
An Embedded Storage Framework Abstracting
Each Raw Flash Device as An MTD

Wei Wang Deng Zhou
San Diego State University

{wang, zhoud}@rohan.sdsu.edu

Tao Xie
San Diego State University

txie@mail.sdsu.edu

Abstract
Existing embedded flash storage systems are built based on
a single MTD (Memory Technology Device) architecture
no matter how many raw flash devices exist under a flash
controller. The single-MTD architecture impedes exploiting
device-level parallelism to further improve the performance
of a storage system. In this paper, we design and implement
a new embedded flash storage framework called MA (MTD-
array), which abstracts each underlying raw flash device as
an independent MTD device to boost performance. To verify
its effectiveness, we implement a new flash file system called
MA-UBIFS by incorporating UBIFS, one of the best con-
temporary flash file systems, into MA in Ubuntu 13.04 with
3.8.0 kernel. Simulation results from real-world applications
show that MA-UBIFS outperforms UBIFS in mean response
time by up to 71.6%. Further, we build an FPGA evaluation
platform. Results from the hardware platform show that on
average MA-UBIFS improves write and read throughput in
a 2-MTD scenario by 55.2% and 84%, respectively.

Categories and Subject Descriptors C.4 [Performance of
Systems]: Design studies; D.4.2 [Operating Systems]: Stor-
age Management

Keywords Embedded system, NAND, file system, MTD.

1. Introduction
There are two options to utilize NAND flash memory de-
vices: a flash translation layer (FTL) in combination with
a traditional block-oriented file system (Lu et al. 2013)
and a log-structured embedded flash file systems with an
MTD (David 2003). An MTD is a Linux’s software abstrac-
tion dedicated for non-volatile memory (Corbet et al. 2005).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SYSTOR ’15, May 26–28, 2015, Haifa, Israel.
Copyright c� 2015 ACM 978-1-4503-3607-9/15/05. . . $15.00.
http://dx.doi.org/10.1145/2757667.2757685

To utilize flash memory devices in a traditional block-
oriented file system, an FTL is used in a solid-state drive
(SSD) to hide the limitations of flash memory (see Section
2.1) and expose to its upper layer as a virtual block de-
vice like a hard disk drive (HDD). An SSD is organized hi-
erarchically, which offers multi-level parallelism (Hu et al.
2011). The FTL that runs on a powerful controller manages
multiple flash memory devices in a parallel way so that its
performance is maximized (Hu et al. 2011). In addition to
address mapping, an FTL also performs garbage collection
and wear-leveling (Shin et al. 2009). Still, an FTL could be
inefficient because the block-oriented file system is inher-
ently unaware of the unique characteristics of flash memory.
Meanwhile, an FTL does not have a complete knowledge of
the file system’s structures (Engel and Mertens 2005).

To remove the inherent restrictions of conventional block-
oriented file systems and maintain a lower cost, develop-
ing a dedicated flash file system that can operate directly
on raw flash devices becomes a better solution for embed-
ded systems (Engel and Mertens 2005). Currently, the flash
controller and its underlying multiple raw flash devices are
abstracted as one MTD above which a flash file system is
attached. Compared with the FTL-base SSD option, a flash
file system is fully aware of the characteristics of flash mem-
ory. Thus, it can efficiently perform garbage collection and
wear-leveling (Shin et al. 2009).

An MTD-based flash file system is a typical choice for
embedded applications because: (1) Since the functionalities
of an FTL is moved to the file system layer, the flash con-
troller is much simpler than that of an FTL-based SSD. A
simpler flash controller incurs a lower hardware cost, which
is essential to a resource-limited and cost-sensitive embed-
ded system (Jung et al. 2008; Kim et al. 2009); (2) Flash file
systems can address the inherent constraints of flash (e.g.,
the wear out issue) more efficiently as they directly con-
trol raw flash memory devices (Manning 2004; Woodhouse
2001); (3) Users can have a complete control as they can
revise file systems whenever needed (Hunter 2008). On the
other hand, since FTLs are normally manufacturers’ secrets,
users can do little on them when requirements cannot be met.

Numerous embedded flash file systems (Hunter 2008;
Jung et al. 2008; Kim et al. 2009; Manning 2004; Wood-
house 2001) have been proposed in the literature. However,
only JFFS2 (Journaling Flash File System version 2) (Wood-
house 2001), YAFFS2 (Yet Another Flash File System ver-
sion 2) (Manning 2004), and UBIFS (Unsorted Block Image
File System) (Hunter 2008) have been widely used (Kang
and Miller 2009). Although existing embedded flash stor-
age systems are effective for traditional embedded applica-
tions, they are becoming increasingly inadequate for emerg-
ing data-intensive embedded applications due to their in-
competent performance and inadequate level of reliability.
For example, the read and write throughput of UBIFS are
around 10 MB/s on a typical embedded platform (Homma
2009). However, the data volume created by emerging mo-
bile applications per second is far more than that. Take live
sports broadcast (Postley 2012) for example. Each pair of 3-
D cameras generates several hundreds megabytes video and
audio data per second (Postley 2012). One might think that
the collected data could be shelved on a cloud via the Inter-
net. However, a reliable wireless networking connection can-
not be always guaranteed, and thus, storing and processing a
large amount data locally are still demanded. Similarly, wire-
less healthcare also requires a reliable and high-performance
local data processing capability because it monitors patients
in real-time (Smith 2011). After comprehensively examining
the existing flash file systems, we found that none of them
is fundamentally designed to utilize the multi-level paral-
lelisms presented by flash memory devices. To the best of
our knowledge, all existing embedded flash file systems can
support only one MTD, which communicates with one or
multiple underlying flash memory devices. The single-MTD
architecture has its advantages. It exposes an unified logical
address space to a flash file system while hiding multiple raw
devices so that the flash file system design can be simplified.
Nevertheless, it also has some disadvantages. Since only af-
ter the current request is completed can next one be issued
to the single MTD, the multiple flash memory devices under
one MTD cannot work in parallel. Besides, unlike an FTL,
an MTD has no intelligence to utilize the parallelism pro-
vided by a flash controller (Hu et al. 2011). To exploit the
device-level parallelism in an embedded flash storage sys-
tem, one obvious approach is introducing an FTL-like soft-
ware module running on top of a powerful controller. How-
ever, this approach will increase hardware cost, which may
not be feasible for cost-sensitive embedded applications.

