP engine can be accomplished through the PCIe switch in a DMA
(Direct Memory Access) manner. PCIe P2P communication significantly reduces
the communication latency and does not increase hardware design complexity.
The data path 1 shown in Figure 2 illustrates this process. After all NDP engines
finish their data processing, the results from each NDP engine will be aggregated
at the host-DRAM for a further processing in CPU. The data path 2 shown
in Figure 2 clarifies this case. Compared to the NDP architecture proposed in
[29], our proposed NDP server architecture lays a burden on the host when
an application needs to frequently exchange data or messages between different
NDP engines. However, our architecture has two advantages: (1) the design
complexity is greatly reduced; (2) it is more compatible with a conventional
server. In addition, the fine-grained coupling of NDP engines with SSDs (i.e.,
each SSD has an exclusive NDP engine) in a shared-nothing architecture leads
to a very high degree of parallelism in data transfer and data processing. It also
delivers a very good scalability to the proposed server architecture.
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Fig. 3: (a) The SANS prototype; (b) The SFAN prototype.

4 Implementations

In this section, we first explain our implementation methodology. Next, we de-
scribe how we implement the two single-engine NDP server prototypes SANS
and SFNS, which are all extended from a state-of-the-art server with two 18-
core Intel Xeon CPUs and 36 PCIe SSDs [22]. Finally, we provide implementation
details of six data center applications.

4.1 Implementation methodology

To develop two NDP servers (i.e., ANS and FNS) based on our proposed archi-
tecture shown in Figure 1a, 36 Fidus Sidewinder-100 boards [9] and 36 Xilinx
VCU1525 FPGA boards [28] are needed. In addition, each board needs two sep-
arate PCIe interfaces to connect an SSD and the PCIe switch, respectively. The
high hardware cost and massive hardware revision are beyond our capacity. For-
tunately, the major goal of this research is to understand the impact of NDP
on data center applications instead of building two fully-fledged NDP servers.
Therefore, we only build one NDP engine for each of the two proposed NDP
servers shown in Figure 3. Six applications are executed on the two single-engine
NDP server prototypes, and then, the results are extrapolated to the case of the
two full-size NDP servers (i.e., ANS and FNS), respectively.

The procedure of data processing in an NDP server can be divided into
four steps: (1) SSD: data transfer from SSDs to NDP engines; (2) NDP: data
processing in NDP engines; (3) NDP2CPU: data transfer from NDP engines
to host-DRAM; (4) CPU: data processing in host-CPU. These four steps are
organized in a pipelined fashion. If the data throughput bandwidth of each step
is denoted as *BW (* is SSD, NDP, NDP2CPU, or CPU), then the system
performance of the NDP server is determined by:

Min{SSDBW, NDPBW, NDP2CPUBW*α, CPUBW} (1)

, where α is equal to the size of NDP engine input data divided by the size of
NDP engine output data. An example of using this equation can be found in
Section 5.1. Based on our tests, the read bandwidth of an SSD is approximately 3
GB/s and NDP2CPUBW is about 36 GB/s (see Table 1). When all 36 SSDs work
concurrently the SSDBW is equal to 108 GB/s (i.e., 36×3 GB/s). The NDPBW is
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Table 1: Platform setup
Specifications

Server Two CPU sockets; 36 SSDs
m = 48; n = 36; k=4 (see Figure 1a)

CPU [14] Xeon 6154 : 64bit, 3.0 GHz, 18 cores, 36 threads
PCIe 48 lanes attached to host CPUs (36 GB/s)

144 lanes attached to SSDs (108 GB/s)
SSD PCIe×4; 3 GB/s

ARM Platform Quad-core Cortex-A53: 64-bit, 1.1 GHz [9]
FPGA Platform Xilinx VCU1525 platform [28]

equal to NDPEBW×n, where NDPEBW denotes the data processing bandwidth
of one NDP engine and n is the total number of NDP engines. Obviously, the
values of NDPEBW and CPUBW depend on the characteristics of applications.
These values of applications will be measured in Section 5. We will use Equation
1 to calculate the performance of the six applications running on ANS/FNS.

