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A Mirroring-Assisted Channel-RAID5 SSD

for Mobile Applications

WEN PAN and TAO XIE, San Diego State University

Simply applying an existing redundant array of independent disks (RAID) technique to enhance data re-

liability within a single solid-state drive for safety-critical mobile applications significantly degrades per-

formance. In this article, we first propose a new RAID5 architecture called channel-RAID5 with mirroring

(CR5M) to alleviate the performance degradation problem. Next, an associated data reconstruction strategy

called mirroring-assisted channel-level reconstruction (MCR) is developed to further shrink the window of

vulnerability. Experimental results demonstrate that compared with channel-RAID5 (CR5), CR5M improves

performance up to 40.2%. Compared with disk-oriented reconstruction, a traditional data reconstruction

scheme, MCR on average improves data recovery speed by 7.5% while delivering a similar performance during

reconstruction.

CCS Concepts: • Computer systems organization → Reliability; Redundancy;

Additional Key Words and Phrases: NAND flash, SSD, RAID, data reconstruction

ACM Reference format:

Wen Pan and Tao Xie. 2018. A Mirroring-Assisted Channel-RAID5 SSD for Mobile Applications. ACM Trans.

Embed. Comput. Syst. 17, 4, Article 75 (July 2018), 27 pages.

https://doi.org/10.1145/3209625

1 INTRODUCTION

Safety-critical mobile applications are mobile applications whose failures could result in loss of
life, significant damage to property or the environment, or serious detriment to national security.
Typical examples of such applications include remote robotic surgery [32], aircraft flight control
[16], wireless healthcare [35], and mobile emergency datacenter for disaster recovery [38]. These
applications normally demand a high-performance, highly reliable, and energy-efficient storage
system. Take remote robotic surgery, for example. Since in around two-thirds of fatal battlefield
injuries death comes within 30min, medical response time in the battlefield is life-critical [32].
Remote robotic surgery would allow a military doctor, stationed in safe distance from the front
line, to perform operations through a remote-controlled robot that carries out tasks such as cut-
ting and dissecting for a wounded soldier [32]. During a surgery, high-resolution images taken
from a wounded soldier by remote video cameras must be reliably stored into and then quickly
accessed from a storage system. Obviously, data corruption or loss is prohibited as it could notice-
ably affect the quality of surgery. Also, the storage system needs to be energy-efficient as the entire
system only has a limited power supply provided by a gasoline generator [32]. Another example
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is wireless healthcare, which is the practice of medicine and public health supported by a number
of wireless technologies and mobile devices [35]. It utilizes mobile communication devices (e.g.,
mobile phones) for collecting community and clinical health data, delivery of healthcare informa-
tion to patients, real-time monitoring of patient vital signs, and direct provision of care [35]. Thus,
a reliable storage system is essential for a wireless healthcare system where life-critical personal
health data is collected, stored, and analyzed on a daily basis.

Since NAND flash memory–based solid-state drive (SSD) possesses some features such as high
shock/temperature resistance and low energy consumption desirable for a portable environment,
it becomes an increasingly popular storage device for safety-critical mobile applications. Besides,
it can deliver a higher throughput than a hard-disk drive (HDD). Unfortunately, the reliability of
flash memory is declining [6]. This is mainly because manufacturers are aggressively pushing flash
memory into smaller geometries and each memory cell has to store more bits to increase capacity
and lower cost [6]. As a result, the rate of increasing bit errors might exceed the capacity of ECC
schemes [20], which leads to the occurrences of uncorrectable errors. In fact, a recent large-scale
flash reliability field study [34] covering many millions of drive days in Google’s data centers
disclosed that comparing with traditional HDDs, SSDs have a higher rate of uncorrectable errors.
The study showed that 26% to 60% of SSDs at least experienced one uncorrectable error during
their first four years in the field. Also, it found that around 2% to 7% of SSDs developed failed chips
(i.e., a chip with more than 5% bad blocks) during the first four years of their life [34]. Similarly, to
understand failure properties and trends of SSDs, another research group analyzed data collected
across a majority of SSDs at Facebook data centers over nearly four years and many millions of
operational hours [25]. They discovered that the yearly rates of uncorrectable errors on the SSDs
range from 15,128 for Platform D to 978,806 for Platform B with each platform having two SSDs
[25]. Considering that a mobile environment is normally far more severe than a data center, it is
safe to conjecture that the uncorretable error rate of an SSD in a mobile application could be even
higher.