In order to maintain a low hardware cost while utiliz-
ing device-level parallelism, in this paper we propose an
MTD-array based embedded flash storage system frame-
work called MA (MTD array). It abstracts each raw flash de-
vice as an independent MTD to form an array of MTDs. The
MA framework enables multiple MTD devices to communi-
cate with a flash file system concurrently so that the device-
level parallelism can be exploited at the flash file system

layer. Besides, it provides an opportunity for these MTD de-
vices to protect each other’s data through a data redundancy
scheme (e.g., parity data, etc.). Consequently, data reliabil-
ity could be further improved. Although MA increases the
complexity of a file system, our experimental results show
that it can improve performance without introducing any ex-
tra hardware cost. The performance gains justify the addi-
tional software complexity. We integrate UBIFS into the MA
framework in Ubuntu 13.04 with 3.8.0 Linux kernel. The
MA-enabled UBIFS flash file system is called MA-UBIFS.
Next, we comprehensively evaluate the performance of MA-
UBIFS with both micro-benchmarks and real-world traces.
Experimental results show that when 4 flash devices are ab-
stracted as 4 MTDs, MA-UBIFS improves I/O performance
by up to 1.9X while its mounting time is less than 120 ms
and RAM usage is smaller than 2.5 MB. For data-intensive
workloads like CameraVideo, MA-UBIFS reduces mean re-
sponse time by up to 71.6%. Hardware evaluation results
show that on average it improves write and read throughput
in a 2-MTD case by 55.2% and 84%, respectively.

The remainder of this paper is organized as follows.
Background is discussed in the next section. Section 3 de-
scribes the design of the MA framework and the implemen-
tation of MA-UBIFS. Section 4 evaluates MA-UBIFS with
micro-benchmarks. Experiments results with five real-world
applications are illustrated in Section 5. Section 6 evaluates
MA-UBIFS on a hardware platform. Section 7 concludes the
paper with a summary and future direction.

2. Background and Related Work
2.1 Flash Memory
According to the number of bits stored in a memory cell,
flash memory is categorized into single-level cell (SLC),
multi-level cell (MLC), and triple-level cell (TLC) flash (Agrawal
et al. 2008). While each cell of an SLC stores only one bit
of information, an MLC cell stores 2 bits of data to increase
the capacity while lowering the cost per gigabyte. Each TLC
cell stores 3 bits (Agrawal et al. 2008). Flash memory of-
fers three basic operations: write, read, and erase (Agrawal
et al. 2008). Read and write are carried out at the page level,
whereas erase can be conducted only at block granularity.
One block is composed of an array of pages (e.g., 256 pages)
with each page being of a particular size (e.g., 4 KB). Erase
is a time-consuming process (e.g., 2 ms) compared with read
(e.g., 20 µs) and write (e.g., 900 µs) (Grupp et al. 2009).
Flash memory possesses a few ”awkward” characteristics
that an HDD does not have. First of all, it does not allow in-
place updates as a write operation can only change bits from
1 to 0. An erase operation changes all bits of a block to 1
and a block must be erased before being programmed (Wang
et al. 2014). The out-of-place update enforces flash memory
to utilize a garbage collection mechanism to reclaim invalid
pages within a block. Next, the lifetime of a block is limited
by the number of P/E (program/erase) cycles on it. The P/E

System Calls

NAND NOR OneNAND AG-AND...

MTD

JFFS2 YAFFS2 LogFS
UBI

UBIFS

VFS

Fi
le

 S
ys

te
m

...

Figure 1. Current MTD subsystem in Linux kernel.

cycle limitation brings the need for a wear-leveling scheme,
which ensures that all blocks in a flash memory device are
worn out evenly in order to prolong device’s lifetime.

2.2 Linux Flash File Systems
Linux is one of the most popular operating systems for an
embedded system. It supports three types of devices: block
devices, character devices and network devices. Since flash
memory do not match the description of any of them, a spe-
cial device type that exhibits flash characteristics is created:
MTD. It is a new type of device file in Linux for interact-
ing with flash memory (David 2003). Figure 1 illustrates the
architecture of existing Linux based embedded flash stor-
age system. MTD abstracts the hardware and hides differ-
ent characteristics of various types of flash memory devices.
Above MTD, a flash file system such as JFFS2 is built to
manage data and provide interfaces to virtual file system
(VFS) layer (see Figure 1). Although multiple raw flash de-
vices may exist under a flash controller, present flash file
systems can only see one MTD (David 2003).

Among the four representative flash file systems shown
in Figure 1, UBIFS delivers the best performance in terms of
I/O throughput and mounting time. Besides, adding an UBI
(Unsorted Block Image) layer can largely reduce the com-
plexity of a flash file system because it takes care of volume
management. Therefore, we choose UBIFS as an example
file system to demonstrate the strength of MA. UBIFS em-
ploys two copies of master node and journal replay to en-
hance its power failure tolerance (Hunter 2008). When it is
mounted, UBIFS assumes that the on-flash index is always
out-of-date (e.g., the index may be broken due to a power
failure). In order to bring it to up-to-date, UBIFS reads all
the leaf nodes in the journal and get them reindexed. MA-
UBIFS directly borrows the journal replay method in UBIFS
to tolerate a power failure.

3. The MA Framework
In this section, we first present an MTD-array based frame-
work. Next, we incorporate UBIFS into the MA framework
to design and implement a new flash file system MA-UBIFS.

3.1 MTD-Array Based Framework
After analyzing several prevalent open-source embedded
flash storage systems, we propose two MTD-array based

NAND NAND NAND NAND

MTD MTD MTD MTD

Address Mapping

Proxy Interfaces
Read

Handling
Device Work

Queues
Device Work

Threads

Write and
Erase Queuing

Flash File System (JFFS2, YAFFS2, UBIFS, etc.)

...

...

MTD Proxy Middleware

Device Array Layer

Figure 2. MTD proxy middleware.

flash storage system framework design schemes: MTD
proxy middleware and MTD-array storage hierarchy. Both
schemes require reconstructions of hardware platforms and
software stacks. In terms of hardware, they all need a new
flash controller, which can communicate with multiple flash
memory devices in parallel. Unlike existing flash controllers,
the controller should be able to expose its underlying multi-
ple flash devices (or multiple dies in a single device) to upper
layers so that they can be abstracted as an array of MTDs.
In our design, each flash memory device is abstracted as one
MTD. Multiple identical raw flash memory devices are or-
ganized in an array format. From the perspective of Linux
kernel, multiple MTD devices with each having the same
configuration are presented (see Figure 2 and 3).

In the first scheme, a software interface layer called MTD
proxy middleware is designed, which sits between an MTD-
array and a traditional flash file system as shown in Figure
2. The MTD proxy middleware enables an existing flash file
system to communicate with an array of MTD devices. The
MTD proxy middleware has the following components: (1)
an address translation mechanism called address mapping,
which can translate an aggregate device address to an under-
lying MTD device address; (2) an operation queuing method
that chooses an underlying MTD device, and then inserts re-
quests into its work queue; (3) multiple work threads (each
attaching to a particular MTD device), each of which reads
requests out of the work queue of the corresponding device
in a first-in-first-out manner, and then calls the MTD func-
tions (i.e., read, write, and erase) of the device to serve the
requests; and (4) a proxy interface module, which emulates
the interface of an MTD so that a flash file system can di-
rectly work on it. The MTD proxy middleware exploits the
parallelism among multiple MTD devices by splitting a re-
quest into multiple sub-requests, which can then be served
by different MTD devices concurrently. The middleware is
independent of existing flash file systems. Therefore, it in-
curs no modifications of existing flash file systems, which
is an attractive feature of this design scheme. However, it
also possesses an obvious disadvantage. Existing flash file
systems are designed on top of one MTD by default, and

NAND NAND NAND NAND

MTD MTD MTD MTD

Data Management

Garbage Collection Wear-Leveling

File Data
Management

Metadata
Management

File Management
Flash File Interfaces

MA-enabled Flash File System

...

