
10

A File Assignment Strategy Independent of
Workload Characteristic Assumptions

TAO XIE

San Diego State University

and

YAO SUN

Teradata Corporation

The problem of statically assigning nonpartitioned files in a parallel I/O system has been extensively
investigated. A basic workload characteristic assumption of most existing solutions to the problem
is that there exists a strong inverse correlation between file access frequency and file size. In other
words, the most popular files are typically small in size, while the large files are relatively unpopular.
Recent studies on the characteristics of Web proxy traces suggested, however, the correlation, if
any, is so weak that it can be ignored. Hence, the following two questions arise naturally. First,
can existing algorithms still perform well when the workload assumption does not hold? Second, if
not, can one develop a new file assignment strategy that is immune to the workload assumption?
To answer these questions, we first evaluate the performance of three well-known file assignment
algorithms with and without the workload assumption, respectively. Next, we develop a novel
static nonpartitioned file assignment strategy for parallel I/O systems, called static round-robin
(SOR), which is immune to the workload assumption. Comprehensive experimental results show
that SOR consistently improves the performance in terms of mean response time over the existing
schemes.

Categories and Subject Descriptors: D.4.3 [Operating Systems]: File Systems Management—File
organization; C.4 [Performance of Systems]: Design Studies

General Terms: Design, Performance

Additional Key Words and Phrases: File assignment, parallel I/O, load balancing, Zipfian distribu-
tion, workload characteristics

A preliminary version of the article was published in Proceedings of the 36th International Confer-
ence on Parallel Processing [2007].
The research was partially supported by the National Science Foundation under Grants CNS-
0834466 and CCF-0742187.
Authors’ addresses: T. Xie, Department of Computer Science, San Diego State University, San
Diego, CA 92182; email: xie@cs.sdsu.edu; Y. Sun, Teradata Corporation, San Diego, CA 92127;
email: calvin.sun@teradata.com.
Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2009 ACM 1553-3077/2009/11-ART10 $10.00
DOI 10.1145/1629075.1629079 http://doi.acm.org/10.1145/1629075.1629079

ACM Transactions on Storage, Vol. 5, No. 3, Article 10, Publication date: November 2009.

10:2 • T. Xie and Y. Sun

ACM Reference Format:

Xie,T. and Sun, Y. 2009. A file assignment strategy independent of workload characteristic assump-
tions. ACM Trans. Storage 5, 3, Article 10 (November 2009), 24 pages.
DOI = 10.1145/1629075.1629079 http://doi.acm.org/10.1145/1629075.1629079

1. INTRODUCTION

Many real-world applications intensively read data stored in large-scale paral-
lel I/O systems like RAID, Redundant Arrays of Inexpensive Disks [Chen et al.
1994]. To guarantee the quality of service demanded by end-users, prompt re-
sponses to read requests are essential for these applications. For example, a
data-intensive Web server application that publishes significant amounts of
data stored in a back-end database must answer end-users’ queries instantly
before they lose patience [Carrera et al. 2003; Merialdoet et al. 2003]. It is obvi-
ous that the performance of these read-intensive applications largely depends
on the performance of underlying parallel I/O systems, where disk arrays serve
arrival requests simultaneously. More precisely, reducing mean response time
of parallel disk storage systems is a must for these applications.

There are a wide variety of ways to reduce the mean response time or to im-
prove the system throughput for parallel I/O systems [Hsu et al. 2005; Huang
et al. 2005; Lee et al. 2000; Tewari 1992]. File assignment, allocation of all
the files onto disk arrays before they are accessed, is one of such avenues that
can significantly affect the overall performance of a parallel I/O system [Lee
et al. 2000; Tewari 1992]. In order to fully exploit the capacities of a parallel
disk storage system, file assignment problem (FAP) for parallel disk systems
have been extensively investigated in the literature [Dowdy and Foster 1982;
Pattipati and Wolf 1990]. A generic FAP formulation can be summarized as
follows. Given a set of M files and N disks, find the file-disk allocation that opti-
mizes some cost functions or performance metrics. While common cost functions
include communication costs, storage costs, and queuing costs, popular perfor-
mance metrics are mean response time and overall system throughput [Dowdy
and Foster 1982]. It is well known that finding the optimal solution for a cost
function or a performance metric in the context of file assignment on multi-
ple disks is an NP-complete problem [Dowdy and Foster 1982]. Thus, heuristic
algorithms became practical solutions.

Typically, heuristic file assignment algorithms fall into two camps: static and
dynamic. Most static file assignment algorithms require complete knowledge
about the workload statistics such as service times and access rates of all the
files. Dynamic file assignment algorithms, on the other hand, generate file-
disk allocation schemes online to adapt to varying workload patterns without
a prior knowledge of the files to be assigned in the future. While stripping-
based file assignment strategies like RAID-0 and RAID-5 are common for file
systems with large files [Xie 2008], nonpartitioned file assignment algorithms
are suitable for Web, proxy, and email server applications [Merialdo et al. 2003;
Nishikawa et al. 1998; Qiu et al. 2001] where files are small in nature. In this
article, we address the problem of statically assigning nonpartitioned files in a

ACM Transactions on Storage, Vol. 5, No. 3, Article 10, Publication date: November 2009.

A File Assignment Strategy of Workload Characteristic Assumptions • 10:3

parallel disk system where file accesses exhibit Poisson arrival rates and fixed
service times.

Several previous studies [Cunha et al. 1995; Glassman 1994] show that the
distribution of Web page requests generally follows a Zipf distribution [Lee
et al. 2000] where the relative probability of a request for the i’th most popu-
lar page is proportional to 1/i. Moreover, they claim that the request frequency
and the file size are inversely correlated, that is, the most popular files are
typically small in size, while the large files are relatively unpopular. Based on
these workload characteristic study results, many existing static file assign-
ment algorithms, such as Greedy [Graham 1969], SP [Lee et al. 2000], and HP
[Lee et al. 2000], were developed to reduce parallel I/O systems’ mean response
time. Experimental results either from prototype implementation or synthetic
simulations demonstrate that they work well when the workload characteristics
clearly exhibit. Some recent investigations on the characteristics of Web proxy
traces, however, discovered that the correlation between access frequency and
file size, if any, is so weak that it can be ignored [Breslau et al. 1999; Nishikawa
and Hosokawa 1998]. In other words, at least in some real applications, the
correlation assumption does not hold. Therefore, it is necessary to reexam-
ine the existing static file assignment approaches to verify whether they are
still efficient when the correlation does not exist. More importantly, it is indis-
pensable to design and implement a new file assignment strategy, which can
deliver good mean response times no matter the correlation assumption holds
or not.

To achieve these two goals, we first measure the performance of three well-
known algorithms, namely, Greedy [Graham 1969], SP, and HP [Lee et al. 2000],
when the correlation assumption holds. Then we compare it with the perfor-
mance when the correlation assumption does not hold. Next, we develop a novel
static file assignment strategy, called static round-robin (SOR), which aims at
minimizing mean response time under different workload conditions no matter
the correlation assumption is valid or not. The basic idea of SOR is to assign all
files sorted in their size onto an array of disks in a round-robin fashion. Further,
we evaluate the performance of SOR together with Greedy, SP, and HP when the
correlation assumption holds. Experimental results manifest that SOR consis-
tently performs best, while SP delivers a comparable performance. Finally, we
examine the four algorithms under the situation where the file access frequency
is independent of the file size. Again, SOR outperforms the three traditional al-
gorithms in all the tested cases, whereas Greedy, SP, and HP increase their
mean response times on average by 2.44, 2.48, and 2.45 times, respectively.
In summary, SOR demonstrates its strength and effectiveness under various
workload conditions.