A natural solution to the data loss problem caused by uncorrectable errors is to employ a higher
level data redundancy mechanism [34]. With the mechanism in place, when an SSD is not able to
deliver a piece of data that it has previously stored, a data reconstruction process is launched
to restore the data based on its associated redundant data [9]. One obvious way to provide a
higher level data redundancy is to build an SSD array using an amended version of an exist-
ing redundant array of independent disks (RAID) technique (e.g., RAID4 or RAID5), which was
originally designed for an HDD array [5, 12, 19, 29, 30]. However, although an SSD array might
be appropriate for a mobile emergency datacenter built on a 25-foot self-contained truck [38],
it is impractical for most safety-critical mobile applications like wireless healthcare [35], where
the space and energy budget for a storage system are very limited. In these scenarios, a data re-
dundancy mechanism within a single SSD is greatly needed [14, 18, 22, 42]. Fortunately, the in-
ternal multi-level parallelism and independent failure modes of individual flash chips provide us
with a unique opportunity to apply a RAID-like data redundancy mechanism within a single SSD
[10].

However, simply transplanting an existing RAID technique into the internal structure of an SSD
causes some problems [42]. First, a study found that a channel-level RAID5 architecture signifi-
cantly degrades performance when it serves small random write/update-dominant workloads [42].
The reason behind this is that for each update request, RAID5 has to perform extra read and write
operations to renew its associated parity data [42]. Second, another investigation on a chip-level
RAID5 structure unearthed that the extra write operations lead to more erases, which quickly
consume the program/erase (P/E) cycles of an SSD [14]. Consequently, the reliability level and
lifetime of an SSD were both reduced [14]. Finally, an unrecoverable data loss could occur when
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a RAID5-structured SSD is undergoing a data reconstruction process. When a flash chip fails, a
data reconstruction process is immediately launched to recover its data onto a new replacement
chip. The time length of a data reconstruction process is also called window of vulnerability, for a
subsequent chip failure within the time window can lead to an unrecoverable data loss [44]. Since
RAID5 evenly distributes user write requests and internal parity-updating requests across all the
chips, chips wear out at a similar rate. There is a possibility that a second chip could fail before an
on-going data reconstruction process is over [25]. Unfortunately, a data reconstruction process of
a traditional RAID5 architecture is usually lengthy. For example, the time to rebuild a single HDD
can be on the order of several hours or even longer [33]. A larger size of window of vulnerability
implies a higher probability of an unrecoverable data loss.