...

Device Array Layer

The MA Framework
Software Interface Layer

VFS

Figure 3. MTD-array storage hierarchy.

thus, can only process requests sequentially. Only after the
response of the current request has been returned can next
request be issued. Therefore, they cannot fully exploit the
parallelism among multiple MTD devices.

The second scheme is to redesign an MTD-array storage
system in a hierarchical way. Since a flash file system has a
full control on data management and flash devices, the only
feasible way to fully utilize the underlying MTD array is
to redesign software stacks as shown in Figure 3. The sec-
ond design scheme named MTD-array storage hierarchy can
deliver a potentially higher performance compared with the
first scheme as the flash file system is redesigned to employ
parallelism. Figure 3 illustrates the major components of this
scheme. From bottom to top, each raw flash memory device
is connected to the new flash file system through an MTD. A
software interface module provides an interface to commu-
nicate with the MTD array. Besides, the serial working flows
in original file system are revised to cooperate with the mul-
tiple MTD devices. Compared with the first scheme, it can
fully employ the parallelism among multiple MTD devices
not only by splitting requests but also by issuing multiple re-
quests concurrently. Since this scheme can fully control the
MTD array, we adopt it as the MA framework. The software
interface layer of MA contains three major components: (1)
an array-oriented wear-leveling scheme; (2) a centralized
garbage collection method; and (3) a new data management
module for the multiple MTD devices. In the file manage-
ment module, only device related working flows are revised.
The original data structures and management schemes are
kept to simplify the complexity of MA.

3.2 MA-UBIFS
To demonstrate the effectiveness of MA, we integrate UBIFS
into it to develop a new MA-enabled flash file system called
MA-UBIFS. Note that other flash file systems like JFFS2
can also be integrated into MA. We newly added around
3,000 lines of C code for the MA framework and revised
almost all UBIFS source files in 3.8.0 Linux kernel.

TNC LPT
Tree

File Management
MA-UBIFS

Working
Thread0

Working
Thread1

Working
Thread2

Working
Thread3

Request
Queue

Request
Queue

Request
Queue

Request
Queue

Dispatcher

Virtualized UBI Module

Journal Space
Maintain

...

MTD0 MTD1 MTD2 MTD3

UBI0 UBI1 UBI2 UBI3

VFS

Device Array Layer

The MA Framework
The MA-Aware Module

Figure 4. The architecture of MA-UBIFS.

3.2.1 Virtualized UBI and Address Re-mapping
A software layer called MA-aware module is integrated into
the original file system as shown in Figure 4. Multiple MTD
devices are first translated into UBI devices. Usually, one
UBI device can have several volumes. In our design, each
UBI device is only formatted into one volume so that multi-
ple volumes mounted in UBIFS have fully parallel capabil-
ity. Two components are designed in the MA-aware module:
a virtualized UBI module and multiple MTD-oriented work-
ing flows. The virtualized UBI component has two major
tasks: (1) assisting MA-UBIFS to initialize data structures
with multiple UBI devices instead of one; (2) re-mapping
those multiple UBI devices into a uniform address space so
that parallel accesses can be easily achieved. Figure 5 shows
the address mapping scheme used in MA-UBIFS.

Since MA-UBIFS mounts on multiple UBI devices, the
data structure construction process must be redesigned to
correctly use all of them. Four important parameters in MA-
UBIFS are used in a mounting process: (1) the total number
of LEBs (logical erase blocks) contained; (2) the size of each
LEB; (3) the minimum size of one I/O request; and (4) the
maximum write size. As a virtualized UBI module re-maps
multiple identical UBI devices to a uniform address space,
in our design the total number of LEBs in a virtualized UBI
is the same as the number in a single UBI device used by
MA-UBIFS. The size of an LEB in a virtualized UBI is en-
larged to that of p LEBs if totally p UBI devices are used.
Taking the Figure 5 as an example, assuming that four iden-
tical UBI devices are used and each one has m LEBs with
each containing n pages. In the virtualized UBI module, the
total number of LEBs is m and the size of a single LEB is
augmented into 4n. The minimum size of one I/O request in
a virtualized UBI is equal to a flash page size. The maximum
write size equals to the write buffer size used in UBIFS. Af-
ter the write buffer is full, UBIFS flushes all the buffered

Page0

Page2
Page1

...

LEB 0

...

LEB m

Page4n

Virtualized
UBI

Page0

Pagen
...

LEB 0

...

LEB m

UBI 1

Page0

Pagen
...

LEB 0

...

LEB m

UBI 3

Page0

Pagen
...

LEB 0

...

LEB m

UBI 0

Page0

Pagen
...

LEB 0

...

LEB m

UBI 2
Page3

Figure 5. Address mapping scheme in MA-UBIFS.

data onto flash memory. In UBIFS, the write buffer size is
set to the minimum I/O size (i.e. 1-page size). In contrast,
MA-UBIFS uses p⇥minimum IO size (i.e. p-page size)
as its write buffer size if there are p UBI devices. For exam-
ple, in Figure 5 the maximum write size for this virtualized
UBI is 4-page size. By employing this design, one opera-
tion of flushing write buffer can be split into four small re-
quests with each containing 1-page size data. Next, the four
requests can be issued to four UBI devices concurrently. In
MA-UBIFS, we use a round-robin address mapping scheme
to simplify our design. Equations shown as below are used to
translate an LEB number and a page number in a virtualized
UBI to four physical UBIs:

physical UBI num = page num%num of UBIs,
physical page num = page num/num of UBIs.

For example, when the data in the write buffer is flushed to
the virtualized UBI’s LEB0 with an offset of page 0 as shown
in Figure 5, the four sequential 1-page size data will be sent
to the page 1 of LEB0 in the 4 UBI devices, respectively.

3.2.2 Request Dispatcher and Working Threads
MA-UBIFS exploits parallelism among multiple UBI de-
vices. Each request in MA-UBIFS is split into several sub-
requests according to its request size and sent to differ-
ent UBIs. To achieve that MA-UBIFS uses a request dis-
patcher with a dedicated working thread for each UBI de-
vice. The main task for the request dispatcher is to identify
sub-requests received from a virtualized UBI after applying
the address mapping scheme and then to add each of them
into the corresponding request queue. The request working
thread that belongs to a particular UBI device fetches a sub-
request in its request queue and then sends it to flash memory
through UBI interfaces. The background working threads are
created during mounting period and assigned to its associ-
ated UBI device respectively (see Figure 4). Take the write
buffer flushing process described in Section 3.2.1 as an ex-
ample. A one 4-page size write request is split into four 1-

page size sub-requests, and then the request dispatcher sends
each of the four sub-requests to its corresponding request
queue in its associated UBI device. Each of the four work-
ing threads retrieves the sub-requests from its associated re-
quest queue and processes it independently. After the four
requests are processed, a response will be directly sent back
to the virtualized UBI module.