4.2 Implementation of SANS and SFNS

The PE of each NDPE of an ANS is a quad-core Cortex-A53 ARM proces-
sor embedded in a Fidus Sidewinder-100 SoC board [9]. Table 1 summarizes
the specifications of the conventional server we used and the Fidus board. The
board’s PCIe Gen3 NVMe interfaces enable the ARM cores to directly read data
from an attached SSD. Its PCIe × 8 host interface and 1 Gigabit Ethernet inter-
face provides a channel for data movement and communication from/to the host
CPUs. In our experiments, an application is first compiled by a cross-platform
compiler aarch64-linux-gnu-g++. Next, the executable file is offloaded from host
CPUs to the ARM cores in an NDPE. Finally, a data processing procedure is
launched by the ARM cores. For each application, we measure its performance,
energy efficiency and cost/performance ratio.

In an SFNS, the PE of an NDPE is built by FPGA logic (see Figure 1c).
We use a Xilinx VCU1525 FPGA board [28] to implement that NDPE. The
specifications of the FPGA board are presented in Table 1. The FPGA board is
plugged into a PCIe slot of the server (see Figure 3b). The six applications are
implemented in C++ and then compiled into binary files using Vivado High-
Level Synthesis (HLS) [28] tool chain. The OpenCL framework is employed for a
general management of the kernel running on NDP engines, which includes pro-
graming the device, setting arguments for the kernel, and launching the kernel.
The pseudo code of the management is shown as below.

An SDAccel [28] development environment is used to evaluate the applica-
tions on FNS. It includes a system compiler, RTL level synthesis, placement,
routing, and bitstream generation [28]. The system compiler employs underlying
tools for HLS. The VCU1525 FPGA board is plugged into a PCIe Gen3 × 8 slot
of the conventional server (see Figure 3b).
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for kernel← 0 to N − 1 do
cl::Program::Program(context, devices, binaryfile)
//create a program project
cl::Program::Kernel(program, kernel_name)
//create a kernel object
cl_int cl::Kernel::setArg()
//set argument and workload for kernel
cl::CommandQueue::enqueueTask(kernel)
//program the FPGA and launch the kernel

end

In the SDAccel development environment, the OpenCL (Open Computing
Language) [13] standard is used for parallel programming. It provides a program-
ming language and runtime APIs to support the development of applications on
the OpenCL platform model, which includes the host CPUs and FPGAs. Details
of SDAccel and OpenCL can be found in [28]. Note that the data flow of SFNS
is different from that of the OpenCL framework, which is shown in Figure 4.
The primary benefit of NDP comes from reducing data movement by directly
reading/processing data from where they are stored (i.e., SSDs in the case of
FNS). Thus, an FNS engine is expected to be able to fetch data from an SSD
to the DRAM of an NDP engine (step 1 in Figure 4a). And then, the data are
transferred to the FPGA to be processed, after which the results are sent back to
the DRAM in the NDP engine (step 2 in Figure 4a). Finally, the results will be
transferred to the host-CPU (step 3 in Figure 4a). Unfortunately, the proposed
NDP engine in an SFNS is built in the OpenCL framework, which always starts
data processing from host-CPU. When there is a need to execute an application
kernel on the FPGA board, the host-CPU first reads data from an SSD to the
host-DRAM (step 1 in Figure 4b). Next, the host-CPU writes the data to the
DRAM in an NDP engine (step 2 in Figure 4b). After the data have been pro-
cessed in the NDP engine (step 3 in Figure 4b), they are eventually transferred
to the host-DRAM (step 4 in Figure 4b).

Since it is difficult, if not impossible, to change the data flow of the OpenCL
framework to the way that an SFNS desires, we find a workaround to bypass
this issue. In particular, we use the steps 2-4 in Figure 4b to emulate the steps
1-3 in Figure 4a in our experiments in order to estimate an application’s wall
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Fig. 4: (a) Data flow in SFNS; (b) Data flow in OpenCL framework.
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time when it is running on an SFNS. The only difference between these two
sets of steps lies in where to fetch the raw data. While SFNS is expected to
achieve this by reading data from an SSD to the DRAM of an NDP engine
(step 1 in Figure 4a), the OpenCL framework actually accomplishes this task by
transferring raw data from host-DRAM to the DRAM of an NDP engine (step 2
in Figure 4b). However, the VCU1525 FPGA board can deliver a 10 GB/s data
transfer bandwidth [28] in step 2 shown in Figure 4b, which is much higher than
the 3 GB/s data transfer bandwidth provided by an SSD (see Table 1) in step 1
shown in Figure 4a. Therefore, a delay is injected to deliberately lower the data
transfer bandwidth from 10 GB/s to 3 GB/s, by which we achieve our goal. To
balance the workload among all NDP engines, the data set is equally split across
the SSD array. In fact, the amount of workload for each kernel is set on the host
program during its argument stetting phase for a kernel.

