
PDB: A Reliability-Driven Data Reconstruction Strategy
Based on Popular Data Backup for RAID4 SSD Arrays

Feng Liu1, Wen Pan1, Tao Xie2,Yanyan Gao1, and Yiming Ouyang1

1 Computer and Information College, Hefei University of Technology, Hefei, P.R. China
2Computer Science Department, San Diego State University, San Diego, USA

{fengliu089,wenwen412}@gmail.com, txie@mail.sdsu.edu,
littlek.gao@gmail.com, oyym@hfut.edu.cn

Abstract. With the application of MLC (multi-level cell) and TLC (triple-level
cell) techniques, the price of NAND flash memory based SSD (solid-state
drive) decreases rapidly with increasing capacity. However, these techniques
negatively influence the reliability of SSD as they lead to a larger number of
raw flash memory errors. When multiple such reliability degraded SSDs organ-
ized in a RAID structure SSD failures could occur. Thus, a reliability-aware
data reconstruction mechanism that can quickly recover the data of a failed SSD
onto a replacement SSD becomes essential. In this paper, we propose a reliabil-
ity-driven data reconstruction strategy called PDB (Popular Data Backup) for
RAID4 and SPD-RAID4 (Splitting Parity Disk - RAID4), a variant of RAID4.
PDB collaboratively backups popular data among data SSDs to achieve a short-
er “window of vulnerability”. Experimental results demonstrate that compared
with the traditional SOR (Stripe Oriented Reconstruction) method PDB can
shorten reconstruction time up to 31.3%.

Keywords: SSD, reliability, data reconstruction, popular data backup, window
of vulnerability

1 Introduction

In order to decrease the price and increase the capacity of NAND flash memory based
SSD (hereafter, SSD) [1], manufacturers are aggressively pushing flash memory into
smaller geometries and letting each flash memory cell store multiple bits by employ-
ing either MLC (multi-level cell) or TLC (triple-level cell) technique [2]. Unfortu-
nately, these techniques negatively influence the reliability of SSD as they lead to a
larger number of raw flash memory errors compared with SLC (single-level cell)
technology, in which each cell stores only one bit. As flash memory density increases,
it becomes less reliable for it is more subject to various device and circuit level noises
as well as retention errors [2]. Besides, a flash memory cell can only be repro-
grammed in a limited number of times (called “program/erase cycles”), after which
data can no longer be guaranteed to be correctly written into the cell [1,3]. These scal-
ing down techniques also substantially reduce the endurance of flash memory. For

example, the available P/E (program/erase) cycles of MLC NAND flash memory has
dropped from ~10K for 5x nm flash to around ~3K for current 2x nm flash [2].

Since a single SSD cannot satisfy the performance and reliability requirements
demanded by data-intensive applications like video processing and bioinformatics, an
array of SSDs organized in some RAID (Redundant Array of Independent Disk) [4]
structures has been proposed to serve such applications [5,6]. However, when indi-
vidual SSDs tend to be increasingly unreliable, the reliability of an SSD array be-
comes a severe problem. In particular, when an SSD fails a data reconstruction mech-
anism must be able to quickly recover its data onto a replacement SSD so that the
length of the reconstruction time (or “window of vulnerability”) is sufficiently short
[7]. A shorter “window of vulnerability” can alleviate performance degradation
caused by data recovery. More importantly, it enhances SSD array reliability by low-
ering the probability of a subsequent SSD failure during an ongoing data reconstruc-
tion process [8,9]. It is understood that a second SSD failure during a data reconstruc-
tion process could cause permanent data loss, which brings enormous economic loss
in industry [8]. For instance, 50 percent of companies that lose critical business sys-
tems for more than 10 days never recover [8]. Apparently, a reliability-driven data
reconstruction strategy that can shrink the “window of vulnerability” for a RAID
structured SSD array is much needed. To the best of our knowledge, very little re-
search about SSD array data reconstruction has been reported in the literature.

A RAID4 (block-level striping with dedicated parity) structured SSD array stores
parity information on a dedicated SSD drive (i.e., the parity SSD) and distributes data
among multiple data SSDs. It can tolerate one drive failure due to data redundancy.
Among various RAID formats, RAID4 has not been popular because the dedicated
parity drive becomes a performance bottleneck as parity data must be written to it for
every block of non-parity data. Nevertheless, we recently proposed a new variant of
RAID4 architecture called SPD-RAID4 (Splitting Parity Disk - RAID4) for parallel
SSD arrays [10]. It splits the parity SSD into a configurable number of smaller ones.
Thus, multiple small capacity parity SSDs can operate in tandem with the data SSDs
to achieve a high performance [10]. For example, SPD-RAID4 turns a standard
RAID4 array with five 512 GB SSDs (four data SSDs plus one parity SSD) into a
new SSD array with four 512 GB data SSDs and two 256 GB parity SSDs. Note that
the total cost of the two SSD arrays is almost the same as at the time of this writing
the price of a 256 GB Intel SSD is about half of that of a 512 GB Intel SSD [10]. Ex-
perimental results from [10] demonstrate that in terms of mean response time SPD-
RAID4 outperforms the widely used RAID5 (block-level striping with distributed
parity) by up to 20.3%. As a result, in this paper we propose a reliability-driven online
data reconstruction strategy called PDB (Popular Data Backup) for SPD-RAID4.