There are two main rationales behind the multi-thread de-
sign. Firstly, the response time of flash memory operations
is significantly larger than the thread context switching time.
Thus, the multi-thread design can take the advantage of in-
terleaving operations between multiple devices. Secondly,
embedded processors are becoming more powerful. For
instance, Qualcomm announced a processor named Snap-
dragon with 4 cores (Qualcomm 2013). Hence, the multi-
thread employed design is suited for these new platforms.

3.2.3 Asynchronous TNC Upgrade
UBIFS uses a cached index tree (i.e., TNC) to improve its
performance. When a file is written/updated, its data are
first stored in the journal space and UBIFS only modifies
the TNC in RAM. UBIFS writes the whole TNC onto flash
memory when the journal space is full or a commit com-
mand is issued. By using this strategy, UBIFS avoids writing
the index onto flash frequently. During a mounting process,
UBIFS does not fetch the index information from flash mem-
ory to RAM. Instead, it loads the index nodes when they are
needed. Almost every file operation needs to read or mod-
ify its content, which makes the TNC critical. In UBIFS, for
data safety only one TNC query is allowed to enter this crit-
ical section at one time. However, this approach serializes
concurrent requests, which impedes the performance. After
analyzing the TNC management, we find that loading on-
flash index only happens once when it is first accessed and
after that read operations do not change any content of TNC.
Therefore, we believe that the critical section of TNC can be
re-defined so that asynchronous accesses become possible.

In MA-UBIFS, a read/write semaphore is introduced to
manage the access of the TNC. Hence, multiple reads can
enter into this exclusive section at the same time. Mean-
while, a signal and a working queue are introduced to the
index loading process. The first operation that loads the nec-
essary index from the flash will set the signal before retriev-
ing the data. After this, other operations accessing the same
index will have to wait in the working queue until the index
is loaded. In this way, while multiple read operations can
concurrently access TNC, only one write operation can lock
the entire TNC section at one time.

4. Micro-Benchmark Evaluation
4.1 Experimental Setup
Evaluation environment is set up on a 3.1GHz Intel Core i5
machine with 8 GB of RAM. Operating system is Ubuntu
13.04 with 3.8.0 Linux kernel.

Table 1. Flash memory major characteristics
Type SLC MLC TLC

Page size (KB) 2 2 4
Read time (µs) 25 25 75

Program time (µs) 200 600 1,300
Erase time (ms) 1.5 2 4

Table 2. Flash memory and UBI volume size
Configurations Conf 1 Conf 2 Conf 3
Device num. 1 2 4

MTD capacity (MB) 1,024 512 256
UBI Volume (MB) 986 493 246

Modifications of NANDsim: To the best of our knowl-
edge, there is no publicly available flash controller that is
capable of exposing its underlying raw flash devices or dies
to upper layers so that they can be abstracted as an array
of MTDs in Linux kernel. Hence, we use NANDsim (Linux
2013), a widely used NAND flash simulator (Linux 2013;
Kang and Miller 2009), to simulate the hardware part of the
MA framework in our micro-benchmark evaluations. It sim-
ulates NAND flash memory in RAM, which can imitate the
behavior of different types of NAND chips and report wear
out statistics (Linux 2013). The existing version of NAND-
sim, however, can emulate only one raw flash memory. In or-
der to simulate an array of flash memory devices, we modify
its global data structure and initialization process to repeat-
edly build a group of flash memory devices in RAM so that
multiple MTDs can be instanced. The simulated flash mem-
ory devices hold the same characteristics and have identical
capacity. Since the total capacity of our experimental com-
puter is only 8 GB, at most 4 flash memory devices with each
having 1 GB capacity can be simulated.

Configurations of Flash Memory Devices: To compre-
hensively understand the impacts of different flash mem-
ory configurations on MA-UBIFS, we choose three types
of flash memory devices with different I/O features, which
range from SLC to TLC. Table 1 summaries the parameters
of three different flash memory types used in experiments.

The number of simulated raw flash memory devices is
changed from 1 to 4 to measure the scalability of MA-
UBIFS. The 1-MTD scenario represents current single-MTD
architecture, which serves as a baseline in performance com-
parisons. Table 2 illustrates the capacity of each device in
experiments. The total capacity of flash devices determines
the number of garbage collections happened in flash mem-
ory (Bez et al. 2003), which can affect the overall perfor-
mance of a flash file system. Hence, throughout all the ex-
periments, the total capacity of flash memory devices used
by MA-UBIFS remains to 1 GB to make the comparisons
fair (see Table 2). For each MTD device, we create only one
UBI volume. The size of UBI volume is equal to the maxi-

0

40

80

120

160

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Repaly Journal Read Master Read SBReplay Journal Read Master Read SuperBlock

0

160

120

80

40M
ou

nt
in

g
Ti

m
e

(m
s)

New Flash 1-50MB 1-100MB 16K-2KB 35K-2KB

U
B

IF
S

2M
TD 4M

TD

U
B

IF
S

U
B

IF
S

U
B

IF
S

U
B

IF
S

4M
TD

4M
TD

4M
TD

4M
TD

2M
TD

2M
TD

2M
TD

2M
TD

Figure 6. Mounting time; horizontal axis is the number
of files contained in file system. 16K-2KB means the file
system has 16,000 2KB files.

mum allowable size on each MTD device as shown in Table
2. In the rest of this paper, the terms UBI devices and UBI
volumes are interchangeable because in our implementation
only one UBI volume is created on one UBI device.

4.2 Mounting Time
We measure the mounting time in five scenarios: 1) mount
the file system on an entirely new UBI volume; 2) mount the
file system on an UBI volume that contains only one 50MB
file; 3) mount the file system on an UBI volume that has one
100MB file; 4) mount the file system on an UBI volume that
stores 16,000 2KB-size files; and 5) mount the file system
on an UBI volume that contains 35,000 2KB-size files. The
five cases can be categorized into two camps: new mount and
used mount. While case 1 is a new mount, all the rest belong
to used mount. Case 1 happens when a new flash memory
device is formatted. In this case, all the necessary data struc-
tures (e.g., super block and master node) have to be created
and the entire device is formatted into a UBI volume organi-
zation. In the other four cases, the necessary data structures
and metadata already have been created and can be directly
read from flash memory devices. Case 2 and 3 simulate ap-
plications like 3-D cameras that only a few number of files
with big sizes are stored (Park and Park 2011), whereas case
4 and 5 emulate applications like web cache and personal
documents. The mounting process for MA-UBIFS can be
divided into three steps: reading superblock, reading master
node, and replaying journal. Master node stores the position
of all on-flash structures that are not at fixed logical posi-
tions (Hunter 2008). The existence of the journal is to im-
prove the efficiency of index updating because it can reduce
the number of index updating processes (Hunter 2008). Dur-
ing a mounting process, the leaf nodes in the journal must be
read and re-indexed to make the on-flash index up-to-date.
In our experiments, the journal size is set to 5% of total ca-
pacity (Hunter 2008).