To alleviate the performance and endurance degradation problems as well as to minimize the
window of vulnerability to enhance data reliability, in this article we first propose a mirroring-
assisted channel-level RAID5 architecture called channel-RAID5 with mirroring (CR5M) for a sin-
gle SSD employed in a safety-critical mobile application. Next, a new data reconstruction strategy
called mirroring-assisted channel-level reconstruction (MCR) is developed to further accerlate data
recovery speed. In a CR5M architecture, each channel is treated as an independent disk and it may
have one or multiple chips attached. Multiple channels of an SSD are organized in a RAID5-like
manner. In addition, a user-transparent mirroring chip is attached to each channel (see Figure 3).
When a small write/update request arrives, it is dispatched to its destination channel. And then, it
is concurrently written onto a particular data chip and the mirroring chip without updating its as-
sociated parity data. Clearly, the newly written data is protected by mirroring, whereas other data
blocks in the same stripe are still protected by the present parity. The benefit of using a mirroring
chip per channel is threefold: First, the overall performance can be boosted by postponing parity
updating caused by small random writes/updates. Our experimental results show that compared
with CR5 (channel-RAID5), a standard channel-level RAID5 organization, CR5M can improve per-
formance by up to 40.3%. Second, the wear-out problem can be mitigated by postponing parity
updating, which decreases the number of parity writes. Last but not least, data on the mirroring
chips can help speedup data reconstrction through two aspects: These data do not need to be re-
constructed and they can still serve partial user requests during data reconstruction. To prevent a
mirroring chip from becoming a new performance and reliability bottleneck, a mirroring chip pro-
tection mechanism is proposed to limit its number of writes. To shrink the window of vulnerability,
MCR utilizes the mirroring data to accelerate a data reconstruction process. Although the idea of
MCR is straightforward, our experimental results demonstrate that it is effective. To evaluate the
performance of CR5M and its associated data reconstruction strategy MCR, we largely extend a
validated SSD simulator called SSDsim [10], so that it can support CR5, CR5M, disk-oriented re-
construction (DOR) [8], and MCR. CR5M and MCR collaborate with a page-mapping FTL provided
by SSDsim [10]. Experimental results from real-world traces show that CR5M outperforms CR5
on average by 19.8% in terms of mean response time. Also, compared with DOR on average MCR
improves data recovery speed by 7.5% while delivering a similar performance during recovery.
This article is a substantial extension of our preliminary study presented at Reference [42]. The
rest of this article is organized as follows. In Section 2, we discuss the related work and motivation.
The design and implementation details of CR5M and MCR are provided in Section 3. In Section 4,
we evaluate the performance of CR5M and MCR. Section 5 concludes this article with a brief sum-
mary.

2 RELATED WORK AND MOTIVATION

In this section, we first introduce existing data redundancy techniques. Next, traditional data re-
construction schemes are briefly summarized. Finally, we provide the motivation of this research.
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2.1 Existing RAID Techniques

Much effort was devoted decades ago to enhancing the performance of a standard RAID archi-
tecture (e.g., RAID-5) for HDD arrays. A representative work is log-structured arrays (LSA) [24],
which is inspired by the log-structured file system. It leverages non-volatile cache to largely de-
lay parity updating so that it is more efficient than a conventional RAID-5 organization. Since
SSD is replacing HDD in different computing platforms ranging from laptops, personal comput-
ers, servers, to supercomputers, various new techniques dedicated for RAID-structured SSDs have
been proposed recently. Generally, they targeted two different levels: an SSD array [29, 30, 41, 43]
and a single SSD [5, 12, 14, 18, 19, 22, 42].

Similar to an HDD array, an SSD array can largely boost performance and data reliability. How-
ever, due to SSD’s unique needs, extra care must be taken to improve data reliability and perfor-
mance. Since flash memory write speed is much slower than its read speed and parity updatings
require extra flash memory accesses, most existing RAID techiques for SSD arrays focus on re-
ducing write and parity updating costs. For example, Park et al., Wu et al., and Pan et al. each
developed a new SSD RAID architecture [29, 43]. Park et al. proposed a heterogeneous RAID4,
which utilizes an HDD to serve as the parity disk for a RAID4 SSD array [30]. Wu et al. also used
HDDs to improve the performance and reliability of an SSD array, but in a different way. Their
LDM (log disk mirroring) scheme employs two HDDs, which are mirrored as a write buffer that
temporally absorbs small write requests [43]. Focusing on a pure SSD array, Pan et al. developed
the SPD-RAID4 (splitting parity disk-RAID4) technique where two small-capacity SSDs both serve
as the parity disks [29]. We compared the performance of a preliminary version of CR5M with CR1
(channel-RAID1) and CR4 (channel-RAID4) in [42]. We found that CR4 always performs the worst
among the three RAID formats (i.e., CR1, CR4, and CR5), because its dedicated parity channel be-
comes a performance bottleneck [42]. In addition, RAID4 is seldom employed in a real-world disk
array. Therefore, we ignored CR4 in this article. As for CR1, we found that it always outperformed
CR5 and CR5M, because it does not need to maintain any parity updates. However, CR1 is imprac-
tical as it has to shrink the user-visible capacity of a flash SSD by 50%. Thus, we concentrated on
comparing CR5M with CR5 in this research.