The rest of the article is organized as follows. In the next section we discuss
the related work and motivation. In Section 3, we formulate the problem and
present the SOR strategy as well as the three existing algorithms. In Section 4
we evaluate performance of our algorithms using both synthetic benchmarks
and real-world traces. Section 5 concludes the article with summary and future
directions.

ACM Transactions on Storage, Vol. 5, No. 3, Article 10, Publication date: November 2009.

10:4 • T. Xie and Y. Sun

2. RELATED WORK AND MOTIVATION

The file assignment problem (FAP) exists in a wide range of distributed sys-
tems including distributed file systems [Tewari 1992], distributed databases
[Wolfson et al. 1997], video servers [Scheuermann et al. 1998], content distri-
bution networks [Buchholz and Buchholz 2004] and the Grid [Foster 2004].
The first research work on FAP dates back to late 1960s [Chu 1969]. Since
then FAP has been comprehensively investigated because the potential gain
obtained by solving a FAP is significant [Dowdy and Foster 1982]. Typically,
solutions to FAP fall into two categories: static and dynamic. Most static file
assignment algorithms assume that access statistics are immutable, and hence
the file assignment allocation scheme needs to be computed only once and can
continuously work for a long time period [Chu 1969; Dowdy and Foster 1982;
Kangasharju et al. 2002; Loukopoulos and Ahmad 2000; Qiu et al. 2001; Tang
and Xu 2004]. Greedy, originated from longest processing time (LPT) algorithm
proposed by Graham [1969] is one of the most well-known static file assign-
ment heuristic algorithms. Dynamic file assignment algorithms [Qiu et al. 2001;
Pattipati and Wolf 1990], on the other hand, update the file allocation scheme
potentially upon every request. Obviously, they are effective when the files are
relatively small in size, such as the case in Web proxy caching. However, in appli-
cations like distributed video servers [Scheuermann et al. 1998], since the files
are of large size and they do not change in size, dynamic schemes become less
useful.

With the advent of advances of distributed systems, new algorithms have
been developed to solve problems such as data object replica placement
[Karlsson and Karamanolis 2004; Loukopoulos et al. 2005], data management
for large-scale storage systems [Alvarez et al. 2001; Lee et al. 2000; Weil et al.
2006], and automatic near-optimal storage system designs [Anderson et al.
2005]. Essentially, these problems are either directly derived from or closely
related to the FAP problem. In recognition that minimizing the variance of ser-
vice times at each disk is of the same importance as minimizing the utilization
of each disk, Lee et al. [2000] proposed a static file assignment algorithm called
sort partition (SP) and a semi-dynamic file assignment algorithm named hybrid
partition (HP). Compared to the traditional Greedy algorithm, SP significantly
improves the mean response time by taking the two minimizations into account
simultaneously [Lee et al. 2000]. On the other hand, HP is a batch-based vari-
ant of SP, which can run in online mode. Based on our knowledge, SP is one of
the best existing static file assignment algorithms so far.

Most of the new algorithms mentioned above, however, are based on some
critical workload characteristic assumptions. Two most important ones are:
the file access rate obeys a Zipfian distribution and the file access frequency
is inversely correlated to the file size. These two workload assumptions were
supported by several early studies on Web requests [Almeda et al. 1998; Cunha
et al. 1995; Glassman 1994]. However, some recent research projects [Breslau
et al. 1999; Nishikawa et al. 1998] conducted on real-world Web proxy traces
suggested otherwise. They revealed that the distribution of file requests gener-
ally follows a Zipf-like distribution, where the relative probability of a request

ACM Transactions on Storage, Vol. 5, No. 3, Article 10, Publication date: November 2009.

A File Assignment Strategy of Workload Characteristic Assumptions • 10:5

for the i’th most popular page is proportional to 1/iα, with α typically vary-
ing between 0 and 1, rather than a strict Zipfian distribution. In addition, the
correlation between file access frequency and file size does not explicitly ex-
ist. Consequently, the foundation of the existing file assignment algorithms is
potentially shaken by the new findings [Breslau et al. 1999; Nishikawa et al.
1998] at least in some applications. Therefore, it is necessary to reexamine the
existing algorithms under the conditions where the two assumptions do not
hold. To this end, we conducted a group of tests to evaluate three representa-
tive traditional algorithms, namely, Greedy, SP, and HP, under the situation
where the file access frequency is independent of file size and the distribu-
tion of file sizes follows a random uniform distribution. Our preliminary re-
sults show that on average the mean response times of the three algorithms
degrade to 2.44–2.48 times compared to the situations where the correlation
assumption holds. Hence, it is mandatory to design and implement a new file
assignment algorithm, which can deliver good mean response times no matter
the workload assumptions hold or not. In other words, the need of a new file
assignment algorithm that is immune to these workload assumptions is greatly
felt.

In this paper, we are proposing SOR, a static heuristic file assignment strat-
egy, which offers better mean response time compared to the three representa-
tive existing algorithms under a wide spectrum of workload conditions with or
without the workload assumptions. Although we model a parallel I/O system
as a set of homogeneous stand-alone disks in this article, our algorithm can be
easily extended to RAID-structured storage systems. This is because the delays
on the buses or controllers of the disks are negligible compared to the queuing
delays on the disks, which are the dominant components in overall response
times for many disk I/O-intensive applications due to heavy workloads. Simi-
larly, we do not consider file partitioning in this work, and thus, each file must
be allocated entirely onto one disk. This does not restrict the generality of our
scheme as each file partition can be treated as a stand-alone file.

3. DESIGN AND IMPLEMENTATION OF SOR

In this section, we first formulate the FAP problem and system model, which
is followed by a detailed description of the SOR algorithm. Then we prove the
worst case time complexity of SOR, as well as an overall comparison between
SOR and Greedy, SP, and HP via an example.

3.1 Problem Formulation and System Architecture

The architecture of the FAP problem is illustrated in Figure 1(a). A parallel
I/O system in its most general form consists of a linked group, for example,
D = {d1, . . . , d j , . . . , dn}, of independent homogeneous disk drives. The set of
files can be represented as F = {f1, . . . , fi, . . . , fm}. In the system, a disk d j is
modeled as a three-element tuple d j = (c j , t j , l j), where c j , t j , l j are the disk
capacity in GByte, transfer rate (read speed) in Mbyte/second, and load (total
sum of files’ heat on the disk). We assume that disks are always large enough
to accommodate files to be assigned on them. Similarly, a file fi is modeled as

ACM Transactions on Storage, Vol. 5, No. 3, Article 10, Publication date: November 2009.