Figure 6 shows the mounting time of MA-UBIFS and
UBIFS in different configurations. Three conclusions can be
directly drawn from the experimental results. Firstly, UBIFS
outperforms MA-UBIFS constantly in terms of mounting
time, especially in used mount situations. Secondly, the time

0
20
40
60
80

100
120
140
160

1 2 3 4 5 6 7

0
20
40
60
80

100
120
140
160

1 2 3 4 5 6 7

UBIFS UBIeFS_2ub UBIeFS_4ub

0
10
20
30
40
50
60

1 2 3 4 5 6 7

0

50

100

150

200

250

1 2 3 4 5 6 7

UBIFS UBIeFS_2ub UBIeFS_4ub

0

10

20

30

40

50

1 2 3 4 5 6 7

1

0

50

100

150

200

250

300

1 2 3 4 5 6 7

UBIFS UBIeFS_2ub UBIeFS_4ub

4K 16K 64K 256K 1M 4M 16M
Record Size

0
50

Th
ro

ug
hp

ut
 (M

B
/s

) UBIFS 2MA-UBIFS
Re-Write on SLC

100

4MA-UBIFS

150
200
250
300

4K 16K 64K 256K 1M 4M 16M
Record Size

0

50

Th
ro

ug
hp

ut
 (M

B
/s

) UBIFS 2MA-UBIFS
Re-Write on MLC

100

4MA-UBIFS

150

200

250

4K 16K 64K 256K 1M 4M 16M
Record Size

0
20

Th
ro

ug
hp

ut
 (M

B
/s

) UBIFS 2MA-UBIFS
Re-Write on TLC

100

4MA-UBIFS

120
140
160

40
60
80

4K 16K 64K 256K 1M 4M 16M
Record Size

0

10

 Im
pr

ov
em

en
t (

%
) 2MA-UBIFS

Re-Write on SLC
50

4MA-UBIFS

20
30
40

4K 16K 64K 256K 1M 4M 16M
Record Size

0
10Im

pr
ov

em
en

t (
%

) 2MA-UBIFS
Re-Write on MLC

50 4MA-UBIFS

20
30
40

60

4K 16K 64K 256K 1M 4M 16M
Record Size

0
20Im

pr
ov

em
en

t (
%

) 2MA-UBIFS
Re-Write on TLC

100
4MA-UBIFS120

140
160

40
60
80

Figure 7. Re-write throughput on three flash memory types.

of a new mount for UBIFS is obviously longer than that of
used mount. On the contrary, the time of a new mount for
MA-UBIFS is similar to that of used mount. Thirdly, as the
number of UBI devices increases the mounting time of MA-
UBIFS becomes longer.

For MA-UBIFS, the mounting time of a new mount with
2 and 4 UBI devices is 3.8% and 17% worse than that
of UBIFS, respectively. The increased time comes from
the steps of reading master node and replaying journal. In
these two steps, necessary data are read from flash mem-
ory devices to construct the file system data structures in
RAM. Since the read operation of flash memory is rela-
tively fast, the overhead of multi-thread management and
context switching between threads become the dominant
cost. Therefore, the time of these two steps is involuntarily
increased. On the contrary, in the reading superblock step
of new mount case, the time of creating new file system in
MA-UBIFS is shorter than that of UBIFS. The reason is that
write operation of flash memory is much slower than read
operation (in this experiment is 17 times) so that MA-UBIFS
largely decreases the time of writing file system related data
onto the flash memory devices. The increased time in the last
two steps of mounting process (i.e., reading master node and
replaying journal) exceeds the decreased time of creating a
new file system process. Hence, the overall mounting time
of MA-UBIFS is longer than that of UBIFS. When the num-
ber of UBI devices increases the multi-thread management
incurs a higher overhead. It increases the mounting time of
MA-UBIFS while the number of mounted UBI devices es-
calates. In the used mount cases, the replaying journal step
spends more time to read the data stored in the journal space.
The time increment is roughly equal to the time of creating
a new file system. Thus, the mounting time of MA-UBIFS
for new mount and used mount does not change obviously.

4.3 I/O Performance
In this section, the I/O performance of MA-UBIFS is eval-
uated. Three different flash memory types (i.e., SLC, MLC,
and TLC) and two configurations with different number of

UBI devices are used. A widely used file system benchmark,
IOzone (Norcott and Capps 2006), is utilized in our ex-
periments to measure the performance of MA-UBIFS. The
benchmark executes file I/O in record size ranging from 4K
bytes to 16M bytes. To ensure every write to go completely
to a flash memory device before returning to the benchmark,
the O SYNC flag is specified in evaluation. The file system
is un-mounted and re-mounted between evaluations to elim-
inate the impacts of buffer cache on overall performance.

The MA framework can improve both read and write per-
formance. Since the read operation is about 8 to 17 times
faster than write, the read throughput improvement of MA-
UBIFS over UBIFS is not substantial. Besides, UBIFS em-
ploys a cache to improve I/O performance, which makes the
enhancement of read throughput measured by IOzone un-
noticeable as most read requests are directly served by the
cache. In our experiments, we find that the difference be-
tween MA-UBIFS and UBIFS in read performance is no
larger than 4%. Therefore, due to space limit in this section
we only present the performance of MA-UBIFS in terms of
various writes. The read improvements on a hardware plat-
form with random data will be illustrated in Section 6.

Figure 7 and Figure 8 illustrate the write throughput of
UBIFS and MA-UBIFS in different record sizes ranging
from 4KB to 16MB. The 2MA-UBIFS and 4MA-UBIFS
represent MA-UBIFS with 2 MTDs and 4 MTDs, respec-
tively. It is clear that for each type of flash memory (i.e., dif-
ferent access speeds) the trend of throughput improvement is
the same. In all different record size cases, MA-UBIFS con-
sistently outperforms UBIFS in both 2 UBI devices and 4
UBI devices configurations. Meanwhile, the write through-
put becomes larger as the record size increases. The max-
imum throughputs of the three write types are all in TLC
cases when 4 UBIs are used. The maximum throughput un-
der re-write, sequential write, and random write are 138.3
MB/s, 116.1 MB/s, and 100.4MB/s, respectively. Both of the
sequential write and random write are new write where re-
lated metadata must also be constructed and written to flash