Since a multi-SSD RAID array is impractical for many safety-critical mobile applications where
only one SSD can be deployed, a single SSD with data redundancy protection is greatly needed.
Fortunately, the internal structure of an SSD offers parallelism at multiple levels (e.g., channel-
level and chip-level) [10], which makes building a RAID-like structure within an SSD possible.
Current RAID techniques for a single SSD are mainly applied at either chip-level [5, 12, 14, 18] or
channel-level [19, 22, 42]. Lee et al. proposed a new chip-level RAID scheme, which can dynami-
cally change the size of striping groups to cope with the increasing bit error rates [18]. Kim et al.
developed eSAP (elastic striping and anywhere parity)-RAID, a RAID scheme that allows flexible
stripe sizes and parity placement [14]. Im and Shin used delayed parity updating and partial par-
ity caching techniques to reduce the number of write operations for parity updatings [12]. Their
parity caching technique also reduces the number of read operations caused by calculating a new
parity. Instead of simply applying a RAID technique to a set of flash devices, Greenan et al. pro-
posed a RAID4-like SSD architecture where FTL is moved from individual devices into the host
[5]. Also, writes are managed in a log-structured manner to avoid read-modify-write. Similar to
Reference [12], Reference [5] used an non-volatile RAM (NVRAM) to hold the parity temporarily
to prevent frequent parity updatings for write requests. MacFadden et al., however, developed a
channel-level RAID1 (i.e., mirroring) architecture called SIRF-1 (single internally redundant flash)
where data are mirrored across SSD channels so that read performance and data reliability are
both improved [22]. The FRA scheme also uses a delayed parity updating scheme [19]. However,

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 4, Article 75. Publication date: July 2018.



A Mirroring-Assisted Channel-RAID5 SSD for Mobile Applications 75:5

it does not rely on cache to store the parity data. Instead, the parity updates are sent into a parity
generation queue. Only when there appears to be an idle period, FRA pops the first parity update
in the parity generation queue. The parity is then calculated and written into the flash storage at
idle time. To reap the benefits of data redundancy while avoiding its side-effects on performance
and longevity, a preliminary version of CR5M was developed in Reference [42] without a data
reconstruction strategy.

2.2 Existing Data Reconstruction Approaches

None of existing SSD RAID techniques [14, 15, 18, 22, 41, 42] attempted to address the data re-
construction problem in case of a device (e.g., an SSD or a chip of an SSD) failure. After all, one
of the major purposes of a RAID technique is to quickly recover the data of a failed device onto a
replacement device [8]. To the best of our knowledge, the only work on SSD data reconstruction
reported in the literature is Reference [21]. Thus, existing SSD RAID techniques still largely rely
on traditional HDD-oriented data reconstruction strategies, which are summarized below.

Generally, traditional data reconstruction strategies can be divided into two categories. Strate-
gies in the first category mainly focus on optimizing the workflow of reconstruction [8, 9, 39,
44]. Typical examples are stripe-oriented reconstruction (SOR) and disk-oriented reconstruction
(DOR) [8, 9]. SOR uses low-priority requests to rebuild data to minimize the impact of recon-
struction on user response times, whereas DOR aggressively absorbs all spare bandwidth for data
reconstruction [8, 9]. The basic difference between the two strategies is that SOR creates a set of
reconstruction processes associated with stripes while DOR generates a group of processes with
each corresponding to one disk. Compared with SOR [9], DOR always results in a shorter data
reconstruction time. Since shrinking data reconstruction time is the highest priority for a safety-
critical mobile application, we choose DOR as a baseline algorithm in our evaluation of MCR.
Popularity-based Reconstruction Optimization (PRO) [39] and MultIlevel Caching-based Recon-
struction Optimization (MICRO) [44] are two reconstruction optimization schemes. They are not
a stand-alone reconstruction approach like DOR. However, they can be incorporated into most
existing reconstruction approaches to boost their performance. Both PRO and MICRO have been
integrated into DOR [39, 44]. PRO is an algorithm to optimize an existing reconstruction approach
by rebuilding highly popular data units of a failed disk prior to rebuilding other units [39]. How-
ever, MICRO [44] collaboratively utilizes storage cache and disk array controller cache to diminish
the number of physical disk accesses caused by data reconstruction.