PDB divides each data SSD into a large user zone and a small mirroring zone.
While the user zone serves outside user I/O requests, the mirroring zone of a data
SSD backups its immediate neighbor data SSD’s popular read data in real-time. As-
sume that an SPD-RAID4 SSD array has four data SSDs (from left to right: S0, S1,
S2, and S3). PDB dynamically replicates S0’s most popular read data onto S1’s mir-
roring zone. If S0 fails S1 can speed up the data reconstruction process by dumping
the replica of S0’s most popular data onto a new replacement SSD. Similarly, S2

backups S1’s most popular read data. Lastly, S0’s mirroring zone is used to backup
S3’s most popular read data. PDB makes data SSDs help each other in a circular
linked list format. Essentially, it is a data reconstruction strategy based on a collabora-
tive popular data real-time backup scheme. PDB exploits the temporal and spatial
locality of workloads and dynamically keeps track of the popularity changes of each
data region. Section 3 explains the PDB strategy in details.

To evaluate the performance of PDB, we first largely extend a validated single
SSD simulator called SSDsim [11] to an SSD array simulator, which can simulate an
SSD array in RAID4, RAID5, and SPD-RAID4 formats. Next, PDB and a conven-
tional data reconstruction mechanism named SOR (Stripe-Oriented-Reconstruction)
[12] are implemented into the SSD array controller of the simulator. Finally, we use 3
real-world traces to conduct a comprehensive simulation study. Experimental results
show that in terms of reconstruction time on RAID4 and SPD-RAID4, PDB outper-
forms SOR by up to 20.9% and 31.3%, respectively.

The remainder of this paper is organized as follows. Related work and motivation
is presented in the next section. We describe the PDB strategy in section 3. In section
4, we evaluate the performance of SOR and PDB based on real-world traces. Section
5 concludes this paper with a summary.

2 Related Work and Motivation

2.1 SSD Basics

An SSD is a data storage device that uses NAND flash memory to store persistent
data [1]. Main parts of an SSD include flash controller, internal cache, and flash
memory [1]. Flash controller manages the entire SSD including error correction, inter-
face with flash memory, and servicing host requests [1]. The flash memory part of an
SSD consists of multiple identical packages. Each package has multiple dies that
share one serial I/O bus and common control signals [1]. Each die contains multiple
planes with each having thousands of blocks and one data register as an I/O buffer.
Each block has multiple pages (e.g., 64 pages in one block). The common size of a
page ranges from 2K to 8K. Flash memory offers three basic operations: program or
write, read, and erasure [1]. While reads and writes are page-oriented, erasure can be
conducted only at block granularity [11]. Flash memory does not allow in-place up-
dates as a write operation can only change bits from 1 to 0 [2]. On the contrary, an
erasure operation changes all bits of a block to 1 and a block must be erased before
being programmed (written) [2].

2.2 Existing Data Reconstruction Approaches

When a disk fails, a parity-encoding-based RAID-structured disk array can restore to
the normal operating mode by successively rebuilding each block of the failed disk
onto a replacement drive while continuing to serve I/O requests from users [13]. This
process is called data reconstruction or data recovery, which is normally performed by

a background process activated in either the host or the disk array controller [13].
Existing data reconstruction approaches are all dedicated to HDDs (hard disk drives).
They can be generally divided into three categories: (1) reorganizing data layout [14];
(2) optimizing reconstruction workflow [7,8,12,13,15-17]; (3) cache assisted recon-
struction [9, 18].

Approaches in the first group improve reconstruction performance by reorganizing
the data layout of the replacement disk or parity data units during data recovery [14].
One drawback of these approaches is that changing data layout incurs a high over-
head. Mainstream data reconstruction approaches fall in the second category. They
can improve disk array reliability and alleviate performance degradation by optimiz-
ing reconstruction workflow. SOR (Stripe-Oriented Reconstruction) [12] is one repre-
sentative approach in this category. SOR creates a set of reconstruction processes
associated with stripes so that multiple reconstruction processes can run in parallel.

