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Abstract—Current disk arrays consist purely of hard disk drives, which normally provide huge storage capacities with low cost and

high throughput for data-intensive applications. Nevertheless, they have some inherent disadvantages such as long access latencies

and energy inefficiency due to their build-in mechanical mechanisms. Flash-memory-based solid state disks, on the other hand,

although currently more expensive and inadequate in write cycles, offer much faster random read accesses and are much more robust

and energy efficient. To combine the complementary merits of hard disks and flash disks, in this paper, we propose a hybrid disk array

architecture named hybrid disk storage (HIT) for data-intensive applications. Next, a dynamic data redistribution strategy called

performance, energy, and reliability balanced (PEARL), which can periodically redistribute data between flash disks and hard disks to

adapt to the changing data access patterns, is developed on top of the HIT architecture. Comprehensive simulations using real-life

traces demonstrate that compared with existing data placement techniques, PEARL exhibits its strength in both performance and

energy consumption without impairing flash disk reliability.

Index Terms—Allocation strategies, energy-aware systems, reliability, secondary storage.

Ç

1 INTRODUCTION

DATA placement problem or file assignment problem
(FAP), the problem of allocating data (e.g., a set of files)

onto multiple disks prior to serving I/O requests so that
some cost functions or performance metrics can be
optimized, has been extensively investigated in the past
years [12], [20], [32], [33], [34]. While common cost functions
are communication costs, storage costs, and queuing costs,
popular performance metrics include mean response time
and overall system throughput. Existing algorithms for the
data placement problem generally can be divided into two
categories: static and dynamic. Static data placement
algorithms [20], [33], [34] require a prior knowledge about
the workload characteristics including the service time of
each I/O request and the access rate of each file. In addition,
they demand that all files need to be allocated at the same
time. Further, they assume that each file’s access rate keeps
constant over time, which is not realistic in many scenarios
where data access patterns vary [28]. Dynamic data
placement algorithms [29], [32], on the other hand, do not
need any prior statistics of workload features. Also, they
can allocate dynamically created files. The principle idea of
dynamic data placement algorithms is to use historic
information of arrived files and their recorded access
characteristics to make a good allocation for each arriving
file so that load balancing among multiple disks can be

maintained. Since they do not possess the global informa-
tion about data and their access statistics, their performance
is understandably inferior to that of their static brethren. It
is well understood that even finding an optimal algorithm
for a cost function or a performance metric in the context of
static data placement on multiple disks is an NP-complete
problem [12]. Therefore, heuristic algorithms become
feasible solutions to the data placement problem. Moreover,
data placement algorithms alone, no matter static or
dynamic, are insufficient to retain load balancing because
the access pattern of a file system might change over a long-
term period [28]. Consequently, an originally good data
placement scheme under an initial workload may no longer
be the case in a later scenario [29]. Thus, dynamic data
redistribution algorithms, which can intelligently reallocate
data across multiple disks to adapt to the changing
workload pattern, become essential.

While high performance is the only goal pursued by
traditional data placement and data redistribution algo-
rithms [12], [18], [29], [32], modern data placement
strategies like SEA [34] also take energy efficiency into
account as hard disks contribute a significant percentage of
total energy consumption in a computing infrastructure. For
example, they can consume 27 percent of overall electricity
in a data center [26]. Although recent energy-aware data
placement approaches can noticeably save energy when
compared with conventional data placement algorithms
[34], the improvement in energy conservation is limited due
to the inherent energy inefficiency of the underlying hard
disk drives. Unfortunately, current disk arrays consist
purely of energy-inefficient hard disk drives. Hence, a
novel storage architecture that not only offers high
performance but also saves energy is needed.

Originally, flash memory was devised as a storage
element for consumer electrical devices such as digital
cameras, cellular telephones, and personal digital assistants
[6], [10]. Current flash-memory-assisted hard disk storage
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systems are mainly proposed to be applied in mobile
platforms like personal laptops [10], [18] or embedded
systems [7], [8]. The major purpose of using flash memory is
to save energy, which is critical in a mobile computing
environment or for an embedded system. Essentially, these
flash memory and hard disk mixed storage systems only
take flash memory as an extra layer of cache buffer [4], [18].
Very recently, flash-memory-based solid state disk (here-
after, flash disk) started to replace traditional hard disk
drives in sever-class storage systems in enterprises such as
Google and Baidu [11].

Flash disks have the following apparent advantages,
which make them ideal storage devices for enterprise
applications. First, they inherently consume much less
energy than mechanical mechanism-based hard disks [6].
Second, due to their solid-state design, they are free of
mechanical movements, and thus, have enhanced reliability
[27]. Third, they offer much faster random access by
eliminating unnecessary seek time delays and rotation
latencies [16], [17]. Still, on-market flash disks also have
some obvious disadvantages such as small capacity, slow
random write speeds, and limited erasure cycles. Fortu-
nately, latest breakthroughs in flash memory technology
largely relax the three well-known constraints. For example,
off-the-shelf flash disk products like Adtron A25FB-20
Flashpak can provide the highest capacities with up to
160 Gbytes. In addition, it offers a sustained random read
speed of 78 Mbytes/second and a random write speed of
47 Mbytes/second [27]. In the mean time, some high-end
Single-Level Cell (SLC) NAND flash memory now have
several million erasure cycles [13], [14].