Data layouts like RAID5 significantly degrade performance due to a 100 percent workload in-
crease for each surviving disk during reconstruction [8]. To solve this problem, data reconstruction
algorithms in the second category concentrate on optimizing the data layout of an HDD array. For
example, Muntz and Lui suggested a data placement scheme called declustering, which substan-
tially improves performance [27]. Along the same line, Alvarez et al. further developed two data
layout algorithms, PRIME and PELPR [1]. Wan et al. proposed s2-RAID, which divides each disk
into multiple logic disk partitions so that data reconstruction can be done in parallel [40]. Liu et al.
proposed PDB (popular data backup), a data reconstruction algorithm for a RAID4 SSD array.

2.3 Motivation

The reliability of flash memory is declining due to aggressive scaling of the device dimension and
the multilevel-cell technologies [6]. Thus, a data redundancy mechanism within a single SSD is
greatly needed to prevent data loss, which is prohibited by a safe-critical mobile application. Based
on our prior investigations [29, 42], we found that simply transplanting an existing data redun-
dancy mechanism like RAID5 into the internal structure of an SSD does not work as it overlooks
the unique features of flash memory such as wear-out and out-of-place updates. The great need
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Fig. 1. The impact of the number of chips per channel on performance.

of a data redundancy mechanism suitable for a single SSD as well as the insights from our own
studies [22, 29, 41, 42] and other researchers’ work [3, 14, 15, 18, 30] motivate us to develop a new
RAID technique that can not only improve performance and endurance but also facilitate data
reconstruction.

There are four levels of parallelism in an SSD: channel-level, chip-level, die-level, and plane-
level. Hu et al. discovered that the optimal priority order of parallelisms in an SSD should be the
channel-level parallelism first and the chip-level parallelism last [10]. In other words, channel-level
parallelism has the most significant impact on performance, whereas chip-level parallelism only
minimally influences the performance of an SSD. There are two implications of their finding. First,
a new RAID architecture like CR5M should be developed at the channel-level, which can offer
the highest level of parallelism within an SSD. Second, reducing the number of chips per channel
by one would not noticeably degrade SSD performance. To verify this implication, we conduct a
group of experiments on an SSDsim-simulated 4-channel CR5-structured SSD. The experimental
results are shown in Figure 1. The details of the simulator, the traces, and configurations can be
found in Section 4. We change the number of chips per channel from four (i.e., 4 chip) to eight
(i.e., 8 chip). Our experimental results demonstrate that after the number of chips per channel
reaches four (e.g., Fin2, Radius, ATTO) or five (e.g., Build and Exchange) further increasing it does
not improve performance. The finding from Reference [10] and our investigation results shown
in Figure 1 inspire us to use one of chips per channel as a dedicated mirroring chip so that the
number of parity updates can be diminished. Turning one chip per channel into a user-transparent
mirroring chip does reduce user-visible SSD capacity and chip-level parallelism. Fortunately, its
impact on performance is minor considering that modern SSDs usually have more than four chips
per channel [13, 14] and their capacities are normally in the range of hundreds of GBs [26].

3 DESIGN AND IMPLEMENTATION

In this section, we first present design and implementation details of CR5M, a new channel-level
RAID5 technique for a single SSD. Next, we describe how MCR, a data reconstruction strategy
based on CR5M, is developed.

3.1 The CR5M Architecture

We first briefly introduce how a standard RAID5 mechanism updates parity data and why parity
updating hurts the performance and endurance of an SSD. Next, we present the architecture of
CR5M followed by its design and implementation details.