4.3 Implementation of the applications

Six applications with distinct characteristics are chosen to study the impact of
NDP on data center applications. They are run on CNS, SANS, and SFNS,
respectively.

Linear Classifier (LC) In the field of machine learning, a linear classifier
achieves statistical classification by making a classification decision based on the
value of a linear combination of the features [23]. If the input feature vector to the
classifier is a real vector x, then the output score is y = f(w ·x) = f

(∑
j wjxj

)
.

In our experiments, j is set to 8, which makes LC a data-intensive application.
A parallel implementation of this algorithm can be found at [23]. The size of the
dataset used for this application is 37 GB. Since the classification for each data
point is independent from the other points, the classifying of each point can be
parallelized among the 36 NDP engines.

Histogram Equalization (HE) Histogram equalization is a computer im-
age processing technique used to improve contrast in images. Histogram equal-
ization transforms pixel intensities so that the histogram of the resulting image
is approximately uniform. This allows for areas of lower local contrast to gain a
higher contrast [23]. A parallel implementation of this algorithm can be found
at [23]. The dataset size used for this application is 3.4 GB. The execution of
histogram equalization on different pictures can be done concurrently across the
36 NDP engines.

k-NN_2, k-NN_6, and k-NN_8 Given a set S of n reference data points
in a dimensional space and a query point q, the k-NN algorithm [21] returns the k
points in S that are closest to point q. Main steps of k-NN include: (1) computing
n squared Euclidean distances between the query point q (x1, x2, ..., xi) and the
n reference points of the set S (s1, s2, s3, ..., si);

distance = (x1− s1)2 + (x2− s2)2 + ...+ (xi− si)2 (2)
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(2) sorting the n distances while preserving their original indices specified in S.
The k nearest neighbors would be the k points from the set S corresponding to
the k lowest distances of the sorted distance array. The dimension of the data in
our experiments is set to 9. Since the distance calculation for each point in the
database is independent, step 1 can be executed concurrently among all 36 NDP
engines. In step 2, the calculated distances are aggregated and then sorted in
order to discover the k nearest points of the query point. This step is carried out
in the host CPUs after all results from step 1 are aggregated to the host-DRAM.
The computational complexity of k-NN depends on the number of features of
each data point. The number behind the word k-NN represents the number of
features of each data point. For example, k-NN_8 stands for a k-NN algorithm
with each data point having 8 features. A larger number of features for each data
point implies a more complex k-NN problem. The CPU and ARM codes start
from a parallel implementation of the k-NN algorithm from the Rodinia library
[21]. The dataset used for this application is totally 130 GB [21].

FFT FFT is an algorithm that samples a signal over a period of time (or
space) and then divides it into its frequency components. It is probably the
most ubiquitous algorithm employed to analyze and manipulate digital or dis-
crete data. It is also a well-recognized compute-intensive application [12]. The
algorithm consists of two 1D FFTs, i.e., a row-wise FFT and a column-wise FFT.
Note that for each picture its three color (i.e., R, G, B) values can be processed
in parallel as shown in Figure 5. To obtain the best performance on CNS, we
employ MKL (Math Kernel Library) [25] for the implementation of 2D FFT
on the Xeon CPUs. A 2D FFT implementation on FPGA adopts 1D FFT IP
core from Xilinx and it mainly consists of a 256 x 256 size row-wise 1D FFT
module, buffer, and column-wise 1D FFT module (see Figure 5). This design is
implemented at the RTL level. We run 2D FFT on 800 colorful pictures with
total size of 238.54 MB [7].

Among the six applications, LC is the most data-intensive, whereas FFT is
the most compute-intensive. Their data processing complexity increases in the
following order: LC, HE, k-NN_2, k-NN_6, k-NN_8, FFT. In the same order,
they become less data-intensive, which can be seen from the "System BW"
columns shown in Table 3 and Table 7. While LC, HE, and FFT only rely on NDP
engines to process their input data, the three KNN applications require both
NDP engines and host CPUs to accomplish the data processing task. In Section
5, we will run these six applications with distinct data processing complexities
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... 

... 
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Fig. 5: 2D FFT on FPGA.
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on CS, SANS, and SFNS separately. After that, the impact of proposed NDP
server on them will be talked.