The main concern on current flash disks is their
considerably higher prices. As of early 2008, flash disks
are around $15 per gigabyte, whereas comparable conven-
tional hard disk drives are typically less than $1 per
gigabyte [23]. Therefore, it is wise to integrate small-
capacity flash disks with high-capacity hard disk drives to
form a hybrid disk array so that their complementary merits
can be benefited by enterprise applications. To this end, we
propose a novel hybrid disk storage (HIT) architecture for
next generation server-class disk arrays (see Fig. 1). As we
will show later, the HIT architecture can readily outperform
traditional hard disk arrays in energy conservation. As for
performance and reliability, a new data management

scheme is needed to judiciously utilize the complementary
merits of flash disk and hard disk so that storage systems
for data-intensive applications like online transaction
processing (OLTP) can achieve a high performance and
reliability level.

In this paper, we study dynamic data redistribution
problem in the context of the new HIT architecture. An
innovative dynamic data redistribution strategy called
performance, energy, and reliability balanced (PEARL),
which periodically redistributes a set of data based on their
access characteristics and the distinct features of hard disk
and flash disk, is developed on top of the HIT architecture.
Previous investigations on data access characteristics in
real-world applications show that different data blocks may
have distinct access patterns. For instance, Roselli et al.
found that in a file set, some files are exclusively written
without being read while some files are almost exclusively
read [28]. Meanwhile, both flash disks and hard disks have
their own pros and cons. For example, flash disks, though
energy saving in nature, have inferior performance in write
speed compared to hard disks. Besides, they have limited
number of write cycles. Thus, considering both data access
characteristics and features of different types of disks (flash
or hard), PEARL intelligently redistributes data to its right
place (a flash disk or a hard disk), where the requests
targeting on it can be served efficiently.

The rest of the paper is organized as follows: In Section 2,
we briefly introduce the related work and the motivation of
this study. Section 3 presents the HIT architecture. The
PEARL strategy and its overhead analysis are provided in
Section 4. In Section 5, we evaluate the performance of
PEARL based on three real-world traces. Finally, Section 6
concludes the paper with future directions.

2 RELATED WORK AND OUR IDEA

2.1 Dynamic Data Redistribution

Compared with numerous static data placement algorithms
[12], [20], [33], [34], only very few investigations on
dynamic data allocation and redistribution (or reallocation)
problem [3], [29] have been accomplished. Arnan et al.
observed that when several workloads on the same disk are
concurrently active, the disk head has to seek back and forth
between their respective locations [3]. Obviously, frequent
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disk head seeking significantly increases the response times
of I/O requests. To alleviate this problem in multidisk
systems, they proposed a data reallocation approach, which
separates interfering workloads by moving one or several of
the workloads to other disks where they will cause less
interference [3]. The data reallocation activities are guided
by a conservative interference estimation model named
independent reference model (IRM). Their algorithm con-
centrates on reducing seek times without taking dynami-
cally changing access patterns into account.

Scheuermann et al. proposed an array of heuristic
algorithms for dynamic data redistribution by taking access
pattern changes into consideration [29]. The basic idea of
their algorithms is to minimize the queuing delays by
distributing the load across the disks as evenly as possible
and by selectively redistributing the load dynamically
through a technique called “disk-cooling” [29]. However,
all of their algorithms bear the following three major
limitations [29]. First, they assume that all of the subre-
quests are uniformly distributed among the disks, which
obviously contradicts the fact that real workloads generally
exhibit skewed access frequencies [20], [28]. Second, their
approaches just assume that the relevant workload para-
meters a priori can be estimated with sufficient accuracy
without actually implementing any dynamic file access
monitoring mechanisms. In the absence of such a monitor-
ing mechanism, some critical workload characteristics such
as the popularity of each data unit and the type of I/O
requests (read or write or both) on each data unit cannot be
appropriately estimated, which makes their automatic
tuning methods ineffective. Even worse, the “known as a
priori” assumption about workload parameters is against
the spirit of dynamic data allocation and reallocation, where
such workload characteristics cannot be obtained in
advance. Finally, all their algorithms employ a file-specific
striping policy, which means that the size of a stripe unit is
file dependent. This nonuniform file striping method is not
practical because it will impose a prohibitive overhead on
disk array controller. Therefore, a new dynamic data
allocation and reallocation (redistribution) strategy without
the limitations mentioned above is needed to fully address
the challenging dynamic data reorganization problem.
Besides, the new dynamic data allocation and redistribution
strategy should be energy aware as disk arrays are major
energy consumers in a computing infrastructure [26].

2.2 Flash Disk: A Buddy of Hard Disk

NAND flash memory is traditionally used as an extra cache
buffer [18], [24]. For example, a hybrid hard disk model,
which embeds flash memory chips into a hard disk to make
a hybrid disk, was proposed by Microsoft [24]. It takes flash
memory chips as on-board memory buffers. Another typical
example is SmartSaver, a disk energy-saving scheme for a
mobile computer proposed by Chen et al. [10]. This scheme
uses a flash drive as a standby buffer for caching and
prefetching data to serve requests without disturbing disks.
With the advances of flash memory technology, flash disks
are integrated into personal computers or even enterprise-
level applications [18], [19], [21], [22]. Kim et al. developed
an energy-efficient file placement technique named pattern-
based PDC (PB-PDC) [18], which adapts the existing

Popular Data Concentration (PDC) algorithm [25] by
separating read and write I/O requests. PB-PDC locates
all read-only data upon a flash drive while it puts all rest
data on a hard disk. The PB-PDC technique only concen-
trated on one flash drive with a single hard disk in a mobile
laptop computing environment. In addition, it did not take
changing workload patterns into account. Koltsidas and
Viglas employed two magnetic disks and one flash disk to
construct a storage layer for a database system, where data
pages can be assigned to their appropriate destinations
based on their access patterns [19]. Their schemes are
specific to database systems. Sun ZFS, an enterprise-class
file system, employed flash SSD as a secondary-level cache
in the standard memory hierarchy [22].