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 4, Article 75. Publication date: July 2018.



A Mirroring-Assisted Channel-RAID5 SSD for Mobile Applications 75:7

3.1.1 CR5 (Channel-Level RAID5) Basics. An SSD consists of two major components: an SSD
controller and a flash memory part. The SSD controller manages the flash memory through a
software layer called FTL (flash translation layer), which provides an interface to a host computer.
The main functions of an FTL include address mapping, wear-leveling, and garbage collection
[15]. The flash memory part is organized as a multi-level hierarchical structure, which has several
channels (see Figure 3). Multiple chips are attached to each channel and each chip consists of a
couple of dies. A die is composed of several planes with each of them having thousands of blocks.
Typically, a block has 64 or 128 pages and the size of each page ranges from 2 to 16KB [42]. While a
read/write operation executes on a page granularity, an erase operation can only be carried out on
a block. The parallelisms of an SSD can be classified into four levels: channel-level, chip-level, die-
level, and plane-level [10]. Although in theory a RAID-like architecture can be built at any of these
four levels, existing RAID techniques only target either chip-level [14, 18] or channel-level [22, 42].
Since a flash memory chip is the smallest replaceable unit, Lee et al. and Kim et al. proposed RAID
techniques at the chip-level [14, 18]. However, we decided to select the channel-level, because a
channel can act more like an independent disk, which makes building an array easier. Besides,
channel-level parallelism can provide the most concurrency [10]. In fact, an investigation on SSD
internal multi-level parallelism discovers that the channel-level parallelism should be given the
first priority as increasing the number of channels results in the largest performance improvements
[10]. Modern SSDs normally have at least four channels with each having multiple chips [17, 26,
31]. For example, a Micron M500IT mSATA SSD has eight channels and each channel has five chips
[26].

The proposed CR5M architecture is essentially an enhanced version of a standard RAID5 struc-
ture, which is one of the most widely used RAID formats in real production. Before we present
the design of CR5M, we first briefly introduce how a standard RAID5 mechanism updates parity
data and why parity updating hurts the performance and endurance of an SSD. Most RAID for-
mats (e.g., RAID5) are designed to provide increased performance by distributing (or striping) data
across a set of physical drives in a disk array. Each X bytes of data, which is called a strip, is placed
on a different drive in the array on a rotating basis. A stripe is one complete row of strips across
all physical drives in an array. In a channel-level RAID5 (i.e., CR5) SSD with n channels, a stripe
consists of n-1 data strips and 1 parity strip. The n strips are evenly distributed across the n chan-
nels. The size of a strip (i.e., strip size) is normally set equal to the size of one flash memory page
for convenience. The stripe width is the number of data strips in a stripe. The stripe size is equal
to the product of strip size and stripe width. For example, a stripe shown in Figure 2(a) consists
of five data strips (i.e., D1, D2, D3, D4, D5) and one parity strip (i.e., P1). The six strips are evenly
distributed across the six channels and each channel is treated as an independent disk. The value
of P1 is equal to D1 ⊕ D2 ⊕ D3 ⊕ D4 ⊕ D5. User write requests can be divided into two groups based
on their sizes: full-stripe writes and partial-stripe writes. A full-stripe write is going to update all
data strips within a stripe, whereas a partial-stripe write only modifies part of the data strips in a
stripe. Obviously, a full-stripe write incurs the least overhead of parity updating as the new parity
strip can be directly computed without the need of any pre-reading. In contrast, a partial-stripe
write like the one shown in Figure 2(a) only modifies part of the data strips in a stripe. In this case, a
new parity strip needs to be calculated, which requires a number of pre-reading operations. There
are two common methods to do so: RMW (read-modify-write) and RCW (read-construct-write).
Now assume that a three-page write request is going to update the contents of D1, D2, and D3

(see Figure 2(a)). While Figure 2(a) shows how RMW updates the parity strip P1, Figure 2(b) illus-
trates how RCW accomplishes the same task. In this example, RCW is more favorable as it incurs
a fewer number of pre-readings. In fact, for each parity updating process, RAID5 always chooses
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Fig. 2. Two parity updating methods in RAID5.