Since reducing user I/O traffic directed to a degraded RAID set is an effective ap-
proach to simultaneously reduce reconstruction time and alleviate user performance
degradation, the Workout approach [7] exploits the temporal locality of workloads to
reduce user requests during reconstruction. However, its cost is very high as a surro-
gated RAID set is required to help the degraded disk array. Cache has been widely
used in data reconstruction strategies [9,18]. CORE [3] was developed on top of a
hybrid disk array where HDDs and SSDs collaborate to optimize reconstruction.

Our PDB strategy concentrates on SSD array data reconstruction by using an ap-
proach completely different from the existing ones. By dividing each data SSD into a
large user zone and a small mirroring zone, PDB collaboratively backups immediate
neighbor data SSD’s popular read data in real-time to significantly reduce reconstruc-
tion time, and thus, further enhances the reliability of system.

2.3 SPD-RAID4 Scheme

We recently developed a new SSD data reconstruction strategy called SPD-RAID4
[10], which is a variant of a standard SSD RAID4 structure. To the best of our knowl-
edge, it is the first data reconstruction approach devoted to an SSD array.

SPD-RAID4 splits the parity SSD into a configurable number of smaller ones. It is
composed of m data SSDs and n small capacity parity SSDs. When a request arrives,
the RAID controller divides it into multiple one-page size sub-requests. Each of these
sub-requests is dispatched to a data SSD in a round-robin fashion. In a standard SSD
RAID4 array, only one parity SSD undertakes all parity updates, which makes it wear
out quickly. This problem can be largely solved in SPD-RAID4 because multiple
parity SSDs evenly receive parity updates. In addition, when a request spans across
two or more stripes, the parity SSDs can work in parallel, and thus, significantly
boosts the SSD array performance. If a data SSD fails, multiple parity SSDs can serve
requests in parallel when recovering data in the fault data SSD. Experimental results
demonstrate that the performance of SPD-RAID4 is better than that of SSD RAID5
[10]. The scope of this research is to develop a reliability-driven data construction
strategy for SPD-RAID4.

2.4 Workload Locality

In many applications, 80% accesses are directed to 20% of the data, a phenomenon
that has long been known as Pareto’s Principle or “The 80/20 Rule” [19]. It indicates
the existence of temporal locality and spatial locality in various workloads. Temporal
locality, on the time dimension, refers to the repeated accesses to specific data blocks
within relatively small time durations. Spatial locality, on the space dimension, refers
to the clustered accesses to data objects within small regions of storage locations
within a short timeframe. Previous studies observe that 10% of files accessed on a
web server approximately account for 90% of the requests and 90% of the bytes trans-
ferred [8]. Such studies also found that 20%-40% of the files are accessed only once
for web workloads [8]. The two types of localities have been frequently exploited to
boost system performance. PDB also exploits the two access localities. It dynamically
tracks each data SSD’s popular read data. And then each data SSD backups the most
popular read data of its immediate neighbor data SSD in real-time. Although the size
of popular data is small, it can serve a large number of user requests.

2.5 Motivation

Modern large capacity SSDs become less reliable due to a spectrum of aggressive
scaling down techniques. Meanwhile, RAID-structured SSD arrays are replacing tra-
ditional HDD based disk arrays in various data-intensive applications. Thus, the reli-
ability of SSD arrays becomes a critical issue. Especially, when one SSD fails in an
SSD array, a reliability-aware data reconstruction approach is desperately needed.
Unfortunately, to the best of our knowledge, little research has been done in SSD
array data recovery. Motivated by our observations on the facts mentioned above and
the insights on workload locality characteristics provided by other researchers, in this
paper we propose a new reliability-driven data reconstruction strategy PDB to en-
hance RAID-structured SSD arrays’ reliability during data recovery. PDB achieves
reliability enhancement during reconstruction with a minimum performance penalty.

3 The PDB Strategy

3.1 Architecture Overview

Fig. 1 shows the architecture of the PDB strategy on an SPD-RAID4 structured SSD
array with 4 identical data SSDs (i.e., SSD0, SSD1, SSD2, SSD3) and 2 parity SSDs
(i.e., SSD4, SSD5). The capacity of each parity SSD is a half of a data SSD. SSD0 is
in shadow, which indicates that it becomes a failed SSD after running for a while (see
Fig. 1). Each data SSD’s popular read data is replicated in real-time onto its corre-
sponding immediate neighbor data SSD’s mirroring zone in normal mode. For sim-
plicity, the immediate neighbor SSD is named as a buddy SSD. For example, SSD1 is
the buddy SSD of SSD0 and SSD0 is the buddy SSD of SSD3 (see Fig. 1). When
SSD0 suddenly fails PDB does not need to reconstruct its popular data as it has been
stored on SSD1. Rather, PDB simply dumps it to a new replacement SSD, which can