10:6 • T. Xie and Y. Sun

Fig. 1. System model of FAP and subsequent requests scheduling.

a set of rational parameters, for example, fi = (si, λi, esi, hi), where si, λi, esi,
hi are the file’s size in Mbyte, access rate, expected service time, and heat. In
this paper, disk accesses to a file fi are modeled as a Poisson process with a
mean access rate λi. Also, we assume a fixed service time esi for file fi. This
assumption is realistic for the following two reasons. First, each access to file
fi could be a sequential read of the entire file, which is a typical scenario in
most file systems or WWW servers [Kwan et al. 1995]. Second, for large files,
when the access unit is the entire file, the seek times and rotation latencies are
negligible compared to the transfer time. Thus, esi is determined by si and t j if
fi is allocated on d j

esi = si

t j
. (1)

Since we consider a homogeneous parallel I/O system with each disk having
the same transfer rate, the service time of each file is fixed. In addition, the
combination of λi and esi accurately gives the load of fi, we define the heat hi of
fi as follows [Lee et al. 2000]:

hi = λi.esi. (2)

Consequently, the average disk load ρ can be obtained by the following equa-
tion:

ρ = 1
n

·
m∑

i=1

hi. (3)

File assignment algorithms like Greedy, SP, HP, and SOR allocate a group
of files onto a set of identical disks so that the mean response time can be
minimized. Figure 1(b) depicts the subsequent file access request scheduling
process after the file assignment process completes. While the white color of
disks in Figure 1(a) means that the load of each disk is zero before file assign-
ment, the blue color of disks in Figure 1(b) represents that each disk has been

ACM Transactions on Storage, Vol. 5, No. 3, Article 10, Publication date: November 2009.

A File Assignment Strategy of Workload Characteristic Assumptions • 10:7

loaded before the system starting to serve incoming requests. Here, we employ
the First-Come-First-Serve (FCFS) scheduling heuristic. Suppose there are to-
tally u requests in the request set, which is modeled as R = {r1, . . . , rk , . . . ,
ru}. Each request is modeled as rk = (fidk, ak), where fidk is the file identifier
targeted by the request and ak is the request’s arrival time. For each arrival
request, the FCFS scheduler uses the allocation scheme X generated in Figure
1(a) to find the disk on which the target file of the request resides. And then it
directs the request to the disk’s local queue. In fact, the request workload is a
multi-class workload with each class of requests having its fixed λi and esi (see
Figure 1(b)).

To obtain the response time of a request rk , two important parameters, the
start time and finish time of rk on a disk d j must be computed. We denote the
start time and finish time of rk on disk dj by stj (rk) and ft j (rk), respectively. In
what follows we present derivations leading to the final expressions for these
two parameters. There are three cases when rk arrives in Q j (1 ≤ j ≤ n), the
local queue of disk dj . First, dj is idle and Q j is empty. Second, dj is busy and
Q j is empty. Third, dj is busy and Q j is not empty. Thus, st j (rk) is expressed
as

st j (rk) =

⎧⎪⎪⎨
⎪⎪⎩

SK + RT + ak , if dj is idle and Q j is empty

SK + RT + ak + rj, if d j is busy and Q j is empty

SK + RT + ak + rj + ∑
rp∈Q j ,ap≤ak

tfidp
, otherwise

, (4)

where SK denotes average seek time, RT means average rotation latency, r j

represents the remaining service time of a request currently running on dj , and∑
rp∈Q j ,ap≤ak

t f id p is the overall service time of requests in Q j whose arrival times

are earlier than that of rk . Consequently, ft j (rk) can be calculated by

ft j (rk) = st j (rk) + esfidk
, (5)

where esfidk
is the service time of the file that request rk targets on (see Eq. 1).

As a result, the response time of rk can be obtained by

rt j (rk) = ft j (rk) − −ak . (6)

Similarly, the slowdown (the ratio between rk ’s response time and its service
time) of request rk is

sd j (rk) = rt j (rk)
esfidk

. (7)

Thus, the mean response time of the request set R is expressed as follows;

mrt (R) =
u∑

k=1,1≤ j≤n

rt j (rk)

/
u. (8)

Similarly, the mean slowdown of the request set R can be obtained by

msd (R) =
u∑

k=1,1≤ j≤n

sd j (rk)

/
u. (9)

ACM Transactions on Storage, Vol. 5, No. 3, Article 10, Publication date: November 2009.

10:8 • T. Xie and Y. Sun

Fig. 2. The SOR algorithm.

The FAP problem now can be formulated as: given a set of files F and a
parallel I/O system D, find an allocation scheme X that optimizes the mean
response time (see Equation (8)).

3.2 Algorithm Description

Figure 2 outlines the SOR algorithm with some detailed explanations. It is
recognized that even distribution of workload among all disks and minimization
of the variance of the service time at each disk are two important paths towards
the goal of minimizing the queuing delay [Lee et al. 2000]. To reach that goal,
SOR computes the average disk load ρ in step 1 and enforces the load on each
disk not to exceed ρ (step 9). In step 7 SOR sorts the file set F in file size so that
files with similar sizes can be allocated onto the same disk [Lee et al. 2000].
Next, SOR separates the most popular files onto different disks by utilizing a
round-robin manner. In fact, the round-robin fashion used by SOR is actually

ACM Transactions on Storage, Vol. 5, No. 3, Article 10, Publication date: November 2009.

A File Assignment Strategy of Workload Characteristic Assumptions • 10:9

a partial round-robin in the sense that only the first n− 1 disks are involved in
the round-robin file assignment process (step 14). If a file fi cannot be allocated
onto disk dj , SOR searches a disk dk that is closest to dj to accept it (Steps
19–23). If failed, which means fi is a big file, it will be put into disk dn, a disk
dedicated for these unusual size files (Steps 25–27).

Two most desirable features of SOR that make it superior to traditional SP
and HP algorithms are allocating popular files onto different disks in a round-
robin manner and aggregating large files on one particular disk. The rationale
behind the first characteristic of SOR is that files with higher load (heat) values
will be evenly distributed onto distinct disks so that no disk can have a large
number of popular files. Consequently, the overall load balancing could be fur-
ther improved. By contrast, after sorting files based on their popularities, both
SP and HP simply assign a consecutive collection of popular files onto each
disk until its load reaches the average disk load ρ. The disadvantage of this
consecutive popular file allocation on one disk is that the collection of popular
files would overload a disk, which turns it into a performance bottleneck. Note
that the round-robin fashion used by SOR is actually a partial round-robin in
the sense that only the first n − 1 disks are involved in the round-robin file
assignment process (Step 14). The reason why we exclude disk dn out of the
round-robin procedure is that it will be exclusively used by files with very large
sizes. Aggregating large files on one disk will prevent them from severely block
responses to the requests for small files, which could happen if they are mixed
together with small files on the same disk. Moreover, SOR overcomes a hidden
drawback of SP where the allocation of files onto disks is not even in terms of
number of files on each disk.

3.3 Time Complexity of SOR

Before qualitatively comparing our scheme with three existing algorithms, we
demonstrate the worst-case time complexity of the SOR algorithm.

THEOREM 1. Given a parallel disk array system D = {d1, d2, . . . , d j , . . . , dn}
and a collection of files represented by a file queue F = (f1, f2, . . . , fi, . . . , fm),
the worst-case time complexity of SOR is O(mlgm+mn), where m is the number
of files in Q, n is the number of disk in the system P.