5 Evaluation

In this section, we measure the performance, energy efficiency, and cost/perfor-
mance ratio of the six applications running on the conventional server (hereafter,
CS), SANS, and SFNS, respectively. The results of ANS and FNS are extrap-
olated from real measurements of SANS and SFNS, respectively. In ANS and
FNS, 36 NDPEs and 36 SSDs are assumed to be employed. Performance is de-
fined as data processing bandwidth of an application when it is running on a
server. Energy efficiency is represented by the amount of data that can be pro-
cessed per joule (i.e., MB/joule). Cost/performance ratio is defined as a server’s
cost divided by its data processing bandwidth (i.e., dollar/(MB/second)). Obvi-
ously, an NDP server is more expensive than a CS because it is equipped with
an array of NDP engines, which do not exist in a CS. However, it can deliver a
higher performance. Therefore, measuring their cost/performance ratios is a fair
method to compare their cost-effectiveness.

5.1 Evaluation of FFT&LC&HE

Performance evaluation: Table 2 and Table 3 show the performance of FFT,
LC, and HE on the five servers in terms of wall time and data processing band-
width, respectively. While "App" shown in Table 2 is a shorthand for "applica-
tion", "BW" shown in Table 3 is an abbreviation of "data processing bandwidth"
(see Equation 1). "All" stands for "all three applications". Since there is no NDP
engine in CS, "NA" (i.e., not applicable) is used for the three applications’ "Wall
time of NDP" and "BW of NDP" columns. Besides, since the three applications
are entirely implemented and executed in the NDP engines, there is no comput-
ing task for host CPUs. Thus, their values of "Wall time of CPU" and "BW of
CPU" are "0" and "+∞", respectively.

The BW of either an NDP engine or host CPUs is equal to the size of dataset
divided by wall time. The wall time of ANS/FNS is derived by the wall time of
SANS/SFNS divided by 36 as 36 NDP engines can work in parallel assuming that

Table 2: Performance of six applications
Wall time (s)
NDP/CPU

App LC HE FFT k-NN_2 k-NN_6 k-NN_8
CS NA/0.98 NA/0.13 NA/2.05 NA/17.22 NA/31.33 NA/47.45

SANS 16.67/0 1.98/0 132.60/0 825.50/0.62 1843/0.62 2354/0.62
SFNS 13.45/0 1.14/0 3.02/0 36.31/0.62 34.39/0.62 32.83/0.62
ANS 0.46/0 0.06/0 3.68/0 22.93/0.62 51.21/0.62 65.40/0.62
FNS 0.37/0 0.03/0 0.08/0 1.01/0.62 0.96/0.62 0.91/0.62
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Table 3: Performance of LC & HE & FFT
BW (GB/s) System BW

NDP/CPU SSD(s) NDP2CPU (GB/s)
App LC HE FFT All All LC HE FFT
CS NA/37.76 NA/26.15 NA/0.11 108 36 36 26.15 0.11

SANS 2.22/+∞ 1.72/+∞ 1.80e−3/+∞ 3 36 2.22 1.72 1.80e−3

SFNS 2.75/+∞ 2.98/+∞ 0.08/+∞ 3 36 2.75 2.98 0.08
ANS 80.43/+∞ 56.67/+∞ 0.06/+∞ 108 36 80.43 36 0.06
FNS 100.00/+∞ 113.33/+∞ 2.91/+∞ 108 36 100.00 36 2.91

Table 4: Energy efficiency of LC & HE & FFT
NDP Server Only Energy Consumption Energy Efficiency

(Watt)
(Watt) active idle (Joule) (MB/Joule)

App LC HE FFT All All LC HE FFT LC HE FFT
CS 0 0 0 613.70 30.33 601.43 79.78 1258.10 63.00 43.64 0.19
ANS 207.50 207.50 207.50 613.70 30.33 109.40 14.27 875.21 346.33 243.98 0.27
FNS 421.20 743.40 259.56 613.70 30.33 167.07 23.21 23.19 226.78 150.00 10.29

the dataset has been evenly distributed among the 36 SSDs. "System BW" of an
application is derived by Equation 1. It represents the application’s performance.