Fig. 1. Architecture overview of PDB

save data reconstruction time. Note that the requests that target on the popular data of
SSD0 during the data recovery period can be served by SSD1. Obviously, when all
SSDs are working correctly, the burden of each data SSD increases because each
buddy SSD needs to backup its sponsored data SSD’s popular data in real-time. Thus,
PDB causes performance degradation when all SSDs are fine. Our experimental re-
sults presented in Section 4.2 show that compared with SOR the performance degra-
dation of PDB in normal mode is no larger than 6.8% in terms of mean response time.
However, PDB shrinks data reconstruction time by up to 31.3%. We argue that it is
worthwhile to trade a slight performance degradation for a substantial improvement in
data reconstruction time because PDB noticeably improves SSD array reliability dur-
ing a data recovery process. The shorter a “window of vulnerability” is, the more
reliable an SSD array is.

PDB consists of five key modules: read popularity identifier (RPI), request dis-
tributor (RD), popular data dumper (PDD), reconstruction data fetcher (RDF), and
reconstructed data deliverer (RDD). The RPI module is responsible for identifying the
popular data based on the recent access times of incoming user read requests in nor-
mal mode. The RD module directs I/O requests into either a user zone or a user zone
and its corresponding mirroring zone. PDD dumps the popular data from the buddy
SSD’s mirroring zone to a new replacement SSD. Multiple RDFs are launched during
reconstruction. Each of them reads one data block or a parity block from a surviving
data SSD or a parity SSD. Next, the rebuilt data block D0 can be computed by
D0=XOR(D1, D2, D3, P). Finally, RDD writes the reconstructed data D0 onto the
replacement SSD.

In the normal mode, when a read request arrives PDB first identifies whether its
associated data is popular by consulting the Read Popularity Table (RPT) (see Fig. 1).
If it is popular, PDB backups it onto the mirroring zone of the corresponding buddy
SSD once it cannot be found in the mirroring zone. If it is unpopular, PDB directly
reads it from the right data SSD. Upon receiving a write request, PDB first checks
whether it resides in the mirroring zone of the corresponding buddy SSD. If it does,
PDB writes it into the right SSD and the mirroring zone of the corresponding buddy
SSD simultaneously through the RD module. If not, PDB only writes it onto the right

data SSD. When an SSD fails, the entire SSD array enters into the recovery mode. In
this mode, when a read request arrives, if it targets on the failed SSD and the data has
not been rebuilt onto the replacement SSD, PDB checks whether the data has been
stored in the mirroring zone of the failed SSD’s buddy SSD. If yes, PDB will directly
read it from there, and then, PDD dumps it to the replacement SSD (see Fig. 1). If not,
PDB will launch multiple RDF processes to fetch data from surviving SSDs. For ex-
ample, in Fig. 1 data blocks D1, D2, D3 and the corresponding parity block P are
fetched by 4 RDF processes in parallel from SSD1, SSD2, SSD3, and SSD4, respec-
tively. Note that the 3 data blocks and the parity block P belong to one stripe. After
conducting an XOR operation (see Fig. 1), the reconstructed data block D0 will be
delivered to the replacement SSD by the RDD module. The replacement SSD now
can serve the read request. When a write request that targets on the failed SSD comes,
it will be re-directed to the new replacement SSD.

3.2 Key Data Structures and Algorithm

PDB relies on two key data structures RPT and RL (restore list) to identify popular
read data and replicate it into corresponding buddy SSD’s mirroring zone. Fig. 2
demonstrates their implementation details and the algorithm of restore function is
shown as below. PDB evenly divides each user zone into multiple non-overlapping
but consecutive logical data regions. Each node in RL represents a data region and
keeps track of region information that will be replicated to corresponding buddy SSD.
The closer the node towards the head of RL, the more popular it is. The size of each
region is equal to the size of a flash memory block (e.g., one flash memory flock has
64 pages and each page is 2 KB). RPT keeps track of the popularity of all logical data
regions by using variables: id and visit_count. The id of an incoming read request is
calculated by the equation below:

 id = int (LPN/block_size), (1)

where LPN is the logic page number of a request and block_size is set to 64, which is
the number of pages in a flash block. Equation (1) indicates that an id contains a block
size data region. For example, request LPN 0 to LPN 63 all belong to id 0. The value
of visit_count represents the popularity of a data region. Its value is incremented by 1
when a read request hits the data region. If the value of visit_count is equal to or
greater than the popularity threshold, PDB takes the corresponding data region as a
popular region. When the RPT table is full, the least popular data region with the
fewest access times will be kicked out to accommodate a new popular data region.
Then PDB inserts the corresponding node into RL and write the data in popular re-
gion into mirroring zone of indicated buddy SSD.