PROOF. It takes O(n) time to initialize the load and the allocation map for
each disk (see Steps 2–4). The time complexity of sorting the file set F is O(mlgm)
as we have m files (see Step 7). To discover an appropriate disk in D for a file
fi to be allocated, the worst case for SOR is to visit each of the n disks in D.
Consequently, the worst case time complexity for allocating one file is O(n) (see
Steps 19–28). Since we totally have m files, the worst case time complexity for
allocating all files in Q is O(mn). Other steps simply take O(1) time. Hence, the
worst-case time complexity of the SOR algorithm is: O(n)+O(mlgm)+O(mn) =
O(mlgm + mn).

Theorem 1 indicates that the time complexity of the SOR algorithm is typ-
ically low. For example, in our synthetic simulation experiments, the value of

ACM Transactions on Storage, Vol. 5, No. 3, Article 10, Publication date: November 2009.

10:10 • T. Xie and Y. Sun

Table I. System Parameters for Overall Comparison Example

Parameter Value
Number of files 50
File access distribution (Zipfian) Skew degree X:Y = 70:30
File size distribution (Zipfian) Skew degree X:Y = 70:30
Coverage of the file system 100% – each file is at least accessed once
Number of batches (for HP only) 2 – each batch has 25 files
Number of disks 8
Number of requests 975
Simulation duration 50 seconds
Average disk load (heat) ρ 213.6
Disk transfer rate 31 Mbytes/second
Aggregate access rate

∑50
i=1 λi 19.5 (1/second)

n is set to 5000 and the value of m is in the range [8, 24], which should take
less than hundreds of microseconds to complete the SOR algorithm in modern
processors. An implication of Theorem 1 is that SOR has the potential to be
extended to be applied in real-world applications because of its low complexity.

3.4 A Performance Comparison Example

In this section, we compare the overall performance of SOR against Greedy,
SP, and HP via an example. The purpose of this example is to intuitively show
how SOR works through experimental results, which come from snapshots gen-
erated by our simulator (see Section 4.1). Table I summarizes the system pa-
rameters configured for this example with 8 disks, 50 files, and 975 requests
arrival within 50 seconds. The distribution of file size was inversely corre-
lated with the distribution of file access frequency using the same skew degree
value 70:30 (see Figure 3(a)–3(b)). The three algorithms are briefly described
below.

(1) Greedy: The most common heuristic for multiple disks load balancing. It
can operate in either online mode or offline mode. Here, we only consider
its offline mode because SOR is an offline file assignment strategy. It first
calculates the mean load of all files and then assigns a consecutive set of
files whose total load is equal to the mean load onto each disk. Its goal is
to generate a file assignment scheme such that the mean response time of
the parallel I/O system can be minimized.

(2) SP (Sort Partition): It first computes the average disk utilization using
Equation (3). Next, it sorts all files into a list I in descending order of their
service times. Finally, it allocates each disk dj the next contiguous segment
of I until its load loadj reaches the maximum allowed threshold ρ. The
remainder files (if any) after one round allocation will be assigned to dn.
It improves the performance of the Greedy algorithm by minimizing the
variances of service times at each disk.

(3) HP (Hybrid Partition): In case files arrive in batches, which can be sorted
prior to their assignment, HP attempts to simultaneously minimize the load
variance across all disks, as well as the service time variance at each disk.

ACM Transactions on Storage, Vol. 5, No. 3, Article 10, Publication date: November 2009.

A File Assignment Strategy of Workload Characteristic Assumptions • 10:11

Table II. File Sizes (Mbytes) and Request Numbers

1∼10 1600,125 1623,77 1646,57 1671,47 1696,40 1723,35 1750,31 1779,29 1809,26 1839,24
11∼20 1872,23 1905,21 1941,20 1977,19 2016,18 2056,17 2099,17 2143,16 2190,15 2239,15
21∼30 2292,14 2347,14 2406,13 2468,13 2535,13 2606,12 2681,12 2763,12 2851,11 2946,11
31∼40 3049,11 3161,10 3283,10 3418,10 3567,10 3733,10 3918,9 4128,9 4367,9 4643,9
41∼50 4965,9 5347,9 5810,8 6382,8 7113,8 8087,8 9462,8 11586,8 15412,8 25101,7

Table III. Allocation Scheme for SP

Disk 1 1 2 — — — — — — — —
Disk 2 3 4 5 6 — — — — — —
Disk 3 7 8 9 10 11 12 13 — — —
Disk 4 14 15 16 17 18 19 20 21 22 —
Disk 5 23 24 25 26 27 28 29 30 31 32
Disk 6 33 34 35 36 37 38 39 40 — —
Disk 7 41 42 43 44 45 46 — — — —
Disk 8 47 48 49 50 — — — — — —

For each batch, HP assigns files to disks in distinct allocation intervals. The
algorithm selects, for each allocation interval l, a different disk dk as the
allocation target. It chooses the disk with the smallest accumulated load
(heat). During one allocation interval, a number of files are allocated to the
target disk dk until its load reaches a given threshold Tk .

Table II specifies each file’s size and the number of requests that target
on it within 50 seconds. For example, the size of file f2 is 1623 Mbytes and
there are 77 requests targeting on it. After running the four algorithms, the
resulting file allocation schemes were given by Table III–Table VI. Table VII
demonstrates the load (heat) distribution on each disk and mean response time
for each algorithm after serving 975 requests.

One can easily draw the following conclusions based on the observations
from the four file allocation schemes (Table III–Table VI). First, Greedy de-
livers the worst performance in terms of mean response time among the four
algorithms because it mixes large files with small files in each disk. Although
large files have fewer requests, these requests could severely delay all subse-
quent requests that access small files on the same disk due to their long service
times. As a result, the mean response time is dramatically enlarged. This con-
clusion is verified by the experimental results shown in Table VII. Second, the
mean response times of HP are somewhere between Greedy and SP because
it also mixes large files with small files in some disks. This is because HP can
only separate large files from small files within each batch and it lacks of the
knowledge of files in the future batches. Third, SP performs best among the
three existing algorithms for it appropriately keeps large files apart from small
files. Last, SOR outperforms SP due to the following several facts. First of all,
SOR separates large files from small files just as SP does. Next, SOR scatters
the first files, which have relatively large values in terms of heat, onto distinct
disks to further improve the overall load balancing. Finally, SOR solves the un-
even problem in terms of number of files in each disk experienced by SP. Take
disk d1 for instance, d1 in SP can only accept f1 and f2 because the next file
f3 has a relatively big value in heat. Since λ3 = 57/50 = 1.14 (1/second) and

ACM Transactions on Storage, Vol. 5, No. 3, Article 10, Publication date: November 2009.