Take LC for example, its execution wall time on the NDP engine of SFNS
is 13.45 seconds (see Table 2). Since the size of its dataset is 37 GB, its NDPBW is
2.75 (GB/s) (i.e., 37/13.45, see Table 3). Meanwhile, its SSDBW, NDP2CPUBW,
CPUBW are 3 GB/s (only one SSD is used in SFNS), 36 GB/s (see Table 1),
and "+∞", respectively. Based on Equation 1, the performance of LC on SFNS
is 2.75 GB/s. Unlike FFT and HE whose size of dataset is unchanged after NDP
engine processing, the size of dataset of LC is reduced by 8 times (i.e., α =8)
after NDP engine processing [23]. To saturate NDP2CPUBW (i.e., 36 GB/s),
its NDPBW should be at least 36 x 8 = 288 GB/s, which is much higher than
80.43 GB/s and 100 GB/s (i.e., NDPBW of LC using ANS and FNS). That is
why the performance of LC on ANS and FNS is decided by NDPBW rather than
NDP2CPUBW.

Energy efficiency: Table 4 summarizes energy consumption and energy ef-
ficiency of the three servers. All values of power (Watt) in this table are measured
by the power meter shown in Figure 3a. The "Server Only" column provides the
power of the CS server. In the CS, since there is no NDPE, a "0" shows up in the
"NDP (Watt)" column for the three applications. The total energy consumption
of a server is the sum of energy consumption of NDPEs, energy consumption
of CPU in active status, and energy consumption of CPU in idle status. For
example, the energy consumption of ANS running LC is (207.5+30.33)x0.46 =
109.40 joules. Thus, its energy efficiency is (37x1024)/109.4 = 346.33 MB/joule.

Cost/performance ratio: Cost/performance ratios of the three servers are
provided in Table 5. Although in ANS and FNS the host CPUs are not involved
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Table 5: Cost/performance ratios of FFT & LC & HE
System Cost ($) Cost/Performance ($/(MB/s))
APP FFT LC HE FFT LC HE
CS 3,543 7,086 7,086 31.45 0.19 0.26
ANS 3,723 7,266 7,266 60.60 0.09 0.20
FNS 5,863 7,504 13517 1.97 0.07 0.37

Table 6: FPGA utilization of 36 NDPEs in FNS
App/Board LUT REG BRAM DSP slices
FPGA [28] 1,182,240 2,364,480 2,160 6,840

LC 108,108 125,568 72 180
(9.14%) (5.31%) (3.33%) (2.63%)

HE 1,673,352 1,961,604 *6300 0
#(140.54%) (82.96%) 0 0

k-NN_2 129,816 172,512 72 432
(10.98%) (7.30%) (3.33%) (6.32%)

k-NN_6 227,016 364,140 288 1,440
(19.20%) (15.40%) (13.33%) (21.10%)

k-NN_8 272,916 444,960 288 1,944
(23.08%) (18.81%) (13.33%) (28.42%)

FFT 481,932 643,608 180 3,456
(40.81%) (27.21%) (8.28%) (50.50%)

* Off-chip DRAM used for the overfilled BRAM;
#Larger than 100% means more than one FPGA chip needed.

in data processing, their costs are still taken into account as we are calculating
the cost of an entire system. The prices of CPUs, ARM, and FPGA can be found
at [14], [4], and [28], respectively. We will take FFT as an example to show how
to obtain its cost/performance ratio on CS, ANS, and FNS, respectively. Since
MKL [25] recommends using just one thread per host CPU core for FFT to
achieve the best performance, we divide the total CPUs’ price by two, which is
$3,543. So, the cost/performance ratio of FFT on CS is $3,543/0.11 GB/s (see
Table 3) = 31.45 $/(MB/s). In an ANS, the total price of the server is the sum
of the price of CS and 36 ARM processors[4]. In an FNS, most resources that
the 36 NDPEs consume are DSP slices, which account for 50.5% of the FPGA
resources (see Table 6). Thus, the cost of FFT on an FNS is the price of host
CPUs (i.e., $3,543) plus a 50.5% of FPGA price (i.e., $4,593.75 [8]), which is
equal to $5,863. Since the performance of FFT on FNS is 2.91 GB/s (see Table
3), its cost/performance ratio is $5,863/2.91 GB/s = 1.97 $/(MB/s).