Fig. 3. The architecture of CR5M.

the method that can lead to a fewer number of pre-readings. If the numbers are equal, then RCW
is adopted.

Clearly, a parity updating process degrades performance as it incurs extra read (i.e., pre-reading)
and write (i.e., new parity write back) operations, which substantially increase the response times
of user requests. The experimental results from Reference [42] demonstrate that compared with
a 4-channel SSD without any RAID mechanism the mean response time of a CR5-structured SSD
increases from 25% to 160% on various real-world workloads. Moreover, since a write request
would cause at least one parity updating, a CR5-based SSD wears out quickly when the majority
writes are small random updates, which hurts its endurance.

3.1.2 The Architecture of CR5M. To alleviate the performance and endurance degradation prob-
lems, we propose a new RAID mechanism called CR5M, which is a channel-level RAID5 structure
with mirroring [42]. The architecture of CR5M for an SSD with four channels is shown in Figure 3.
In the SSD, five chips are attached to each channel: three data chips, one mirroring chip, and one
spare chip (i.e., replacement chip in MCR). The data placement of CR5M is similar to that of a
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standard RAID5 format. For example, stripe 0 includes four strips: D0 (chip 0 on channel 0), D1
(chip 0 on channel 1), D2 (chip 0 on channel 2), and P0 (chip 0 on channel 3) (see Figure 3). In
CR5M, the size of each strip is equal to the size of one flash page. The key feature of CR5M is that
a mirroring chip is introduced to each channel. Also, CR5M assumes that each channel has at least
one spare chip, which can be used as a replacement chip once a working chip (i.e., a data chip or a
mirroring chip) stops to function. The spare chips do not serve any requests when an SSD is in the
normal mode. They are reserved for the purpose of data reconstruction in case that one working
chip on a channel fails. Like a traditional RAID5 technique, CR5M can only tolerate one chip fail-
ure at a time. Moreover, each channel only allows at most one chip failure if there is only one spare
chip per channel. Both the mirroring chips and spare chips are transparent to users, and thus, they
do not contribute to the user-visible total capacity of an SSD. The assumption of mirroring and
spare chips is reasonable due to two facts. First, the price of flash memory is declining quickly [23],
and thus, trading a few extra spare chips for an enhanced level of reliability is justifiable for an SSD
used in a safety-critical mobile application. For example, by March 2016 the price of a 250GB SSD
runs between $52 to $81, which leads to an average per-gigabyte cost of $0.27 [23]. Second, CR5M
turns one data chip per channel into a mirroring chip, which reduces the number of user-visible
data chips per channel by one. However, using one fewer data chips per channel only has trivial
impact on the performance of an SSD as shown in Figure 1. Although CR5M also uses mirroring
mechanism in a RAID5 organization, it is quite different from a traditional HDD-oriented RAID51
format. In a RAID51 HDD array, there are two identical RAID5 sub-systems so that each data has
two copies. In CR5M, only part of data has an identical copy on a mirroring chip and there is only
one RAID5 system.

In addition to a normal RAID5-style write function, CR5M has a unique mirroring write (MW)
function to utilize the mirroring chips to better serve a partial-stripe write request. Unlike a normal
write, an MW operation writes a page of data into its destination data chip and the corresponding
mirroring chip simultaneously. Since chips on the same channel can work in an interleaving way,
the overhead of an MW operation is close to that of a write without a parity updating. Note that
an MW operation is prohibited as long as one of the involved mirroring chips is busy. The reason
is that waiting for a busy mirroring chip could cancel the benefits of an MW operation. To make
sure that a mirroring chip does not wear out quicker than a data chip, CR5M uses a mechanism
to confine the number of writes on it (see Section 3.1.3). In what follows, we use an example to
illustrate how an MW operation works.