Data consistency in PDB includes two aspects: (1) The key data structures must be
safely stored; (2) The real-time backup data in buddy SSD must be updated timely to
guarantee data consistency. Firstly, to prevent the loss of key data structures in the
event of a power supply failure or a system crash, PDB stores them in a non-volatile
RAM (NVRAM). Since the size of RPT is generally small (1,024 entries with each
entry 4 bytes in our experiments), it will not incur significant extra hardware cost.

Fig. 2. Workflow of PDB in normal mode

Algorithm 1
restore()
Write data in indicated zone into corresponding buddy SSD and create a node
if restore list does not reach the maximum length then

Directly insert the node into the head of restore list
else

Delete the node in the queue tail and invalidate data of tail node
end if

Secondly, the popular read data must be safely stored in corresponding buddy SSD.
To ensure the popular data recovered to replacement SSD is not out-of-date, when the
corresponding buddy SSD exists identical LPN of a write operation, the backup data
must be updated simultaneously to make it is always up to date.

3.3 Implementation

The original SSDsim [11] can only simulate a single SSD. We significantly extend it
so that SSD RAID4 and SPD-RAID4 are also supported. On this basis, we also im-
plement a baseline reconstruction mechanism SOR and our proposed strategy PDB on
both RAID4 and SPD-RAID4. The size of a flash page is set to 2 KB in our experi-
ments. When updating the parity data on the parity sub array, we also employ the
round-robin way to write parity data evenly across all parity SSDs.

Once the host sends a request, the RAID controller gets the device number and its
LPN as well as the stripe number by a division operation. The mapping from a logical
address to a physical address is controlled by FTL (flash translation layer) imple-
mented inside each SSD. When a read request comes, PDB identifies the popularity of
corresponding logical data region. Once it is taken as a popular page (we take a page
in a popular data region as a popular page), PDB redirects the data to mirroring zone
of corresponding buddy SSD while it returns to host at the same time if it has not been

in buddy SSD. If the read operation is directed to the failed SSD, PDB checks that
whether the indicated data has been stored in corresponding buddy SSD. If it has,
PDB directly reads it from corresponding buddy SSD and dumps data in indicated
data region to the replacement SDD. Otherwise, RDF and RDD are launched. When
the popular data has been successfully dumped, the system can directly respond the
subsequent identical requests. Although the size of popular data is small, it can serve
a large number of user requests, and thus, significantly reduces reconstruction time.

4 Performance Evaluation

4.1 Experimental Setup

Among existing data reconstruction schemes, SOR is a widely used data recovery
mechanism with the lowest overhead. Therefore, we implemented SOR and PDB on
both SSD RAID 4 and SPD-RAID4 structures. Our simulator is built based on a vali-
dated SSD simulator called SSDsim [11], which is an event-driven, modularly struc-
tured, and highly accurate simulator for a single SSD. We added about 2,700 lines of
C codes to extend SSDsim to an SSD array simulator and implement the two data
reconstruction schemes. The RAID controller fetches a request from a trace file and
splits it into multiple sub-requests.

We use three real-world traces [20] to compare the performance of SOR and PDB.
The three traces and their characteristics are summarized in Table 1. The three Web-
search (hereafter, Web) traces were collected from a machine running a web search
engine. The read-dominated Web trace exhibits a strong locality.

The number of data SSDs and parity SSDs are both configurable for SPD-RAID4.
We conducted our performance evaluation of the two strategies on SPD-RAID4 with
2 parity SSDs as we found that 2 is the optimal choice of the number of parity SSDs.
The default number of data SSDs is 4. The number of RAID4’s data SSD is also set to
4 and its parity SSD’s capacity is twice of a parity SSD in SPD-RAID4. Due to the
limited footprints of traces, the capacity of each data SSD is set to 16 GB in our ex-
periments and the capacity of each parity SSDs in SPD-RAID4 is 8 GB. The capacity
of the only parity SSD in RAID4 is 16 GB as well.

4.2 Real-World Trace Experimental Results

In this section, we evaluate the performance of PDB by comparing it with a classical
data reconstruction method SOR on both RAID4 and SPD-RAID4 structured SSD

Table 1. Real-world traces characterstics

Trace Name Read Ratio (%) Avg. Size (KB) Intensity (reqs./s) Duration (minute)

Web 1 99.98 15.14 335 52.5

Web 2 99.97 15.07 297 256.6

Web 3 99.98 15.41 16 4543.9

arrays. Fig. 3 shows the read, write and overall mean response times of PDB and SOR
before data reconstruction in the normal mode. The marks “_R”, “_W”, and “_O”
represent read, write and overall mean response time, respectively. For PDB, the logi-
cal data region size is set to 128 KB, which is equal to a flash block size. The goal of
this group of experiments is to measure PDB’s performance degradation during the
normal mode before an SSD failure happens.