10:12 • T. Xie and Y. Sun

Table IV. Allocation Scheme for HP

Disk 1 3 7 10 12 11 17 — — — —
Disk 2 9 15 21 39 41 4 8 — — —
Disk 3 28 29 30 16 18 13 14 31 32 38
Disk 4 34 35 40 26 37 47 48 — — —
Disk 5 42 45 19 20 22 24 23 25 27 —
Disk 6 50 33 36 49 — — — — — —
Disk 7 2 44 43 46 — — — — — —
Disk 8 5 6 1 — — — — — — —

Table V. Allocation Scheme for Greedy

Disk 1 23 13 41 50 — — — — — — — —
Disk 2 5 16 38 12 44 43 — — — — — —
Disk 3 48 39 8 36 27 — — — — — — —
Disk 4 1 6 18 31 — — — — — — — —
Disk 5 21 22 30 25 9 49 — — — — — —
Disk 6 46 40 47 7 10 28 — — — — — —
Disk 7 33 20 15 45 14 29 3 — — — — —
Disk 8 26 35 42 19 4 32 2 11 17 37 24 34

Table VI. Allocation Scheme for SOR

1 8 15 22 — — — —
2 9 16 23 29 30 — —
3 10 17 24 31 32 33 —
4 11 18 25 34 35 36 —
5 12 19 26 37 38 39 40
6 13 20 27 41 42 43 —
7 14 21 28 44 45 46 —

47 48 49 50 — — — —

Table VII. Disk Load (heat) Distribution and Mean Response Times

Disk Greedy SP HP SOR
1 187.4 209.7 200.6 206.9
2 179.0 193.8 212.6 194.8
3 163.3 205.7 222.5 195.9
4 211.7 200.1 223.6 190.9
5 193.9 207.6 214.7 209.9
6 202.4 189.4 238.2 196.2
7 207.9 201.3 185.3 212.7
8 363.4 301.5 211.7 320.3
Mean response time (second) 5859.9 5124.6 5239.3 5092.4

t3 = 1646/31 = 53.1 seconds, the load of file f3 is load(f3) = 60.5. Meanwhile,
the discrepancy between the current load load1 and the average disk load ρ is
213.6− (λ1 · t1 +λ2 · t2) = 213.6− (129+80.6) = 4, which is smaller than load(f3).
Consequently, f3 is rejected by d1. In contrast to SP, SOR can accommodate
4 files (f1, f8, f15 and f22, see Table VI). In addition, comparing Table III with
Table VI, one can see that the range of number of files on each disk in SP is [2,
10], whereas it is only [4, 8] in SOR. SOR reduces the variance of number of files
across disks by 50% compared to SP. In other words, compared to SP, SOR can
more evenly distribute files onto disks in terms of number of files on each disk.

ACM Transactions on Storage, Vol. 5, No. 3, Article 10, Publication date: November 2009.

A File Assignment Strategy of Workload Characteristic Assumptions • 10:13

Table VIII. Main Characteristics of the Cheetah Disk

Description Value Description Value
Disk model Seagate Cheetah ST39205LC Standard interface SCSI
Storage capacity 9.17 GBytes Rotational speed 10,000 rpm
Ave. seek time (SK) 5.4 msecs Number of platters 1
Ave. rotation latency (RT) 3 msecs Transfer rate 31 Mbytes/second

The conclusion is that an even file allocation scheme in terms of number of files
on each disk can further decrease the mean response time. A straightforward
explanation is that under the same level of disk load (heat), a large number
of requests with relatively shorter service times can result in a longer mean
response time compared to a small number of requests with relatively longer
service times. The reason is twofold. First, a small number of requests tend to
generate a sparser request arrival list, and thus, decrease the possibilities that
arrived requests compete with each for the same disk. Second, a small number
of requests avoid a delay accumulation effect, which might be experienced by a
large number of requests due to the relatively larger number of requests.

4. PERFORMANCE EVALUATION

Here we evaluate the effectiveness of the proposed SOR file assignment scheme
using extensive simulations. The advantage of using simulation is that we can
easily vary parameters, which is a key component of this paper. We first intro-
duce experimental settings in Section 4.1 and Section 4.2. Next, in Section 4.3
we evaluate the four algorithms in Zipf-like file size distribution followed by a
study of the algorithms in uniform file size distribution in Section 4.4. Finally,
we assess the performance of the four algorithms using three real-world traces
in Section 4.5. Some preliminary results in Section 4.3 were presented in Xie
[2007].

4.1 Execution-Driven Simulator and Parameter Space

We have developed an execution-driven simulator that models an array of con-
ventional Cheetah disks. The main characteristics of the conventional disk are
shown in Table VIII. The performance metrics by which we evaluate system
performance include:

—Mean Response Time. average response time of all file access requests sub-
mitted to the simulated parallel I/O system (see Equation (8)). Note that
the mean response times are normalized in the scale [0, 1] for all graphs in
Sections 4.3–4.4.

—Mean Response Time Improvement. decrease (in seconds) of mean response
time gained by SOR compared to the three existing algorithms.

—Mean Slowdown. the ratio between average request response time and aver-
age request service time (see Equation (9)).

—Mean Disk Utilization. average ratio between a disk’s total service time and
its total operation time. The operation time is defined as the time period
between the arrival time of the first file access request and the finish time of
the last file access request.

ACM Transactions on Storage, Vol. 5, No. 3, Article 10, Publication date: November 2009.

10:14 • T. Xie and Y. Sun

Two categories of parameters directly influence the file assignment algo-
rithms that we investigate: workload characteristics and disk drive charac-
teristics. Among the large number of parameters that specify a workload, we
identified five key characteristics: number of files, request rate, file popularity
weight, file size distribution, and the coverage of the file system.

—Number of Files. Since the total number of files to be assigned onto a parallel
disk array directly determines the disk array’s load, we set it to 5000 so that
each disk can accommodate around 312 files in case there are 16 disk drives
in the array. The number of files per disk is a realistic mimic of the real-world
situation. Each file was allocated to a single disk. No files can be partitioned
or replicated.

—Request Rate. Each file access represents a sequential read of the entire file.
Hence, the service time of a file access request is proportional to the file’s
size. We assume that each file has a fixed request arrival rate λi and the
arrival interval times are exponentially distributed. The aggregate arrival
rate of the entire system is defined as

∑5000
i=1 λi. The value of the aggregate

arrival rate represents the intensity of the total access requests submitted
to the disk array where 5000 files have been assigned across.

—File Popularity Weight. File popularity weight relates to the frequency with
which file requests arrive at the parallel I/O system. Since the frequency
of file access usually exhibits a Zipf-like distribution, we assume that the
distribution of file access requests is a Zipf-like distribution with a skew
parameter θ = log X

100 /log Y
100 , where X percent of all accesses were directed

to Y percent of files [Lee et al. 2000]. The value of X:Y is called skew degree in
this article and α = 1 − θ (see Section 1 for α). Figure 3(a) shows a Zipf-like
distribution of file access rate on the 5000 files with X :Y = 70:30 assuming
that file f1 is the most popular file and f5000 is the most unpopular one. In our
simulations, we tested four values of θ with skew degree (X:Y) changing from
50:50 to 80:20.

—File Size Distribution. We considered two cases for file size distribution: Zipf-
like distribution and uniform distribution. In the first case, the distribution
of access rates across the files and the distribution of file sizes were inversely
correlated with the same skew parameter θ , as shown in Figure 3(b). The file
size distribution is reasonable because the phenomena that popular files are
generally small ones can be frequently observed. On the other hand, however,
some Web proxy traces demonstrated that the correlation between file access
frequency and file size could be very weak and can be ignored [Breslau et al.
1999]. Therefore, we also measured the system performance when file size
is independent of file access frequency and it obeys a uniform distribution
(Figure 3(c)). Section 4.3 measures the performance results assuming a Zipf-
like file size distribution, whereas Section 4.4 examines SOR assuming a
uniform file size distribution.

—Coverage of the System. The file system coverage is defined as the percentage
of the entire file repository that is actually accessed by the request workload.

ACM Transactions on Storage, Vol. 5, No. 3, Article 10, Publication date: November 2009.