5.2 Evaluation of the three k-NN applications

Performance evaluation: Table 2 and Table 7 show the performance of k-
NN_2, k-NN_6, and k-NN_8 on the five servers in terms of wall time and data
processing bandwidth separately. Unlike FFT, LC and HE, an execution of a k-
NN application on an NDP server (i.e., ANS or FNS) involves both host CPUs
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Table 7: Performance of k-NN_2 & k-NN_6 & k-NN_8
BW (GB/s) System BW

NDP/CPU SSD(s) NDP2CPU (GB/s)
k-NN_ 2 6 8 All All 2 6 8
CS NA/7.55 NA/4.15 NA/2.74 108 36 7.55 4.15 2.74

SANS 0.16/209.68 0.07/209.68 0.06/209.68 3 36 0.16 0.07 0.06
SFNS 3.58/209.68 3.78/209.68 3.96/209.68 3 36 3 3 3
ANS 5.67/209.68 2.54/209.68 1.99/209.68 108 36 5.67 2.54 1.99
FNS 128.71/209.68 136.42/209.68 142.86/209.68 108 36 108 108 108

Table 8: Energy efficiency of k-NN_2 & k-NN_6 & k-NN_8
NDP Server Only Energy Consumption Energy Efficiency

(Watt)
(Watt) active idle (Joule) (MB/Joule)

KNN_ 2 6 8 All All 2 6 8 2 6 8
CS 0 0 0 613.70 30.33 10568 19227 29120 12.60 6.92 4.57
ANS 207.50 207.50 207.50 613.70 30.33 5815.10 12541 15916 22.89 10.61 8.36
FNS 420.53 429.85 431.87 613.70 30.33 817.06 803.46 782.29 162.93 165.68 170.17

and NDPEs. There are two steps in an execution of a k-NN application. While
the first step (i.e., computing n squared Euclidean distances between the query
point q and the n reference points of the set S ) is performed in NDPEs, the
second step (i.e., sorting the n distances while preserving their original indices
specified in S ) is carried out in host CPUs. Note that in the first step distance
calculations can be performed in parallel as there is no data dependency among
the distances. While the values in the "NDP" column show the performance
of step 1 in NDP engines, the values in the "CPU" column demonstrate the
performance of step 2 in host CPUs (see Table 7). The only difference among
the three k-NN applications is the number of features used for the distance
calculation in step1.

Energy efficiency and Cost/performance ratio of the three k-NN ap-
plications are summarized in Table 8 and Table 9.

5.3 Impact of NDP on data center applications

Figure 6 summarizes experimental results from Table 3 ∼ Table 9. A quantitative
comparison between CS and the two NDP servers (i.e., ANS and FNS) is also
given in Table 10. Based on Figure 6 and Table 10, several new findings on the
impact of NDP on data center applications can be obtained.

Table 10 shows that in terms of performance ANS outperforms CS by 2.23×
and 1.38× for LC and HE, respectively. Finding 1: For data-intensive but
compute-light applications, ANS can provide performance benefits by offloading
computation from host CPUs to NDP engines that are close to data. The per-
formance benefits stem from ANS’ capability of exploiting the full bandwidth of
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Table 9: Cost/performance ratios of three k-NNs
System Cost ($) Cost/Performance ($/(MB/s))
k-NN_ 2 6 8 2 6 8
CS 7,086 7,086 7,086 0.92 1.67 2.53
ANS 7,266 7,266 7,266 1.25 2.79 3.57
FNS 7,591 7,968 8,390 0.07 0.07 0.08

Table 10: Comparisons among the three servers in three metrics.
Comparison with CS LC HE k-NN_2 k-NN_6 k-NN_8 FFT

Performance 2.23x 1.38x 0.75x 0.61x 0.73x 0.55x
ANS Energy Efficiency 5.49x 5.59x 1.81x 1.53x 1.83x 1.42x

Cost/performance ratio 2.11x 1.30x 0.74x 0.60x 0.71x 0.50x
Performance 2.78x 1.38x 14.30x 26.02x 39.42x 26.45x

FNS Energy Efficiency 3.6x 3.44x 12.93x 23.94x 37.23x 54.16x
Cost/performance ratio 2.71x 0.70x 13.14x 23.86x 31.63x 15.46x

the SSD array, and thus, avoiding the data transfer bottleneck on the path from
the PCIe switch to host CPU DRAM (see Figure 1 a). Table 10 also shows that
ANS is inferior to CS in terms of performance for k-NN_2 (0.75x), k-NN_6
(0.61x), k-NN_8 (0.73x), and FFT (0.55x), which all have a data processing
complexity higher than that of LC and HE. Finding 2: ANS cannot bene-
fit compute-intensive applications in terms of performance. Although offloading
computation to near-data processing engines enables ANS to enjoy the high
data throughput bandwidth of the SSD array, for compute-intensive applica-
tions these benefits cannot offset the significant discrepancy in computational
capacity between a 1.1 GHz embedded processor and a 3.0 GHz Xeon CPU. The
trend shown in Finding 1 and Finding 2 can also be observed in Figure 6.