0

50

100

150

1 2 3 4 5 6 7

0

20

40

60

80

100

120

1 2 3 4 5 6 7

UBIFS UBIeFS_2ub UBIeFS_4ub

0

40

80

120

160

200

1 2 3 4 5 6 7

0
20
40
60
80

100
120
140

1 2 3 4 5 6 7

UBIFS UBIeFS_2ub UBIeFS_4ub

0
10
20
30
40
50
60
70
80

1 2 3 4 5 6 7

0

40

80

120

160

200

240

1 2 3 4 5 6 7

UBIFS UBIeFS_2ub UBIeFS_4ub

0
10
20
30
40
50
60

1 2 3 4 5 6 7

0

50

100

150

200

250

1 2 3 4 5 6 7

UBIFS UBIeFS_2ub UBIeFS_4ub

0

20

40

60

80

1 2 3 4 5 6 7

0

50

100

150

200

250

300

1 2 3 4 5 6 7

UBIFS UBIeFS_2ub UBIeFS_4ub

0

10

20

30

40

50

1 2 3 4 5 6 7

0

50

100

150

200

250

300

1 2 3 4 5 6 7

UBIFS UBIeFS_2ub UBIeFS_4ub

4K 16K 64K 256K 1M 4M 16M
Record Size

0

300
250

50

200

100
150

Th
ro

ug
hp

ut
 (M

B
/s

) UBIFS 2MA-UBIFS 4MA-UBIFS
Sequential Write on SLC

4K 16K 64K 256K 1M 4M 16M
Record Size

0

250

50

200

100

150

Th
ro

ug
hp

ut
 (M

B
/s

) UBIFS 2MA-UBIFS 4MA-UBIFS
Sequential Write on MLC

4K 16K 64K 256K 1M 4M 16M
Record Size

0

140

20

120
100

Th
ro

ug
hp

ut
 (M

B
/s

) UBIFS 2MA-UBIFS 4MA-UBIFS
Sequential Write on TLC

40
60
80

4K 16K 64K 256K 1M 4M 16M
Record Size

0
10

Im
pr

ov
em

en
t (

%
) 2MA-UBIFS

4MA-UBIFS

Sequential Write on MLC

40
30
20

50
60

4K 16K 64K 256K 1M 4M 16M
Record Size

0
10

Im
pr

ov
em

en
t (

%
) 2MA-UBIFS

4MA-UBIFS

Sequential Write on SLC

40

30
20

50

4K 16K 64K 256K 1M 4M 16M
Record Size

0
40

Im
pr

ov
em

en
t (

%
) 2MA-UBIFS

4MA-UBIFS

Sequential Write on TLC

160
120

80

200

4K 16K 64K 256K 1M 4M 16M
Record Size

0

200

50

150
100

Th
ro

ug
hp

ut
 (M

B
/s

) UBIFS 2MA-UBIFS 4MA-UBIFS
Random Write on SLC

250
300

4K 16K 64K 256K 1M 4M 16M
Record Size

0

160

40

120

Th
ro

ug
hp

ut
 (M

B
/s

) UBIFS 2MA-UBIFS 4MA-UBIFS
Random Write on MLC

200
240

80

4K 16K 64K 256K 1M 4M 16M
Record Size

0
20

120

Th
ro

ug
hp

ut
 (M

B
/s

) UBIFS 2MA-UBIFS 4MA-UBIFS
Random Write on TLC

80
60
40

100

4K 16K 64K 256K 1M 4M 16M
Record Size

0Im
pr

ov
em

en
t (

%
) 2MA-UBIFS

4MA-UBIFS

Random Write on TLC

100

150

50

4K 16K 64K 256K 1M 4M 16M
Record Size

0

20

Im
pr

ov
em

en
t (

%
) 2MA-UBIFS

4MA-UBIFS

Random Write on MLC
80

40

60

4K 16K 64K 256K 1M 4M 16M
Record Size

0

20

Im
pr

ov
em

en
t (

%
) 2MA-UBIFS

4MA-UBIFS

Random Write on SLC

40

60

80

Figure 8. Sequential write and random write throughput on three flash memory types.

memory. Re-write, on the other hand, does not need to cre-
ate and change the metadata. Hence, write operations can be
served faster. When using TLC flash memory all three dif-
ferent write throughput improvements of MA-UBIFS under
4KB record size is roughly 4.5% when 2 UBIs are used. This
improvement slightly increases to 6% under 4 UBI devices
configuration. When the record size is increased to 16MB
the improvement of sequential write throughput for MA-
UBIFS is substantially promoted to 78.7% and 188.7% by
using 2 UBI devices and 4 UBI devices, respectively. When
4 UBIs are employed, the maximum improvement of ran-
dom write and re-write are 130% and 147%, respectively.
In small record size cases, parallelism between UBI devices
cannot be fully utilized because requests can only be served
by one or a few number of the mounted UBI devices. Thus,
adverse impacts from the later aspect neutralize the improve-
ments gained from the first aspect, which results in a small
overall improvement of throughput. On the other hand, when
a big record size is used parallelism can be fully utilized.
It is also obvious that the more UBI devices a file system
uses, the larger throughput improvement that MA-UBIFS
can achieve. When the number of UBI devices is increased
from 2 to 4, the write performance under 16MB record size
is boosted by 61.6% on average. Intuitively, more UBI de-
vices can serve a request with larger data size by splitting
the request into multiple small requests and concurrently

processing them. Because of hardware limitation, the maxi-
mum number of UBI devices in experiments is set up to 4.
We expect more performance improvements if more than 4
UBIs are used. The improvement trend lines in Figure 7 and
8 show that the improvement of MA-UBIFS using 4 UBI de-
vices increases faster than that of MA-UBIFS using only 2
devices as the record size becomes larger. The performance
improvements of MA-UBIFS are lower than expected. For
example, MA-UBIFS cannot achieve a near 4-time improve-
ment when 4 UBIs are used. There are two main reasons: (1)
the overhead of managing multi-threads enlarges response
times; (2) the frequently accessed TNC tree (see Section
3.2.3) cannot be concurrently accessed by new writes.

As shown in Table 1, three types of flash memory de-
vices are simulated in our experiments. The main difference
among these flash memory devices is the operation latency.
SLC has the fastest operation speed while TLC is the slow-
est one. The general trend of performance improvement is
that the bigger write latency the flash memory has the larger
improvement the file system can achieve. Meanwhile, as the
record size increases the performance improvement continu-
ously goes up. The maximum performance improvement of
sequential write between SLC and TLC is 5.6X under 4MB
record size case. The reason behind this is that the latency
of one request is determined by two factors. One is soft-
ware stack latency and the other one is hardware latency.

0

1

2

3

1 2 3 4 5 6 7 8

UBIFS UBIeFS_2b UBIeFS_4b

Empty

12K-2KB

25K-2KB

51K-2KB
1-50MB

1-100MB

1-200MB
0

 M
em

or
y

U
sa

ge
 (M

B
)

2MA-UBIFS 4MA-UBIFS3.0 UBIFS

1.0

2.0

1-500MB

Figure 9. Memory usage; 12K-2KB represents a file system
has 12,000 files with each 2KB.