A File Assignment Strategy of Workload Characteristic Assumptions • 10:15

Table IX. Simulation Parameters

Parameter Value (Fixed) – (Varied)
Number of files (5000)
File request rate Each file has a fixed Poisson request arrival rate λi (1/second).
File access distribution
(Zipf-like)

Skew degree (X:Y = 70:30) – (50:50, 60:40, 70:30, 80:20)

File size distribution Zipfian: X:Y = (70:30) – (50:50, 60:40, 70:30, 80:20)
Uniform: ([1,1000]) – ([1,1000], [1,1100], [1,1200], [1,1300],
[1,1400], [1,1500], [1,1600], [1,1700], [1,1800], [1,1900], [1,2000])
MB

Number of batches (HP) (4) – each batch has 1250 files
Number of disks (16) – (8, 12, 16, 20, 24)
Aggregate access rate (200) – (25, 50, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000)

(1/second)
Simulation duration (1000) seconds

We set the coverage of the system to 100% in our simulations, which means
all files in the parallel I/O system are accessed at least once.

For disk drive characteristics, we only focused on transfer rate (see Table IX)
because transfer rate combined with the file size decides a file access request’s
service time, which in turn affects the mean response time. Table IX summa-
rizes the configuration parameters of a simulated parallel I/O system used in
our experiments and characteristics of the synthetic workload. All synthetic
workload used from Section 4.3 to Section 4.4 were created by our trace gen-
erator. Although number of disks, aggregate access rate, and size of files are
synthetically generated, we examined impacts of these important parameters
on system performance by controlling the parameters.

4.2 Synthetic Workload Generator

To study the impact of the parameters we discussed in Section 4.2, we built
a workload generator that can produce file traces as well as request traces
with user-specified request rate, popularity weight, file sizes, number of files,
coverage, and number of requests. The workload generator takes the number
of files (FILE NUM), the aggregate access rate (TOTAL ACCESS RATE), and
the skew degree (SKEW DEGREE) as input parameters and then computes
popularity weight for each file based on Zipf-like distribution with the skew
parameter θ = log X

100 /log Y
100 . Suppose pi is the popularity weight of file fi.

In a Zipf-like distribution, pi = c/rank1−θ
i , where ranki is the rank of the file

from 1 to the total number of files (FILE NUM) and c = 1/H (1−θ)
N . H (1−θ)

N is the
Nth harmonic number of order (1 − θ) and it is defined as

∑N
k=1

1
k(1−θ) . A file’s

popularity weight multiplied by the aggregate access rate is equal to it access
rate (Figure 3(a)). The same skew degree value was used to produce file sizes
when the file size obeys a Zipf-like distribution (Figure 3(b)). In case the file
sizes are irrelevant to file access rates, the file sizes were generated based on
a uniform distribution (Figure 3(c)). Therefore, each file has the following four
attributes: popularity weight, access rate, file size in Zipf-like distribution, and

ACM Transactions on Storage, Vol. 5, No. 3, Article 10, Publication date: November 2009.

10:16 • T. Xie and Y. Sun

Fig. 3. (a) File access rate distribution; (b) Zipfian file size distribution; (c) Uniform file size
distribution.

file size in uniform distribution. To generate a request trace, for each file the
workload generator first computes the number of requests targeted on the file
during the simulation duration (1000 seconds) according to each file’s access
rate. Since we set the coverage of the file system to 100%, each file has at least one
request. The inter-arrival times of access to file fi were exponentially distributed
with a fixed mean 1/ λi. Hence, for each file, the generator creates a request list.
Next, the generator mix all file’s request list into one request queue and sorts it
in ascending order in terms of arrival time. As a result, there are two features
for each request: the identifier of the file that it targets on and its arrival time.
The request trace was used to drive the simulated parallel disk array with all
files having been assigned on.

4.3 Experimental Results from Zipf-like File Size Distribution

The goal of this group of experiments (Figure 4–Figure 6) is to compare the
proposed SOR algorithm against the three well-known file assignment schemes
when file size follows a Zipf-like distribution. The aggregate access rate varies
from 25 to 1000 per second and the file sizes were distributed according to Zipf ’s
law with skew degree 70:30.

—Impact of Aggregate Access Rate. Figure 4 shows the simulation results for
the four algorithms on a parallel I/O disk array with 16 disk drives. We ob-
serve from Figure 4(a) that SOR consistently outperforms the three exiting
approaches in terms of mean response time. This is because SOR considers
both minimizing variance of service time for each disk and fine-tuning load
balancing degree. Consequently, the sorted files were continuously assigned
to disks such that a more evenly distributed workload allocation scheme was
generated. SP takes the second place in mean response time metric, which
is consistent with our expectation because it is one of the best existing static
file assignment heuristics. To clearly demonstrate the performance improve-
ment, Figure 4(b) provides mean response time decrease gained by SOR com-
pared to Greedy, SP, HP, respectively. In particular, SOR can reduce mean
response time on average by 1118.3, 1052.8, and 269.6 seconds, compared
to HP, Greedy, and SP, respectively. An interesting observation is that the
mean response time improvement becomes more significant when the overall

ACM Transactions on Storage, Vol. 5, No. 3, Article 10, Publication date: November 2009.

A File Assignment Strategy of Workload Characteristic Assumptions • 10:17

Fig. 4. Impact of aggregate access rate in Zipfian file size distribution.

Fig. 5. Scalability in Zipfian file size distribution.

workload represented by the aggregate access rate increases. The implica-
tion is that SOR exhibits its strength in situations where system workload is
heavy. In terms of mean slowdown, SOR also performs best among the four
heuristics (Figure 4(c)), which is consistent with the results shown in Figure
4(a). Since the total workload is relatively heavy, the mean disk utilization
in Figure 4(d) quickly rises to 1 when aggregate access rate is larger than 25
(1/second).

ACM Transactions on Storage, Vol. 5, No. 3, Article 10, Publication date: November 2009.

10:18 • T. Xie and Y. Sun

Fig. 6. Sensitivity to skew parameter θ in Zipfian file size distribution.

—Scalability. This experiment is intended to investigate the scalability of the
four algorithms. We scale the number of disks in the system from 8 to 24.
The aggregate access rate is configured to 200 (1/second) and 1000 (1/second).
The skew degree is still set to 70:30. Figure 5 plots the performance of the
four algorithms as functions of the number of disks. The results show that
SOR exhibits a good scalability.

Figure 5 shows that all of the four algorithms deliver better performance
in both mean response time and mean slowdown when the number of disks
increases. This is because each disk has few files to be assigned on when the
system is scaled up. One important observation is that SOR outperforms the
rest three approaches in all tested cases. The implication of this observation is
that SOR is suitable for a parallel I/O system where the number of disks is not
sufficient for a heavy workload. Comparing the results from Figure 5(c) and
Figure 5(d), we can see that the mean response time improvement becomes
more pronounced when the aggregate access rate is large. In addition, the
implication of results from Figure 5(c) and Figure 5(d) is that the aggregate
access rate affects the mean response time more significantly compared to
the influence imposed by the number of disks.

—Sensitivity to skew parameter θ . To verify the performance impact of the
skew parameter θ , we evaluate the performance as functions of skew degree.
When the skew degree set to 50:50, SOR degraded to SP and only marginally
outperforms Greedy and HP in terms of mean response time (Figure 6(b)).
This is because the skew parameter θ is equal to 1, which means the access
requests were evenly distributed across all files without any request skew. On
the other hand, when the skew degree was enlarged to 70:30, SOR can reduce
mean response time by 466.9, 115.2, 448.7 seconds, compared to Greedy, SP,

ACM Transactions on Storage, Vol. 5, No. 3, Article 10, Publication date: November 2009.