Compared with HDD, flash disk exhibits a relatively
poor random write performance. Also, they have a limited
erasure/write cycle. Therefore, the proposed PEARL
strategy, which is built on top of the HIT architecture,
needs to take these two limitations into consideration so
that neither the overall performance nor the flash disk
reliability is degraded due to the intensive write activities.

2.3 Our Idea

The basic idea of the HIT architecture is to construct
enterprise-level disk arrays using both small-capacity
nonvolatile solid-state flash disks and traditional server-
class hard disk drives. Each flash disk is coupled with its
corresponding buddy hard disk to form a flash-hard disk
pair. Meanwhile, all hard disks form a hard disk array
organized in some RAID structure. The number of flash
disks in the flash disk array is equal to the number of hard
disks in the hard disk array (see Fig. 1).

Compared with existing data placement techniques [18],
[19] that also employ both hard disks and flash devices,
PEARL has some desirable features. First, it can be applied
in a variety of applications such as Web server and OLTP.
Second, it targets on a disk array-based server-class storage
system rather than a single flash device [18], [19]. PEARL
first divides the hard disk array into multiple data zones
(hereafter, zone). Each zone is a contiguous data area that
contains the same number of blocks with each block being
512 bytes. It then monitors the access pattern of each zone.
Data can be dynamically created or deleted. In addition, the
access pattern of each zone could vary over time. Initially, all
data including newly created ones are distributed across the
hard disk array in a RAID-X manner (e.g., X could be 0 or 5,
see Fig. 1). At the end of each epoch, after obtaining statistics
of each zone’s access pattern, PEARL first separates all zones
into three categories: write-excessive, read-exclusive, and
read-write. If the frequency of a zone’s write accesses
exceeds the flash disk write cycle threshold value, it will be
defined as a write-excessive zone and will stay on the hard
disk array. All zones that do not belong to the write-
excessive category will be further divided into two groups:
read-exclusive and read-write. Zones with both read and
write accesses are in the read-write group, whereas zones
with read-only accesses go into the read-exclusive group.
Next, PEARL selects a set of zones that is appropriate for
being allocated on the flash disk array from the read-
exclusive and read-write groups based on each zone’s
popularity and performance energy trade-off parameter
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(see (5)). And then, it reallocates these zones onto the flash
disks. When data access pattern changes, PEARL redis-
tributes zones between the flash disk array and the hard disk
array accordingly.

3 THE HIT ARCHITECTURE

There are two types of flash memory: NAND flash memory
and NOR flash memory [6]. Since NAND flash memory is
more appropriate for data storage, we only consider NAND
flash memory in this paper. Also, there are two options
when one implements a flash-memory-based storage
system: emulating a flash disk as a block-device like a hard
disk or designing a brand new native file system directly
over flash disks.

We adopt the first approach as it introduces little change
of an operating system running on a host machine. In order
to integrate a flash disk into an existing storage system, two
important layers of software modules that sit between the
file system and the flash disk are indispensable [15]. They
are memory technology device (MTD) driver and flash
translation layer (FTL) driver. Lower level functions of a
storage medium such as read, write, and erase are provided
by the MTD driver. Supported by the underlying lower
level functions offered by the MTD driver, the FTL driver
implements higher level algorithms like wear leveling,
garbage collection, and physical/logical address translation
[15]. With the assistance of the FTL driver, the file system
can access the flash disk as a hard disk without being aware
of the existence of the flash disk. How to develop these two
software layers of modules is out of the scope of this paper.
We assume that both MTD and FTL drivers are working
smoothly between the file system and flash disks.

The HIT architecture is depicted in Fig. 1. Each flash disk
cooperates with a hard disk through a dedicated high-
bandwidth connection to compose a flash-hard disk pair.
The rationale behind the one-to-one disk pair configuration
is threefold. First, the equal number of the two types of
disks makes balancing load between the hard disk array
and the flash disk array easier. Second, it simplifies data
redistribution between the two disk arrays. Last but not
least, it enhances storage systems’ fault tolerance and
reliability by reducing disk reconstruction time when a
hard disk or a flash disk fails. For example, when a hard
disk fails, its partner flash disk can largely help the recovery
of the failed hard disk.

In addition, both hard disks and flash disks are directly
attached to the system bus. All hard disks are organized in
a RAID structure like RAID-0. The hard disk array plus its
associated flash disks construct a hybrid disk array. Since
all flash disks are emulated as hard disks, from the hybrid
disk array controller point of view, there exist two groups
of same type disks in the hybrid disk array. Within the
hybrid disk array controller, some data management
modules like PEARL are implemented to manage data
across the hybrid disk array and the controller caches. The
hybrid disk array controller is connected to the storage
server host through the host channel. Note that multiple
hybrid disk arrays each with its own disk array controller
can be connected with the storage server processor
simultaneously. PEARL consists of five modules, Data

Placement Initializer (DPI), Redistribution Table Generator
(RTG), Data reOrganizer (DRO), Access Monitor (AM), and
Disk Space Manager (DSM).