From Fig. 3, we can see that the performance of PDB on both RAID4 and SPD-
RAID4 is consistently and slightly worse than that of SOR before reconstruction in
the three traces. Compared with SOR, PDB degrades performance in terms of overall
mean response time on SPD-RAID4 by 4.7%, 3.8% and 3.1% on the three traces,
respectively (see Fig. 3b). Note that the maximum overall performance loss is only
4.7% in Web1 trace case on both RAID4 and SPD-RAID4 structures. The reason for
PDB’s performance degradation is that it has extra work to do comparing with SOR.
In particular, PDB needs to dynamically keep track of popularity changes of read
requests and stores popular data in the mirroring zone in real-time, which inevitably
increase its burden, and thus, enlarges the mean response time of user requests.

An SSD array enters the data recovery mode after one data SSD fails. To under-
stand the performance and reliability enhancement of PDB during reconstruction, we

 (a) (b)

Fig. 3. Performance comparisons before reconstruction on (a) RAID4; (b) SPD-RAID4

 (a) (b)

Fig. 4. Performance comparison during reconstruction on (a) RAID4; (b) SPD-RAID4

 (a) (b)

Fig. 5. Reconstruction time on (a) RAID4; (b) SPD-RAID4

measure mean response time during reconstruction and reconstruction time in a group
of experiments whose results are demonstrated in Fig. 4 and Fig. 5. From Fig. 4a, we
can clearly see that in the data recovery mode PDB even performs better in terms of
mean response time during reconstruction than SOR in RAID4 format on Web1 and
Web2 traces by 13.9% and 2.9%, respectively. It only performs a little bit worse in
Web3 trace. However, on SPD-RAID4 structure, PDB only performs better on Web1
trace (see Fig. 4b). Still, on average PDB’s performance degradation in data recovery
mode is only 2.1% compared with SOR. The almost negligible performance degrada-
tion during reconstruction is because that when the reconstruction time decreases (see
Fig. 5) the number of reconstruction requests per time unit obviously enlarges, which
prolongs the mean response time of user requests. Therefore, the performance of PDB
during reconstruction is lowered down.

The reconstruction times of SOR and PDB on RAID4 and SPD-RAID4 are illus-
trated in Fig. 5. It shows that on both RAID4 and SPD-RAID4 structures the recon-
struction time of PDB is consistently less than that of SOR. In case of SPD-RAID4,
PDB shrinks reconstruction time by 21.8%, 22% and 13.3% on the three traces, re-
spectively (see Fig. 5b). PDB manifests a similar improvement in reconstruction time
in RAID4 scenario (see Fig. 5a). Note that the much shorter reconstruction time
shown in Fig. 5 compared with HDD array situations comes from two facts: (1) SSD
has a much faster read and write speed than HDD [1]; (2) the footprint of the three
traces is relatively small, and thus, the amount of data need to be rebuilt is not large.
PDB’s improvement in terms of reconstruction time stems from its ability to directly
respond popular read requests targeting on the failed SSD from the mirroring zone of
its buddy SSD. In this way PDB does not need to launch a standard reconstruction
mechanism like SOR does. In addition, all three workloads are read-dominant and
have strong locality, which can be effectively exploited by PDB to substantially re-
duce reconstruction time. Although the stored popular data in a buddy SSD only takes
a small percentage of total data amount, a large percentage of requests may access
them consecutively due to workload locality explained in Section 2.4. Therefore, PDB
can significantly reduce reconstruction time to shrink the “window of vulnerability”,
and thus, can enhance SSD array reliability. We argue that scarifying slightly in per-
formance in the normal mode to obviously shrink reconstruction time is a good trade-

Fig. 6. The impacts of the number of data SSDs on performance

off for modern SSD arrays organized in a RAID structure.
The purpose of our last group of experiments is to study the impacts of the number

of data SSDs in an SPD-RAID4 SSD array on the performance of PDB. Several inter-
esting observations can be made from the results shown in Fig. 6. First of all, for all 3
traces, we can see that the performance of both SOR and PDB before reconstruction
(i.e., in the normal mode) increases when the number of data SSDs is enlarged. It is
easy to understand that with more data SSDs the SSD array can process user requests
faster. Next, SOR consistently outperforms the PDB strategy on the three traces when
the number of data SSDs is increasing. However, the performance gap between the
two strategies shrinks with an increasing number of data SSDs (see Fig. 6), which is
true for all 3 traces. Take the Web1 trace for example, the performance difference
between the two reduces from 6.8% to 2.9%. The small performance degradation
stems from the fact that PDB needs to backup the popular data in normal mode, and
thus, enlarges its mean response time. The larger the number of data SSDs is, the less
performance degradation PDB has. The rationale behind is that with more data SSDs
and a fixed amount of total workloads each data SSD needs to replicate less popular
data for its sponsored data SSD.