A File Assignment Strategy of Workload Characteristic Assumptions • 10:19

Fig. 7. Impact of aggregate access rate in uniform file size distribution.

Fig. 8. Impact of file size range in uniform file size distribution.

and HP, respectively. We observe from Figure 6 that SOR achieves the best
mean response time improvement when the skew degree is 70:30.

4.4 Experimental Results from Uniform File Size Distribution

The purpose of this group of experiments (Figure 7, Figure 8) is to evaluate the
proposed SOR algorithm when file size follows a uniform distribution.

—Impact of aggregate access rate. In this section we examine the performance
impact of aggregate access rate when the size of files exhibits a uniform
distribution with minimum file size 1 MB and maximum file size 1000 MB.
In case where the sizes of files obey a uniform distribution, SOR consistently
outperforms all the other algorithms in mean response time. The decrease of
mean response time gained by SOR is not pronounced as on average SOR only
reduces mean response time by 188.8, 62.3, and 17.5 seconds, compared to HP,
Greedy, and SP, respectively (Figure 7). However, this experiment manifests
that SOR is a more general file assignment scheme, which works well in
both file size distributions. On the contrary, compared to the results from
Figure 4(a), Greedy, SP, and HP significantly degrade their mean response
times on average by 2.44, 2.48, and 2.45 times, respectively. The results of this
experiment demonstrate that existing file assignment algorithms perform
much worse when the inverse correlation between file access frequency and
file size does not hold.

ACM Transactions on Storage, Vol. 5, No. 3, Article 10, Publication date: November 2009.

10:20 • T. Xie and Y. Sun

Fig. 9. Workload characterization of the two traces: number of requests and file size distribution.

—Impact of file size range. To measure the impacts of file size range in uniform
file size distribution, we evaluate the four algorithms while changing the
range of file size from [1, 1000] Mbytes to [1, 2000] Mbytes. Performance
patterns plotted in Figure 8 are similar to those reported in previous sections,
thereby verifying that SOR can gain performance improvements for a wide
range of file size. SOR always offers the smallest mean response time in all
cases.

4.5 Trace-Driven Simulations

To validate the results from the synthetic workload, we evaluate in this exper-
iment the SOR algorithm using three real-world Web I/O traces (ClarkNet-
HTTP log [Carrera et al. 2003], WorldCup98-05-09, and WorldCup98-06-11
[Arlitt and Jin 1999]), which have been widely used in the literature. The
ClarkNet-HTTP log was collected by ClarkNet, an Internet service provider, for
a week from 09/04/95 to 01/10/95 with total 3,328,587 requests. Since the simu-
lation times in our experiments are much shorter compared with the time span
of the ClarkNet-HTTP trace, we only choose one day (09/04/95) data, which has
186,397 re-quests. Similarly, we select two days’ data, 05/09/98 and 06/11/98,
from the WorldCup98 trace, which presents one of the largest Web workload
analyzed so far [Arlitt and Jin 1999]. While the ClarkNet-HTTP log presents a
light workload, the two WorldCup98 traces introduce a heavy and an extremely
heavy workload condition, respectively. Table X summarizes the statistics of the
three real traces.

The distributions of access rates across the files and file sizes of the ClarkNet
trace and the WorldCup98-05-09 trace were plotted in Figure 9. Files on the

ACM Transactions on Storage, Vol. 5, No. 3, Article 10, Publication date: November 2009.

A File Assignment Strategy of Workload Characteristic Assumptions • 10:21

Table X. Statistics of the Three Real Traces

Trace Name Files Requests Ave. Arrival Interval Mean File Size
Clarknet-HTTP log 10798 186397 463.5 ms 13097 bytes
World Cup 98–05-09 4079 1480081 58.4 ms 20021 bytes
World Cup 98–06-11 4261 59201342 1.46 ms 20086 bytes

x-axis of all figures in Figure 9 were sorted by their popularity in terms of
number of requests received with file 1 being the most popular file. Since the
WorldCup98-06-11 trace has a similar file popularity and file size distribu-
tion to WorldCup98-05-09, we show only WorldCup98-05-09 in Figure 9. From
Figure 9(a) and Figure 9(c), one can see that both ClarkNet and WorldCup98-
05-09 exhibit a Zipf-like file requests distribution. Nevertheless, the ClarkNet
trace displays a clear correlation between file access frequency and file size.
More precisely, all popular files in ClarkNet are small files (see Figure 9(b)).
On the other hand, the WorldCup98-05-09 trace demonstrates that the access
frequency of files has no correlation with file size (see Figure 9(d)). In other
words, large files could be either popular files or unpopular files in WorldCup98-
05-09. Thus, by using the three traces, all four algorithms can be examined in
two distinct scenarios: (1) there is an inverse correlation between file access
frequency and file size; and (2) file access frequency and file size has no corre-
lation. Trace-driven simulation results (see Figure 10) demonstrate that SOR
outperforms the three baseline algorithms in almost all cases. Especially, when
workload becomes heavier, the improvement of SOR obviously increases. More
importantly, results from Figure 10 are consistent with synthetic simulations
discussed in Section 4.3 and Section 4.4, which validates the effectiveness of
our synthetic experiments.

5. CONCLUSIONS

In this article, we address the issue of statically allocating nonpartitioned
files onto a parallel I/O system where the file access requests exhibit Pois-
son arrival rates and fixed service times. We found that the performance of
existing file assignment algorithms in terms of mean response time dramat-
ically degraded when the inverse correlation between file access frequency
and file size does not hold. Therefore, a static round-robin (SOR) file assign-
ment strategy is developed to generate optimized file allocations that minimize
mean response time no matter the correlation exists or not. To quantitatively
evaluate the effectiveness and practicality of the proposed SOR scheme, we
conducted extensive experiments using both synthetic benchmarks and real-
world traces. Experimental results show that when the distribution of access
rates across the files and the distribution of file sizes were inversely correlated
with the same skew parameter θ (Figure 3(a)–3(b)), SOR consistently improves
the performance of parallel I/O systems in terms of mean response time over
three well-known file assignment algorithms. Compared to SP, one of the best
existing static nonpartitioned file assignment algorithms, SOR obviously
achieves improvement in mean response time. More importantly, when the

ACM Transactions on Storage, Vol. 5, No. 3, Article 10, Publication date: November 2009.

10:22 • T. Xie and Y. Sun

Fig. 10. Trace-driven simulation results.

correlation between file access frequency and file size is negligible, SOR still
consistently performs better when file size exhibits a uniform distribution.

Future studies in this research can be performed in the following directions.
First, we will extend our scheme to a fully dynamic environment, where file
access characteristics are not known in advance and may vary over time. As a
result, a dynamic file assignment algorithm is mandatory so that dynamically
arrived files can be reallocated by migrating files from one disk to another.
Second, we intend to enable the SOR scheme to cooperate with the RAID archi-
tecture, where files are usually partitioned and then distributed across disks
in order to further reduce the service time of a single request.