4 THE PEARL STRATEGY

In this section, we first present a detailed description of the
PEARL strategy with an illustrative example, which is
followed by system models and implementation details, as
well as a complexity analysis of PEARL.

4.1 Algorithm Description

The PEARL strategy judiciously yet dynamically designates
each zone as either flash favorite or hard favorite based on its
I/O access characteristics. Each zone is then allocated onto
its favorite disk array so that the complementary merits of
flash disks and hard disks can be mostly utilized while their
respective disadvantages can be avoided. PEARL exploits
two critical I/O workload characteristics: data access
locality and data access type. The presence of access locality
in I/O workload has long been recognized in the literature.
For example, it is well known that 10 percent of files
accessed on a Web server account for 90 percent of the
server requests and 90 percent of the bytes transferred [1].
The implication of workload locality is that the overall
system performance can be noticeably improved if the I/O
requests on the small percentage popular data can be served
more efficiently. Data access locality suggests us concentrate
on the redistribution of the minority popular data. The
second important I/O workload characteristic is data access
type, namely write-excessive, read-exclusive, and read-
write. In an investigation of file system workloads, Roselli
et al. found that file access has a bimodal distribution
pattern within which some files are written excessively
without being read while others are almost exclusively read
[28]. This observation confirms that it is feasible for PEARL
to separate data into the aforementioned three categories
based on the type of accesses that they have received. It is
understood that read-exclusive files are suitable for flash
disks as they don’t contribute any erasure cycles. Further,
accessing these read-exclusive files on flash disk can
significantly save energy and gain potential performance
enhancement due to no seek time and rotation latency any
more. Similarly, write-excessive files are more appropriate
for hard disks, where erasure cycle limitation doesn’t apply.
The most difficult task for a data redistribution strategy is to
decide where some read-write popular zones should go.
Unlike existing conservative algorithms such as PB-PDC
[18], which immediately puts all read-write files onto hard
disks to avoid any write cycles on flash disk, PEARL adopts
a more open attitude and makes a smart decision based on a
good trade-off between performance and energy saving.

Fig. 2 shows an illustrative example of data redistribution
between hard disks and flash disks using the PEARL
strategy. Assume that there are only two hard disks and
two flash disks in the hybrid disk array. Further, assume that
the capacity of a flash disk is half of that of a hard disk for
illustration purpose. Initially, data were allocated across the
hard disk array in some RAID structure and the flash disks
are empty. PEARL divides the hard disk array into four
zones and the size of each zone is 12 blocks. Each block is
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512 bytes and has its Logical Block Address (LBA). Note that
the extremely small size of a zone and the unrealistic small
capacity of a disk in this example are only for illustration
purpose. While the hard disk array was logically divided into
four equal-size zones, the flash disk array was partitioned
into two same-size zones as well. Immediately after the time
instance 0, the AM starts to monitor the popularity (in terms
of number of accesses) for each zone on the hard disk array.
Assume that Zone 2 and Zone 3 are the hottest zones during
the first epoch and they are all flash favorite. Thus, at the end
of the first epoch, the RTG module generates a data
reorganization table (DRT) and hands it to the DRO, which,
in turn, transfers data of Zone2 and Zone3 from the hard disk
array to the flash disk array. Therefore, all subsequent
accesses targeting on the data of the two migrated zones will
be directed to the flash disk array during the second epoch.
Similarly, at the end of the second epoch, AM discovers that
the hottest two zones change from (Zone2, Zone3) to (Zone2,
Zone4). As a consequence, DRO first transfers data in Zone3
back to the hard disk array, and then, transfers data in Zone 4
to the flash disk array. By periodically updating popular
flash-favorite data in the flash disk array, PEARL dynami-
cally separates data into two disk arrays so that requests on
different types of data can be served more efficiently by
distinct types of disks.

4.2 System Models

The set of zones is represented as Z ¼ fz1; . . . ; zi; . . . ; zmg.
The flash disk array is modeled as FD ¼ ffd1; . . . ;
fdj; . . . ; fdng, whereas the hard disk array is denoted by
HD ¼ fhd1; . . . ; hdj; . . . ; hdng. n is the number of disks. Let
bl denote the size of a block in megabyte and it is assumed
to be a constant in the system. A zone zi (zi 2 Z) is modeled
as a set of rational parameters, i.e., zi ¼ ðsi; ri; wiÞ, where si
is the zone’s size in terms of number of blocks, ri is the
zone’s read access rate (1/second), and wi is the zone’s
write access rate (1/second). Each hard disk’s transfer rate
is th (Mbyte/second). Its active energy consumption rate
and idle energy consumption rate are ph (Watts) and ih

(Watts), respectively. Similarly, each flash disk is modeled
as fdj¼ðrf ; wf ; pf ; ifÞ, where rf is its read rate (Mbyte/
second), wf is its write rate (Mbyte/second), pf is its read/
write power consumption rate (Watts), and if is its idle
energy consumption rate (Watts). Although flash disks

consume different amount of energy during different
operations and data write patterns, we adopted a constant
active energy consumption rate pf here because it can be
viewed as an average case. SK denotes average seeking
time of a hard disk and RT represents average rotation
latency of a hard disk. The time span of one epoch is
denoted by Te (second). Therefore, the mean service time of
a block of data in zone zi served by a hard disk is

msthi ¼ SK þRT þ
bl

th
: ð1Þ

If the block is served by a flash disk, mean service time is

mstfi ¼ ½ðriTe=siÞ � ðbl=rfÞ þ ðwiTe=siÞ
� ðbl=wfÞ�=½ðri þ wiÞTe=si�

¼ bl
�
ri
rf
þ wi
wf

��
ðri þ wiÞ;

ð2Þ

where riTe and wiTe are number of reads and writes in a
zone in one epoch, respectively.