Furthermore, we can see that in the data recovery mode, PDB only performs better
when the number of data SSDs is 3 or 4 in Web1 trace. PDB’s worse performance
during reconstruction is because it gives data reconstruction task a higher priority than
processing user requests during reconstruction. Finally, for all 3 workloads and all
data SSD numbers, the PDB strategy consistently outperforms the SOR mechanism in
reconstruction time (see Fig. 6). When the number of data SSDs increases, the recon-
struction times for both SOR and PDB decrease. The reason for the decreased recon-
struction time on a larger size SSD array is that fewer user requests arrive on an indi-
vidual data SSD in the recovery mode, which in turn reduces the reconstruction time.
In particular, in Web1 case PDB can shrink the reconstruction time by up to 31.3%
when there are 3 data SSDs in a SPD-RAID4 SSD array (see Fig. 6). However, the
reconstruction time decreases the most when the number of data SSDs is 4 in the case
of Web2 and Web3 traces. It is clear that SOR also lowers down its reconstruction
time when the number of data SSDs increases from 3 to 5. More importantly, in Web1
trace, its improvement in terms of reconstruction time becomes more noticeable than
that of PDB situation when the number of data SSDs enlarges from 3 to 5. The reason
is that the amount of data that need to be rebuilt by SOR reduces faster than PDB.

5 Conclusions

With larger and more affordable yet less reliable SSDs, developing an efficient data
reconstruction strategy with reliability-awareness for emerging SSD arrays organized
in some RAID structures becomes a critical problem to be solved. Unfortunately, very
little research about SSD array data reconstruction has been reported in the literature.
To the best of knowledge, this research is the first step towards solving the critical
issue. In this paper, we develop and evaluate a novel online data reconstruction strat-
egy called PDB for both conventional RAID4 and SPD-RAID4. The PDB strategy
exploits the workload locality, which has been frequently observed in a spectrum of
real-world workloads like the three web search traces. It utilizes a collaborative popu-
lar data backup mechanism among all data SSDs to largely shrink the “window of
vulnerability”, and thus, enhances SSD array reliability. Our Experimental results
demonstrate that compared with a traditional reconstruction method SOR the PDB
strategy can further shorten reconstruction time by up to 31.3% on SPD-RAID4.

PDB, however, in its current format, only applies the popular data backup scheme
among all data SSDs. When a parity SSD fails, it still uses a conventional reconstruc-
tion method, which is currently used by SOR. The main reason is that parity data
generally does not exhibit obvious locality, which makes PDB inefficient. Consider-
ing that normally the number of data SSDs is larger than that of parity SSDs, the
probability of a data SSD failure is higher than a parity SSD failure. Thus, PDB could
enhance SSD array reliability in majority cases. Also, PDB may not work well under
write-dominated workloads. One direction of the future of this research is to extend it
to incorporate write-dominated. Finally, we only integrate PDB into RAID4 and SPD-
RAID4 SSD arrays. In our future work, we are going to integrate it into different
RAID architectures such as RAID5.

Acknowledgments

This work is sponsored in part by the U.S. National Science Foundation under grant
CNS-(CAREER)-0845105 and Key Technologies R & D Program of Anhui Province
(China)-11010202190.

References

1. Agrawal, N., Prabhakaran, V., Wobber, T., Davis, J.D., Manasse, M., Panigrahy, R.: De-
sign Tradeoffs for SSD Performance. In: USENIX Ann. Technical Conference, pp. 57-70.
USENIX Association, Berkeley (2008)

2. Cai, Y., Haratsch, E.F., Mutlu, O., Mai, K.: Threshold Voltage Distribution in MLC
NAND Flash Memory: Characteristization, Analysis, and Modeling. In: the conf. on De-
sign, Automation and Test in Europe, pp. 1285-1290. EDA Consortium, San Jose (2013)

3. Xie, T., Sharma, A.: Collaboration-Oriented Data Recovery for Mobile Disk Arrays. In:
29th Int’l Conf. on Distributed Computed Systems, pp. 631-638. Montreal (June 2009)