REFERENCES

ALMEDA, V., CESARIO, M., FONSECA, R., MEIRA, W. JR., AND MURTA, C. 1998. Analyzing the behaviour
of a proxy server. In Proceedings of the 3rd International Caching Workshop.

ALVAREZ, G. A., BOROWSKY, E., GO, S., ROMER, T. H., BECKER-SZENDY, R., GOLDING, R., MERCHANT, A.,
SPASOJEVIC, M., VEITCH, A., AND WILKES, J. 2001. Minerva: An automated resource provisioning
tool for large-scale storage systems. ACM Trans. Comput. Syst. 19, 4, 483–518.

ANDERSON, E., SPENCE, S., SWAMINATHAN, R., KALLAHALLA, M., AND WANG, Q. 2005. Quickly finding
near-optimal storage designs. ACM Trans. Comput. Syst. 23, 4, 337–374.

ARLITT, M. AND JIN, T. 1999. Workload characterization of the 1998 World Cup Web site. Tech.
rep., HPL-1999-35R1, HP Labs.

ACM Transactions on Storage, Vol. 5, No. 3, Article 10, Publication date: November 2009.

A File Assignment Strategy of Workload Characteristic Assumptions • 10:23

BRESLAU, L. CAO, P., FAN, L., PHILLIPS, G., AND SHENKER, S. 1999. Web caching and Zip-like distri-
butions: Evidence and implications. In Proceedings of the 18th Conference on Computer Commu-
nications. 126–134.

BUCHHOLZ, S. AND BUCHHOLZ, T. 2004. Replica placement in adaptive content distribution net-
works. In Proceedings of the ACM Symposium on Applied Computing. 1705–1710.

CARRERA, E. V., PINHEIRO, E., AND BIANCHINI, R. 2003. Conserving disk energy in network servers.
In Proceedings of the 17th Annual International Conference on Supercomputing. 86–97.

CHEN, P. M., LEE, E. K., GIBSON, G. A., KATZ, R. H., AND PATTERSON, D. A. 1994. RAID: High-
performance, reliable secondary storage. ACM Comput. Surv. 26, 2, 145–185.

CHU, W. Optimal file allocation in a multiple computer system. IEEE Trans. Comput. 18, 10, 885–
889.

CUNHA, C., BESTAVROS, A., AND CROVELLA, M. 1995. Characteristics of WWW client-based traces.
Tech. rep., 1995-010, Boston University.

DOWDY, W. AND FOSTER, D. 1982. Comparative models of the file assignment problem. ACM Com-
put. Surv. 14, 2, 287–313.

FOSTER, I. 2004. The Grid: Blueprint for a New Computing Infrastructure. Morgan Kaufmann,
Los Altos, CA.

GLASSMAN, S. 1994. A caching relay for the World Wide Web. In Proceedings of the 1st Interna-
tional Conference on the World-Wide Web. 165–173.

GRAHAM, R. L. 1969. Bounds on multiprocessing timing anomalies. SIAM J. Appl. Math. 7, 2,
416–429.

HSU, W. W., SMITH, A. J., AND YOUNG, H. C. 2005. The automatic improvement of locality in storage
systems. ACM Trans. Comput. Syst. 23, 4, 424–473.

HUANG, H., HUNG, W., AND SHIN, K. G. 2005. FS2: dynamic data replication in free disk space for
improving disk performance and energy consumption. In Proceedings of the 12th ACM Sympo-
sium on Operating Systems Principles. 263–276.

KANGASHARJU, J., ROBERTS, J., AND ROSS, K. 2002. Object replication strategies in content distribu-
tion networks. Comput. Comm. 25, 4, 367–383.

KARLSSON, M. AND KARAMANOLIS, C. 2004. Choosing replica placement heuristics for wide-area
systems. In Proceedings of the 24th International Conference on Distributed Computing Systems.
350–359.

KWAN, T., MCGRATH, R., AND REED, D. 1995. Ncsas world wide web server design and performance.
Comput. 28, 11, 67–74.

LEE, L. W., SCHEUERMANN, P., AND VINGRALEK, R. 2000. File assignment in parallel I/O systems
with minimal variance of service time. IEEE Trans. Comput. 49, 2, 127–140.

LOUKOPOULOS, T. AND AHMAD, I. 2000. Static and adaptive data replication algorithms for fast in-
formation access in large distributed systems. In Proceedings of the 20th International Conference
on Distributed Computing Systems. 385–392.

LOUKOPOULOS, T., LAMPSAS, P., AND AHMAD, I. 2005. Continuous replica placement schemes in dis-
tributed systems. In Proceedings of the 19th Annual International Conference on Supercomputing.
284–292.

MERIALDO, P., ATZENI, P., AND MECCA, G. 2003. Design and development of data-intensive web
sites: The Araneus approach. ACM Trans. Inter. Tech. 3, 1, 49–92.

NISHIKAWA, N., HOSOKAWA, T., MORI, Y., YOSHIDA, K., AND TSUJI, H. 1998. Memory-based architecture
for distributed WWW caching proxy. In Proceedings of the 7th International Conference on World
Wide Web. 205–214.

PATTIPATI, K. R. AND WOLF, J. L. 1990. A file assignment problem model for extended local area
network environments. In Proceedings of the 10th International Conference on Distributed Com-
puting Systems. 554–561.

QIU, L., PADMANABHAN, V. N., AND VOELKER, G. M. 2001. On the placement of web server repli-
cas. In Proceedings of the 21th Annual Joint Conference on Computer and Communications.
1587–1596.

SCHEUERMANN, P., WEIKUM, G., AND ZABBACK, P. 1998. Data partitioning and load balancing in
parallel disk systems. VLDB 7, 1, 48–66.

TANG, X. AND XU, J. 2004. On replica placement for QoS-aware content distribution. In Proceed-
ings of the 23rd Annual Joint Conference on Computer and Communications. 806–815.

ACM Transactions on Storage, Vol. 5, No. 3, Article 10, Publication date: November 2009.

10:24 • T. Xie and Y. Sun

TEWARI, R. 1992. Distributed file allocation with consistency constraints. In Proceedings of the
12th International Conference on Distributed Computing Systems. 408–415.

TRIANTAFILLOU, P., CHRISTODOULAKIS, S., AND GEORGIADIS, C. 2000. Optimal data placement on disks:
A comprehensive solution for different technologies. IEEE Trans. Knowl. Data Engin. 12, 2, 324–
330.

WEIL, S. A., BRANDT, S. A., MILLER, E. L., AND MALTZAHN, C. 2006. CRUSH: Controlled, scalable,
decentralized placement of replicated data. In Proceedings of the ACM/IEEE Conference on
Supercomputing. 122.

WOLFSON, O., JAJODIA, S., AND HUANG, Y. 1997. An adaptive data replication algorithm. ACM Trans.
Datab. Syst. 22, 4, 255–314.

XIE, T. 2007. SOR: A static file assignment strategy immune to workload characteristic assump-
tions in parallel I/O systems. In Proceedings of the 36th International Conference on Parallel
Processing (ICPP).

XIE, T. 2008. SEA: A striping-based energy-aware strategy for data placement in RAID-
structured storage systems. IEEE Trans. Comput. 57, 6, 748–761.

Received June 2008; revised April 2009; accepted April 2009

ACM Transactions on Storage, Vol. 5, No. 3, Article 10, Publication date: November 2009.