Hence, the performance gain pgi in terms of mean service
time reduction ratio of zone zi is defined in (3):

pgi ¼ msthi =mst
f
i

¼
�
SK þRT þ bl

th

�
ðri þ wiÞ

�
bl

�
ri
rf
þ wi
wf

�
:
ð3Þ

For each read-write zone, we need to decide where to store
it. Thus, we need to calculate its energy gain egi in one
epoch in (4), where echi is the energy consumption of a block
in zone zi in one epoch if it is stored in the hard disk array,
and ecfi is the energy consumption of the block in zone zi in
one epoch if it is in the flash disk array:

egi ¼ echi =ec
f
i

¼
�
msthi � ph � ðriTe þ wiTeÞ=si

�
=�

mstfi � pf � ðriTe þ wiTeÞ=si
�

¼
�
msthi � ph

�
=
�
mstfi � pf

�
:

ð4Þ

The performance energy ratio of zone zi is defined as

peri ¼
egi � 1

1� pgi
: ð5Þ
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PER represents the performance energy ratio threshold

value set by administrator. Similarly, PDA is the perfor-

mance degradation allowed, which is also a constant value set

by administrator. The total number of write cycles of a flash
disk is a constant WC, which is assumed to be one million

in our simulation experiments. Besides, DY represents the

duration years of a flash disk and we set DY as 5 years in
Section 5. As a result, write cycles per second (WCPS) that

is allowed by a flash disk is defined in (6) as below:

WCPS ¼ ðWC=DY Þ=ð365 � 24 � 60 � 60Þ: ð6Þ

For instance, the value of WCPS in our simulations is
around 0.0063 (1/second). Therefore, the reliability loss rli
of zone zi if it is stored on the flash disk array can be

computed by

rli ¼
1 if wi �WCPS;
0; otherwise:

	
ð7Þ

The request set is R ¼ fr1; . . . ; rk; . . . ; rxg. Each request

is modeled as rk ¼ ðlbak; lenk; ak; tkÞ, where lbak is the
starting logical block address, lenk is the number of bytes

that is the request accesses, ak is the arrival time of request
rk, tk is the type of the request rk and it can be “r,” “w,”

“c,” and “d” representing “read,” “write,” “create,” and

“delete,” respectively.

4.3 Implementations

The PEARL strategy consists of five modules that coordi-

nate with each other via four data structures: popularity

and location table (PLT), data redistribution table (DRT),
free flash disk space array (FFS), and free hard disk space

array (FHS) (see Fig. 3).
At the beginning, all data are striped across the hard disk

array in some RAID fashion. Dynamically created files are

also distributed initially across the hard disk array. PEARL
first starts the DPI module, which creates PLT table for later

use. After the hybrid disk array begins to serve I/O

requests, PEARL launches the AM process to record each
zone’s popularity in terms of number of accesses within one

epoch in the PLT table (see Fig. 3). The PLT table, which
contains the latest popularity information of each zone and

its location (flash or hard), will be used later by the RTG
module (see Fig. 4) to generate the DRT table. A sample

table of PLT is given in Table 1.

For example, zone3 has 452 read accesses and 37 write

accesses during one epoch and its current location is on the

flash disk array. After labeling all popular zones, RTG

generates the DRT table, which lists all zones that need to be

reallocated between the hard disk array and the flash disk

array. Guided by the DRT table, the DRO module

reallocates all zones in the DRT table to their favorite
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TABLE 1
A Sample PLT Table



destinations. During the data redistribution process, DRO
consults to the DSM, which is responsible for managing
both disk space for hard disk array and flash disk array.
Based on the observations from real traces [28], normally
the popularity of a piece of data either gradually changes or
almost keeps constant. Therefore, it is feasible for PEARL to
use the most recent access statistics of a zone to predict its
next epoch data access pattern in a dynamic I/O workload
scenario. Obviously, data redistribution is achieved at the
cost of both performance degradation and extra energy
consumption. Fortunately, PEARL only needs to redistri-
bute a small portion of popular zones at the end of each
epoch due to the smooth changes in data access pattern.
Also, to reduce the overhead associated, PEARL confines
the time span of each epoch so that frequent data
reallocation can be avoided. Due to the space limit, we
only present the RTG module (see Fig. 4) and the DRO
module (see Fig. 5).