Can a compute-intensive application also enjoy the benefits of NDP? The
answer is yes, which is confirmed by the Performance row of FNS in Table 10.
Finding 3: FNS can offer performance benefits not only for data-intensive appli-
cations but also for compute-intensive applications. The FPGA’s hardware-level
acceleration capability in FNS remedies the weakness of an embedded processor
in ANS. This advantage of FNS and the benefits brought by NDP (i.e., fully
exploiting the high data throughput of the SSD array, and thus, reducing data
movement) together explain this finding. The performance benefits cannot be
gained by simply putting data processing engines at the host CPU side because
data transfer from the PCIe switch to host CPU could become a system perfor-
mance bottleneck if doing so (see NDP BW 142.86 GB/s and NDP2CPU BW
36 GB/s of k-NN_8 in Table 7).

From Table 10, we obtain the following findings. Finding 4: FNS offers
more benefits in terms of performance and energy efficiency for applications
with a higher data-processing complexity, which is contrary to ANS. Finding
5: Compared with CS both ANS and FNS can deliver a higher energy efficiency
for all six applications. The reason is that host CPUs are not energy efficient in
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K-NN energy efficiency

Linear_classfication 1.331569665 1.633858 1.376884

LC HE k-NN_2 K-NN_6 K-NN_8
CS 36 26.15 7.55 4.15 2.74
ANS 80.43 36 5.67 2.54 1.99
FNS 100 36 108 108 108

2.234166667 1.37667304 0.750993377 0.612048 0.726277
2.777777778 1.37667304 14.30463576 26.0241 39.41606

1.331569665 1.633858 1.376884

LC HE K-NN_2 K-NN_6 K-NN_8
CS 63 43.64 12.6 6.92 4.57
ANS 346.33 243.98 22.89 10.61 8.36
FNS 226.78 150 162.93 165.68 170.175

5.497301587 5.590742438 1.816666667 1.533237 1.829322
3.59968254 3.437213566 12.93095238 23.9422 37.23742

LC HE K-NN_2 K-NN_6 K-NN_8
CS 0.19 0.26 0.92 1.67 2.53
ANS 0.09 0.20 1.25 2.79 3.57
FNS 0.07 0.37 0.07 0.07 0.08

2.11 1.30 0.74 0.60 0.71
2.71 0.70 13.14 23.86 31.63
2.71 1.30

13.14285714
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Fig. 6: Comparisons among the three servers in three metrics.

nature. Offloading more computational load to an NDP engine not only relieves
the computational burden of host CPU but also reduces the data movement,
which can better improve energy efficiency of the entire system. Table 10 shows
that ANS can provide a better cost/performance ratio for LC and HE only com-
pared with CS. For the rest four applications, it offers a worse cost/performance
ratio. However, FNS can improve cost/performance ratio for all applications ex-
cept HE. This is because HE consumes too many LUTs (see Table 6). Finding
6: FNS can improve cost/performance ratio for a diverse range of data center
applications, whereas ANS can do so only for some compute-light applications.
The conclusion is that FNS is better than ANS in terms of cost-effectiveness.

6 Conclusions

In this paper, we first propose a new NDP server architecture for data cen-
ter applications. The goal of the new architecture is to benefit a wide range
of data center applications from data-intensive to compute-intensive. Next, we
implement two single-engine NDP server prototypes. Finally, we evaluate six typ-
ical data center applications on a conventional data center server and the two
prototypes. Based on our experimental results, several new findings have been
obtained. These findings answer some open questions about how NDP impacts
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data center applications. Now we understand that a compute-intensive applica-
tion can also benefit from NDP in the three metrics when FPGA-based NDP
engines are employed. In addition, we find that compared with an ARM-based
NDP engine an FPGA-based NDP engine is more capable of benefiting a wide
range of data center applications. Currently, the main merit of an ARM-based
NDP engine is to improve energy efficiency and reduce cost/performance ratio
for some data-intensive but compute-light applications. For most applications,
an FPGA-based NDP engine is superior to an ARM-based NDP engine, and
thus, it should be considered first when NDP is applied to a data center server.
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