4. Patterson, D.A., Gibson, G., Katz, R.H.: A Case for Redundant Arrays for Inexpensive
Disks (RAID). In: Boral, H., Larson, P.A. (eds) 1988 ACM SIGMOD Int’l Conf. on Man-
agement of Data, pp. 109-116. ACM, New York (1988)

5. Im, S., Shin, D.: Flash-Aware RAID Techniques for Dependable and High-Performance
Flash Memory SSD. J. IEEE Transaction on Computer. 6(1), 80-92 (2011)

6. Lee, Y., Jung, S., Song, Y.H.: FRA: A Flash-aware Redundant Array of Flash Storage De-
vices. In: 7th IEEE/ACM Int’l Conf. on Hardware/Software Codesign and System Synthe-
sis, pp. 163-172. ACM, New York (2009)

7. Wu, S.Z., Jiang, H., Feng, D., Tian, L., Mao, B.: Workout: I/O Workload Outsourcing for
Boosting RAID Reconstruction Performance. In: 7th USENIX Conf. on FAST, pp. 239-
252. USENIX Association, Berkeley (2009)

8. Tian, L., Feng, D., Jiang, H., Zhou, K., Zeng, L.F., Chen, J.X., Wang, Z.K., Song, Z.L.:
PRO: A Popularity-Based Multi-Threaded Reconstruction Optimization for RAID-
Structured Storage Systems. In: 5th USENIX Conf. on FAST, pp. 277-290. USENIX As-
sociation, Berkeley (2007)

9. Xie, T., Wang, H.: MICRO: A Multilevel Caching-Based Reconstruction Optimization for
Mobile Storage Systems. J. IEEE Transactions on Computers, 57(10), 1386-1398 (2008)

10. Pan, W., Liu, F., Xie, T., Gao, Y.Y., Ouyang, Y.M., Chen, T.: SPD-RAID4: Splitting Par-
ity Disk for RAID4 Structured Parallel SSD Arrays. In: 15th Int’l Conf. on High Perform-
ance Computing and Communications, IEEE Press, Zhangjiajie, China (Nov. 2013)

11. Hu, Y., Jiang, H., Feng, D., Tian, L., Luo, H., Zhang, S.P.: Performance Impact and Inter-
play of SSD Parallelism through Advanced Commands, Allocation Strategy and Data
Granularity. In: Int’l Conf. on Supercomputing, pp. 96-107. ACM, New York (2011)

12. Holland, M.: On-line Data Reconstruction in Redundant Disk Arrays. In: PhD dissertation
CMU-CS-94-164, Carnegie Mellon Univ., Pittsburgh (1994)

13. Holland, M., Gibson, G.A., Siewiorek, D.P.: Fast, On-Line Failure Recovery in Redundant
Disk Arrays. In: 23rd Ann. Int’l Symp. on Fault-Tolerant Computing, pp. 422-443. IEEE
Press, Toulouse, France (1993)

14. Hou, R.Y., Menon, J., Patt, Y.N.: Balancing I/O Response Time and Disk Rebuild Time in
a RAID5 Disk Array. In: 26th Hawaii Int’l Conf. on Systems Sciences, pp. 70-79. IEEE
Press, Hawaii (1993)

15. Lee, J.Y.B., Lui, J.C.S.: Automatic Recovery from Disk Failure in Continuous-Media
Servers. J. IEEE Transaction on Parallel and Distributed Systems. 13(5), 499-515 (2002)

16. Wu, S.Z., Feng, D., Jiang, H., Mao, B., Zeng, L.F., Chen, J.: JOR: A Journal-Guided Re-
construction Optimization for RAID Structured Storage Systems. In: 15th Int’l Conf. on
Parallel and Distributed Systems, pp. 609-616. IEEE Press, Shenzhen (Dec. 2009)

17. Wu, S.Z., Jiang, H., Mao, B.: IDO: Intelligent Data Outsourcing with Improved RAID Re-
construction Performance in Large-Scale Data Centers. In: 26th Int’l Conf. on Large In-
stallation System Administration, pp. 17-32. USENIX Association, San Diego (2012)

18. Wan, S., Cao, Q., Huang, J.Z., Li, S.Y., Li, X., Zhan, S.H., Yu, L., Xie, C.S., He, X.B.:
Victim Disk First: An Asymmetric Cache to Boost the Performance of Disk Arrays Under
Faulty Conditions. In: USENIX Annual Technical Conference. USENIX Association,
Berkeley (2011)

19. Gomez, M.E., Sontonja, V.: Characterizing Temporal Locality in I/O Workload. In: Int’l
Symp. on Performance Evaluation of Computer and Telecommunication Systems, San Di-
ego (July 2002)

20. SPC, Storage Performance Council I/O traces,
http://traces.cs.umass.edu/index.php/Storage/Storage