The software stack latency for MA-UBIFS is constant for
all three flash memory types. While the hardware latency
varies when different types of flash memory are used. TLC
with 1,300µs write latency has the largest hardware latency
proportion in the overall request latency. Therefore, the im-
provement made by utilizing parallelism becomes more no-
ticeable when TLC is used. For random write, the overall
write performance improvement is not as significant as that
of sequential write. The maximum improvement is 131% by
using 4 TLC flash memory based UBI devices under 16MB
record size. The minimum improvement of MA-UBIFS is
8.3% using 2 UBI devices under 8KB record size on the
MLC flash. Under the same configuration, the improvement
of sequential write is only 2.8%. When the record size is be-
low 1MB, the improvements of re-write on three different
flash memory devices are irregular.

4.4 RAM Memory Usage
We compare the RAM usage before and after MA-UBIFS is
mounted. Figure 9 shows the RAM usage of MA-UBIFS and
UBIFS with respect to different file sizes. Two conclusions
can be drawn. First, for both file systems the memory usage
are roughly independent of its contents. The total memory
usage keeps the same under different sizes of contents. Sec-
ondly, the more UBI devices that MA-UBIFS uses, the more
memory it consumes. The maximum memory usage is 2,090
KB on average when 4 UBI devices are used. When MA-
UBIFS uses 2 UBI devices it consumes 1,081 KB RAM.
UBIFS only uses roughly 500 KB memory in all cases. MA-
UBIFS maintains multiple UBI devices. For each UBI de-
vice, an associated independent kernel thread is created to
serve requests. The increased memory usage is consumed
by those new kernel threads and their related data structures.
According to the experimental results, each thread and its
related data structures use only 327 KB RAM on average.

5. Real Application Evaluation
5.1 Real-World Mobile Appications
To collect real-world traces from a mobile device, we build
an I/O monitor tool that is running in the Android 4.4 on
a Nexus 5 smartphone (Google 2013). The Nexus 5 is de-
signed by Google, which maintains and develops the An-
droid OS. Thus, some system biases such as background

Table 3. Real-world traces
Application Description
AngryBird Playing angry bird for 1 hour.
GoogleMap Navigating route for 30 mins.

Moive Watching movie clips for 15 mins.
CameraVideo Recording a 3-min video clip.
WebBrowsing Surfing webs for 15 mins.

services introduced by venders can be avoided to eliminate
”noises” from traces. We customize the original kernel of
Android 4.4 to add the I/O system monitor at the file sys-
tem level. The monitor records systems calls such as fopen,
fread, and fwrite while running a certain application on the
smartphone. When an I/O system call is invoked the monitor
records its parameters such as arriving time and I/O size into
a trace file, which can be replayed later. The Nexus 5 is run-
ning with its default configuration during our experiments.

We select five common smartphone applications and
record their I/O activities by using the I/O monitor tool. The
five real-world traces are summarized in Table 3. They rep-
resent various types of workloads. For example, AngryBird
and Movie are read-intensive traces, in which 96.9% and
87.4% requests are read requests, respectively. They read
2.79 GB and 110.3 MB data from flash memory, respec-
tively. In contrast, the CameraVideo trace is write-dominant
as 95.6% of its requests are writes. It writes 373.8 MB data
into flash memory. GoogleMap and WebBrowsing have a
similar amount of input and output data. Their read request
percentages are 63.8% and 42.3%, respectively. An I/O re-
player reads each trace line by line and then generates file
system I/Os, which are fed into MA-UBIFS. The parameters
of the simulated MLC flash devices are shown in Table 1.
Table 2 shows the configurations of MA-UBIFS.

5.2 Experimental Results
Figure 10 compares the mean response times (MRTs). All
values are normalized to UBIFS’ MRTs. For data-intensive
applications such as Movie MA-UBIFS noticeably reduces
their MRTs. As the number of MTD devices increases, MA-
UBIFS shows a consistent performance improvement. Un-
der Movie, CameraVideo, and AngryBird 4MA-UBIFS re-
duces MRT by 71.6%, 62.9%, and 44.6%, respectively. For
GoogleMap, the performance improvement of 2MA-UBIFS
and 4MA-UBIFS are 16.4% and 18.2%, respectively. For
WebBrowsing, however, we see a MRT increase in 2MA-
UBIFS. The performance of MA-UBIFS exhibits a small
fluctuation under WebBrowsing due to the following two
reasons. Firstly, the majority of requests in WebBrowsing are
small (average size is 1.8 KB). Hence, the performance im-
provement cannot compensate the overhead caused by man-
aging multiple threads in MA-UBIFS. Secondly, the average
request inter-arrival time is 14.5 ms, which is much longer
than 1-page read/write latencies (see Table 1). Therefore, the
parallelism provided by MA-UBIFS cannot be exploited.

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5

UBIFS US_2ub UBIeFS_4ub

0

0.8

0.4

N
or

m
al

iz
ed

 M
R

T
1.2

AngryBird GoogleMap Movie Camera
Video

Web
Browsing

UBIFS 2MA-UBIFS 4MA-UBIFS
1.0

0.6

0.2

Figure 10. Results from real-world traces.

6. Hardware Evaluation
6.1 Evaluation Platform
The evaluation platform consists of a Xilinx Xupv5-Lx110t
FPGA board (XILINX 2011) and a flash daughter board
(Bunker et al. 2012). The flash daughter board has two inde-
pendent channels with each connecting to a raw flash device.
An embedded system including an Microblaze processor and
an ONFI 2.0 compatible flash controller are implemented
in the FPGA. The flash controller provides two independent
buses so that each of the two channels on the daughter board
has its dedicated data path. Besides, it has a special register,
through which an MTD driver can know the number of un-
derlying flash devices and separately control them. Further,
an embedded Linux with kernel version 3.0 is installed on
top of the system. An MTD driver for the flash controller
is implemented, which abstracts each raw flash device as an
independent MTD device. On each channel, one MLC flash
device (Micron 2013) is attached. Its typical read, program-
ming, and erase latencies are 75 µs, 1,300 µs, and 3.8 ms,
respectively. The size of each page is 8 KB and there are 256
pages in a block. To ensure data integrity, a software BCH
(Bose-Chaudhuri-Hocquenghem) ECC code is used, which
can correct 4-bit errors per 512 bytes of data.

6.2 Evaluation Results
The platform has limited hardware resources. Also, the em-
bedded Linux operation system provides only a simplified
library. Thus, popular file system benchmarks like IOzone
cannot run on top of it. To evaluate the performance of MA-
UBIFS on the embedded platform, we use a bash script that
writes files to an MA-UBIFS mounted directory by copying
data from /dev/random using the dd command. The script
reads files from the mounted directory to /dev/null using dd.
It can delete them later using the rm command. The script
creates 128 20MB files to the file system with various data
block sizes from 1 KB to 16 MB. In our experiments, UBIFS
uses 1 MTD, whereas MA-UBIFS utilizes 2 MTDs.