4.4 Complexity and Energy Overhead

In this section, we analyze the overhead of PEARL in terms
of space, time, and energy. While AM is always running in
hybrid disk array controller to dynamically update the PLT
table, RTG, DRO, and DSM are launched only at the end of
each epoch. First of all, the sizes of execution codes of all
modules in PEARL are small because of their simple logic.
Consequently, they only consume a very small portion of
controller cache, which is normally in gigabyte scale.
Second, the only extra memory required by PEARL is two
tables and two arrays: PLT, DRT, FFS, FHS (see Fig. 3).
Among the four data structures, PLT is the largest one.
However, on average, each record in the PLT (see Table 1)
only possesses 6 bytes. Thus, for a zone set with 10,000 zones,
the PLT table only uses 600 KB cache memory, which is
acceptable in modern storage systems. Although the AM
module is running all the time in the controller cache, its
runtime overhead is trivial. Note that each step in AM only
takes Oð1Þ time to accomplish and the PLT table is only
around 600 KB. Based on a typical I/O workload condition
where 92.5 percent I/O requests are read/write, 5 percent
are creation, and 2.5 percent are deletion [32], executing the
loop in AM in one epoch (1,000 seconds) when the aggregate
access rate is 100/second using a modern 3 GHz processor

with 5 cycles per instruction only requires around
0.308 milliseconds. We also analyzed the time costs of other
modules and found that they are also trivial.

PEARL has to pay extra data reallocation time and
energy consumption caused by data redistribution at the
end of each epoch. In the worst case of our trace-driven
simulations when using the Financial2 trace [30], we
observed that when each flash disk capacity is 4 GB, the
total number of disks in each array is 6, and the length of an
epoch is 1,000 seconds, the total size of data that swap
between the hard disk array and the flash disk array is
40 MB. Hence, the file redistribution time in each epoch is
around 2.06 seconds and the energy overhead caused by the
file reallocation is only around 22.34 joules.

5 PERFORMANCE EVALUATION

This section presents results of a comprehensive experi-
mental study comparing the proposed PEARL strategy with
the PB-PDC algorithm. To the best of our knowledge, PB-
PDC is the only existing data placement algorithm, which
also employs the joint advantages of a hard disk and a flash
memory device [18]. In this section, we first outline the
experimental setup including performance metrics, system
parameters, and real-life traces that we used. Next, we
analyze experimental results from our simulator HITSim in
Sections 5.2 and 5.3. Finally, we discuss simulation results
from a validated disk storage system simulator DiskSim 4.0
[5] in Section 5.4.

5.1 Experimental Setup

In addition to using the DiskSim 4.0 simulator [5] in
Section 5.4, we also developed a trace-driven simulator
HITSim that models a hybrid disk array, which has one
hard disk array and one flash disk array. The reason is
that it is impossible for us to examine the impacts of some
critical parameters like number of epochs using DiskSim.
While experimental results in Section 5.4 are generated
from DiskSim 4.0 [5], results presented in Sections 5.2 and
5.3 come from our own simulator HITSim. Note that some
preliminary results of Section 5.4 were presented in [35].
For hard disk, HITSim uses the parameters of the Seagate
Cheetah 15K.4 73.4 GB [9]. For flash disk, it adopts the
specifications of the Adtron A25FB-20 Flashpak with
capacity varying from 4 GB (default value) to 32 GB
[31]. The main characteristics of the hard disk and the
flash disk used by HITSim are shown in Table 2.

The number of flash disks is always equal to the number
of hard disks and it varies in the range (6, 8, 10, 12, 14, 16)
with 8 as the default value. The default length of an epoch is
set to 1,000 seconds. The block size bl is set to 512 bytes. The
default zone size is 10 Mbytes. The performance metrics are
as follows:

. Mean response time: average response time of all file
access requests submitted to the hybrid disk array.

. Energy consumption: energy consumed by the hybrid
disk array during the process of serving all requests.

. Write cycles per block: the number of writes per block
on a flash disk during one day.

We evaluate the PEARL and the PB-PDC algorithms by
running trace-driven simulations over three real-life traces:
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Financial 1, Financial 2, and WebSearch1, which have been
widely used in the literature [30]. Financial1 and Financial2
were collected from requests to OLTP applications at two
large financial institutions. WebSearch1 is an I/O trace from
a popular search engine [30]. Since the simulation times in
our experiments are much shorter compared with the time
spans of the traces, we truncate each trace such that only the
first 500,000 I/O requests are included. The statistics of each
trace are listed in Table 3.

The impacts of four important parameters including
number of disks, flash disk capacity, zone size, and number
of epochs are examined in this simulation study using the
three real-world traces. Besides, we also investigated the
effects of access pattern changing rate by using synthetic
traces in Section 5.3.

5.2 Impact of the Length of an Epoch

In this section, we examine the impact of the length of an
epoch on performance, energy consumption, and flash disk
reliability. Obviously, a shorter length of an epoch leads to a

more frequent data reallocation, which is able to promptly
adapt to the changing workload conditions. However,
frequent data reallocation could incur a higher overhead in
terms of CPU time, data transfer time, and energy consump-
tion. Tardy data reallocation, on the other hand, results in
lower overhead but cannot react to the changing access
pattern in time, and thus, could generate a poor performance.
Therefore, by tuning the length of an epoch, a good trade-off
between the gain and the cost of dynamic data reallocation
can be realized. In this group of experiments, we divide the
length of each trace evenly into 2, 4, 6, 8, 10, and 12 epochs.

For Financial l trace (see Fig. 6), the optimal number of
epochs is 6, which is equivalent to 893.2 seconds per epoch
(see Table 3). Further increasing the number of epochs will
only incur more energy consumption without any addi-
tional performance gain. For Financial 2 trace, the optimal
value of the number of epochs is 2, or 1,975 seconds per
epoch (see Fig. 6). The apparent difference in optimal
number of epochs between Financial 1 and Financial 2
demonstrates that the workload pattern of Financial 1 is
much more dynamic than that of Financial 2. Note that
PEARL outperforms PB-PDC in both performance and
energy consumption in all cases for Financial 1 and
Financial 2 traces (see Fig. 7). The WebSearch 1 trace
exhibits a similar behavior as the Financial 2 trace, which
indicates that it has a stable access pattern. Further, PEARL
ties with PB-PDC in mean response time and energy
consumption when using the WebSearch 1 trace. This is
because the I/O requests in WebSearch 1 trace are almost
read-only as 99.98 percent requests are read requests.
Consequently, PEARL degrades itself to PB-PDC for it
allocates the same data sets onto flash disks. We also
measured the impact of number of epochs on flash disk
reliability in terms of write cycles caused by PEARL. More
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TABLE 3
Statistics of the Three Traces

Fig. 6. Performance impact of number of epochs.

TABLE 2
Disk Parameters

Fig. 7. Energy impact of number of epochs.



precisely, we monitored the maximum (MAX), mean
(MEAN), and standard deviation (STD) of write cycles per
block per day in Fig. 8. As we can see that the maximal write
cycles per block per day of Financial 1 trace is below 25,
which implies that the side effect of PEARL on flash disk
reliability is rather trivial.

5.3 Experimental Results from Synthetic Workload

The advantage of use synthetic simulations is that the
impacts of major workload parameters on the performance
of data reallocation algorithms can be examined. In this
section, we study the impacts of three major workload
parameters including aggregate access rate, request size,
and read/write ratio on both PEARL and PB-PDC.
Aggregate access rate is defined as the average number of
I/O requests arrived in a hybrid disk array per second.
Request size is the mean size of requests in KB. Read/write
ratio is the ratio between the number of read requests and
the number of write requests.

Apparently, a higher aggregate access rate indicates a
heavier workload condition. Thus, when the aggregate

access rate increases, the mean response time and energy
consumption of both PEARL and PB-PDC enlarge. How-
ever, PEARL only slightly increases its mean response time
(see Fig. 9a). This is because the flash disks used by PEARL
can share most of the increased workload, and thus, largely
relieve the burden on hard disks. On the contrary, PB-PDC
cannot fully take advantage of flash disks as it only allocates
read-only data onto flash disks. As a consequence, heavy
access rate dramatically degrades its performance.
Although both algorithms consume more energy when
the aggregate access rate increases, the energy gap between
PEARL and PB-PDC becomes wider (see Fig. 9b). This
observation implies that compared with PB-PDC, PEARL
can save more energy when the aggregate access rate
increases. The rationale behind is that the more requests
flash disks can serve, the more energy PEARL can save.
Very interestingly, when the workload is extremely light
(i.e., 50 requests per second, see Fig. 9b), PEARL even
consumes a little more energy than PB-PDC does. This is
because the saved energy due to serving part of requests on
flash disks cannot compensate the energy cost of reallocat-
ing data between the hard disk array and the flash disk
array. Clearly, flash disk write cycles per block each day of
PEARL boost with an increasing aggregate access rate (see
Fig. 9c). However, the maximal write cycles per block per
day for PEARL in Fig. 9c is smaller than 544, the threshold
value of write cycles for a flash disk with one million write
cycles and 5 years warranty. In other words, the impact of
PEARL on flash disk reliability can be safely ignored.

Next, we examine the impact of average request size in
Fig. 10. It’s well understood that the mean response time
increases with an enlarged average request size as disks
need more time to serve each request (see Fig. 10a). Since
the access latency, seek time plus rotation latency, is a
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dominant part in the response time of a small request
visiting a hard disk, the mean response time of both PEARL
and PB-PDC only increases gently when the request size is
prolonged (see Fig. 10a). Since average request serving time
is enlarged, energy consumption of the two algorithms
increases as well (see Fig. 10b). Still, PEARL consumes less
energy than PB-PDC does.

Finally, we investigate the impact of read/write ratio on
performance, energy, and flash disk reliability. We observed
in Fig. 11a that mean response time of both algorithms
increases as read/write ratio decreases. This is because
serving write requests takes more time than completing read
requests. It is worth noting that PB-PDC incurs a high
energy overhead when read/write ratio is 90:10 percent (see
Fig. 11b). The reason is that extremely low write request
percentage leads to a scenario where some hard disks even
do not have opportunities to serve write requests. Although
these hard disks are idle and don’t contribute to serving
arrived requests, they still consume energy. When the write
request percentage increases, the energy consumption
increases as well because write requests consume more
energy than read requests do. Again, the reliability impact of
PEARL on flash disk can be safely ignored (see Fig. 11c).