Figure 11 shows the write and read performance of
UBIFS and 2MA-UBIFS under different data block sizes.
Under all data block sizes, 2MA-UBIFS exhibits a better
performance. On average, 2MA-UBIFS improves write and
read throughput by 55.2% and 84%, respectively. When the
data block size enlarges, the write throughputs of UBIFS

0

10

20

30

40

50

60

1 2 3
0

2

4

6

8

10

1 2 3

UBIFS
UBIeFS_2ub

0Th
ro

ug
hp

ut
 (M

B
/s

)

16KB 16MB
Data Block Size

UBIFS
2MA-UBIFS

2

4
6
8

10

1KB
0

10
20
30
40
50
60

Th
ro

ug
hp

ut
 (M

B
/s

)

16KB 16MB1KB
Data Block Size

Write Read

Figure 11. Results from the hardware platform.

and 2MA-UBIFS both increase. While UBIFS improves
write throughput by 29.1% as the data block size increases
from 1 KB to 16 KB, 2MA-UBIFS only improves its perfor-
mance by 7.9%. For read, the throughput of both UBIFS and
2MA-UBIFS almost keep unchanged when the data block
size enlarges. This is because the main performance bot-
tleneck of storage system on the embedded platform is the
raw flash device I/O throughput, which is usually low (Mi-
cron 2013). The evaluation results of MA-UBIFS from the
hardware platform demonstrate that the MA framework can
noticeably improve the performance of storage system on
real flash devices.

7. Conclusions
Existing flash file systems are not able to utilize device-level
parallelism as they cannot ”see” the multiple flash devices
beneath a controller. In this research, we design, implement,
and evaluate a new embedded flash storage system frame-
work. In particular, we re-architect current single-MTD ar-
chitecture to an MTD-array organization so that multiple
flash memory devices each being abstracted as one MTD
can work concurrently. Next, we design and implement MA-
UBIFS in Linux kernel. It breaks the single-MTD device
barrier so that it can access multiple flash memory devices
in parallel to improve performance. We evaluate its perfor-
mance on top of an array of simulated flash memory de-
vices with micro-benchmarks and real-world traces. Lastly,
a hardware platform is built to examine the effectiveness of
MA-UBIFS on a real embedded system. Experimental re-
sults show that MA-UBIFS obviously outperforms UBIFS.
The new flash file system including source code and its doc-
uments will be released to the public in the near future.

The MA framework provides an opportunity for an em-
bedded flash file system to utilize a data redundancy scheme
to enhance data reliability, which will be the future work of
this research.

Acknowledgments
We would like to thank Steven Swanson’s Non-volatile Sys-
tems Laboratory for providing us with the Ming II platform.
Also, we would like to thank the anonymous reviewers for
their constructive comments that improve this paper. This
work is sponsored by the U.S. National Science Foundation
under grant CNS-1320738.

References
N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis, M. S. Man-

asse, and R. Panigrahy. Design tradeoffs for ssd performance. In
USENIX ATC2008, 2008.

R. Bez, E. Camerlenghi, and A. Modelli. Introduction to flash
memory. Proceedings of the IEEE, 91, 2003.

T. Bunker, M. Wei, and S. J. Swanson. Ming II: A flexible platform
for NAND flash-based research. Technical report, Department
of Computer Science and Engineering, University of California,
San Diego, 2012.

J. Corbet, A. Rubini, and G. Kroah-Hartman. Linux device drivers.
” O’Reilly Media, Inc.”, 2005.

W. David. Memory technology device (mtd) subsystem for linux,
http://www.linux-mtd.infradead.org/index.html, 2003.

J. Engel and R. Mertens. Logfs-finally a scalable flash file sys-
tem. In 12th International Linux System Technology Conference,
2005.

Google. Nesus 5 mobile device, 2013. URL
http://www.google.com/nexus/5/.

L. M. Grupp, A. M. Caulfield, J. Coburn, S. Swanson, E. Yaakobi,
P. H. Siegel, and J. K. Wolf. Characterizing flash memory:
anomalies, observations, and applications. In Microarchitecture,
2009. MICRO-42. 42nd Annual IEEE/ACM International Sym-
posium on, pages 24–33. IEEE, 2009.

T. Homma. Evaluation of flash file systems for large nand flash
memory. In CELF Embedded Linux Conference, 2009.

Y. Hu, H. Jiang, D. Feng, L. Tian, H. Luo, and S. Zhang. Perfor-
mance impact and interplay of ssd parallelism through advanced
commands, allocation strategy and data granularity. In Proceed-
ings of the international conference on Supercomputing, pages
96–107. ACM, 2011.

A. Hunter. A brief introduction to the design of UBIFS, 2008.

D. Jung, J. Kim, J.-S. Kim, and J. Lee. Scaleffs: A scalable log-
structured flash file system for mobile multimedia systems. ACM
TOMCCAP 2008, 2008.

Y. Kang and E. L. Miller. Adding aggressive error correction to
a high-performance compressing flash file system. In Proceed-
ings of the seventh ACM international conference on Embedded
software, pages 305–314. ACM, 2009.

H. Kim, Y. Won, and S. Kang. Embedded nand flash file system
for mobile multimedia devices. Consumer Electronics, IEEE
Transactions on, 55(2):545–552, 2009.

Linux. NAND simulator in Linux Kernel, 2013. URL http://

www.linux-mtd.infradead.org/faq/nand.html.

L. Lu, A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, and S. Lu. A
study of Linux file system evolution. In Proceedings of the 11th
USENIX conference on File and Storage Technologies, pages
31–44. USENIX Association, 2013.

C. Manning. YAFFS: Yet another flash file system, 2004.

Micron. MT29F64G08CBAAA,
2013. URL http://www.micron.

com/products/nand-flash/mlc-nand.

W. D. Norcott and D. Capps. IOzone filesystem benchmark. URL:
www. iozone. org, 55, 2006.

Y. Park and K. H. Park. High-performance scalable flash file
system using virtual metadata storage with phase-change RAM.
Computers, IEEE Transactions on, 60(3):321–334, 2011.

H. Postley. Sports: 3-d tv’s toughest challenge. Spectrum, IEEE,
49(11):40–66, 2012.

Qualcomm. Qualcomm snapdragon processor, 2013. URL
http://www.qualcomm.com/snapdragon?source=google

type=branded campaignid=snapdragon-exactadgroup=

snapdragon-exact.
J.-Y. Shin, Z.-L. Xia, N.-Y. Xu, R. Gao, X.-F. Cai, S. Maeng,

and F.-H. Hsu. Ftl design exploration in reconfigurable high-
performance ssd for server applications. In Proceedings of the
23rd international conference on Supercomputing, pages 338–
349. ACM, 2009.

J. M. Smith. The doctor will see you always. Spectrum, IEEE, 48
(10):56–62, 2011.

W. Wang, T. Xie, and D. Zhou. Understanding the impact of thresh-
old voltage on mlc flash memory performance and reliability. In
Proceedings of the 28th ACM international conference on Su-
percomputing, pages 201–210. ACM, 2014.

D. Woodhouse. Jffs: The journalling flash file system. In Ottawa
Linux Symposium, volume 2001, 2001.

XILINX. Ml507 evaluation platform user guide, 2011. URL
http://www.xilinx.com/support/documentation

/boards and kits/ug347.pdf.