5.4 Experimental Results from DiskSim

In this section, we investigate the impacts of three most
important parameters (i.e., flash disk capacity, flash disk
number, and zone size) by using a well-recognized and
validated disk storage simulator DiskSim 4.0 from the
CMU Parallel Data Lab [5]. DiskSim 4.0 emulates a
hierarchy of storage components including buses, RAID
array controllers, and hard disks [5]. All simulations in this
section ran on an Intel Celeron 1.60 GHz 1 GB memory
desktop with 32-bit SLES 10 (SUSE Linux Enterprise Server
Version 10). Since DiskSim simulator does not provide
Solid State Disk (SSD) model, we implemented a flash disk
module derived from an existing rotating-based hard disk
module, a workaround solution also adopted by Agrawal
et al. [2]. Since flash disk has no seek time, we configured
the two seek-time-related parameters as zero in Table 4.
While the Quantum_Torando disk module was used for
hard disks, a modified IBM DNES-309170W disk was used
to emulate a flash disk (see Table 4). Considering that flash
disk has a relatively poor data transfer rate, we choose a
low-speed hard disk IBM DNES-309170W to approximate
a flash disk. Since DiskSim does not measure energy
consumed by each disk, we derived energy consumption
for PEARL and PB-PDC from each disk’s idle time and

active time as well as disk active energy consumption rate
and disk idle energy consumption rate.

In the first group of DiskSim simulations, we used nine
hard disks and nine emulated flash disks. The capacity of
the emulated flash disk was increased from 4 to 32 GB (see
Fig. 12). When the flash disk capacity increases from 4 to
8 GB, the performance improvement of PEARL is also
enlarged. This is because the flash disk array can
accommodate more data, and thus, serve more requests
when a larger size of flash disk is available. However, the
performance gap between PEARL and PB-PDC narrows
when the capacity of flash disk is further escalated (see
Fig. 12a). The reason is that the extremely heavy workload
on the flash disk array leads to a noticeable accumulated
request service delay. As a result, the performance of
PEARL is largely degraded. In all cases, PEARL consumes
less energy than PB-PDC does (see Fig. 12b). Two
important observations can be obtained from Fig. 12. First,
small-capacity flash disks can significantly improve per-
formance. Second, further increasing flash disk capacity is
not helpful for performance improvement. As we can see
that when flash disk capacity is 32 GB, PEARL is even
worse than PB-PDC in mean response time. This scenario
occurs because majority of popular data are allocated onto
the flash disk array, which results in an extremely
imbalanced workload distribution between the flash disk
array and the hard disk array. The results of the
WebSearch 1 trace in Fig. 12 verify the results in Figs. 6
and 7 in that PEARL is almost equivalent to PB-PDC when
read-dominant traces are used.

In the second group of DiskSim simulations, we studied
the impact of flash disk number on performance and energy
consumption. The flash disk number was changed from 6 to
16 while the total capacity of the flash disk array is locked.
Clearly, PEARL quickly improves its performance when the
flash disk number is increased from 6 to 10 (see Fig. 13a). This
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is because more flash disks can serve requests in parallel,
which leads to a better performance. Again, further increas-
ing flash disk number does not help as flash disk’s poor write
performance starts to negatively affect performance.

In the last group of DiskSim simulations, we tested the
effect of zone size on performance and energy for the PEARL
strategy. Fig. 14 shows that generally a larger zone size causes
a worse performance for PEARL. The reason behind is that
small zone size enables PEARL to accurately identify popular
and unpopular data areas. As the zone size gets larger, the
data reallocation cost is also increased. Even worse, some
unpopular data are also unnecessarily transferred between
the flash disk array and the hard disk array. Thus, the
performance of PEARL lowers down. For WebSearch1 trace,
this trend is not obvious for its request distribute is more even.

6 CONCLUSIONS

Dynamic data allocation and reallocation (redistribution)
problem has been largely investigated in the past years [3],
[20], [29], [32], [33], [34]. The only goal for conventional

algorithms such as Hybrid Partition (HP) [20], Cool Vanilla
(C-V) [32], and Simple Heat Balancing (HB) [32] is to
improve performance in terms of mean response time.
Nowadays, however, energy consumption becomes a severe
concern in data-intensive applications like OLTP. Thus,
modern dynamic data allocation and redistribution strate-
gies need to be both performance driven and energy aware.
Unfortunately, traditional pure hard-disk-based disk arrays
leave little room for researchers to amend current algorithms
to be energy efficient. Therefore, a new energy-efficient disk
storage system is greatly needed. To this purpose, we
propose a hybrid disk array architecture named HIT, which
combines the complementary merits of hard disks and flash
disks. More importantly, PEARL, a novel dynamic data
redistribution strategy built on top of HIT, is developed and
evaluated. PEARL noticeably improves performance and
reduces energy consumption while maintaining flash disk
reliability by limiting write cycles far below the threshold
value. Comprehensive simulation experiments using syn-
thetic workloads, real-world traces, and a validated disk
simulator demonstrate that PEARL consistently outperforms

1340 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21, NO. 9, SEPTEMBER 2010

Fig. 14. Impact of zone size.

Fig. 13. Impact of number of flash disks.

Fig. 12. Impact of flash disk capacity.



an existing dynamic file assignment algorithm PB-PDC,
which also employs a flash drive and a hard disk.

We will extend our scheme by considering a dramatically
dynamic environment, where data access patterns may
suddenly change. As a result, a high data redistribution cost
may arise as the number of data zone migrations increases
substantially. One possible solution is to use data replication
technique. Also, we plan to investigate how to obtain an
optimal epoch length for a particular workload automati-
cally so that system performance can be further improved
due to a prompt response to the changing workload.
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