Figure 3 provides an example of how a partial-stripe write can be carried out by MW operations.
The stripe 1 shown in Figure 3 consists of three data stripsD3,D4,D5, and a parity strip P1. Assume
that a partial-stripe write request R1 is going to update D3 and D4. The conventional RAID5 would
writeD ′3 (i.e., a new version ofD3) andD ′4 into a data chip on channel 0 and a data chip on channel 1,
respectively. And then it would mark D3 and D4 as invalid. Next, it would generate a pre-reading
request on D5 and then calculate the new parity P ′1, which is equal to D ′3 ⊕ D ′4 ⊕ D5. Finally, it
would write P ′1 back on a data chip on channel 2. However, CR5M only needs two concurrent MW
operations to serve R1 if the mirroring chip of channel 0 and the mirroring chip of channel 1 are
both idle. While one MW operation writes D ′3 to the chip 0 of channel 0 and the mirroring chip
of channel 0 simultaneously, the other MW operation writes D ′4 to the chip 2 of channel 1 and
the mirroring chip of channel 1 at the same time. Note that D ′3 and D3 are required to be on the
same channel but not necessarily on the same chip. In fact, D ′3 can be written onto any idle data
chip on channel 0, which speeds up an MW operation. Please refer to Section 3.1.3 for the details
of a CR5M channel/chip selection scheme. The obsolete D3 and D4 are still valid now and will
be invalidated later. The reason is that they can still help recover D5 in case that it is corrupted.
The two MW operations do not require any pre-reading, new parity calculating, and new parity
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updating operations. And thus, CR5M serves the request R1 more rapidly than a traditional RAID5
does. In the case that a subsequent request is going to read D ′3, either chip 0 on channel 0 or the
mirroring chip on channel 0 can serve it.

Now assume that after a while another partial-stripe write request R2 arrives and it is going to
update D5 in stripe 1 (see Figure 3). At this moment, since all data strips in stripe 1 will be changed,
the parity strip P1 as well as the obsolete data strips D3 and D4 are all no longer needed. CR5M
first writes D5′ onto a data chip on channel 3. And then it pre-reads D3′ and D4′ from channel 0
and channel 1, respectively. Next, it calculates a new parity P1′, which is equal to D3′ ⊕ D4′ ⊕
D5′. The new parity P1′ will then be written onto any data chip on channel 2. Finally, CR5M in-
validates D3, D4, D5, P1, D3′ on the mirroring chip of channel 0, and D4′ on the mirroring chip
of channel 1. All these invalidated strips (i.e., pages) will be eventually reclaimed by a garbage
collection (GC) mechanism in the FTL of an SSD. At this time, the new stripe 1 (i.e., D3′, D4′, D5′,
P1′) returns to a standard RAID5 format, which has no data protection from a mirroring chip.
The process of serving request R2 is not shown in Figure 3 to make the figure clear. If request
R2 is going to update D4′ rather than D5, then CR5M will simply write D4′′ onto any data chip
on channel 1 and the mirroring chip. Next, it will invalidate D4′ on both chips 2 and 3 of chan-
nel 1 as they are no longer needed. For each mirrored data strip, CR5M only maintains its latest
version.

CR5M enhances performance and reliability from the following aspects. First, the mean response
times of many partial-stripe writes are reduced as additional pre-reading and new parity calculat-
ing operations are eliminated. This is because these writes are served by the MW function instead
of a traditional RAID5 write function. The statistics from our experiments show that 35% to 91%
partial-stripe writes can be processed by the MW function. In the case that all data strips of a stripe
are eventually updated, some pre-reading operations are still needed to calculate a new parity strip.
However, the parity updating process has been largely postponed, which improves performance.
This is because the number of parity calculations are reduced as only the latest version of a fre-
quently updated stripe is needed for the new parity calculation. Second, an MW operation stores
two copies of a data strip, which leads to an improved read performance, because a subsequent
read request can still be served from the mirroring chip if the data chip is busy, or vice versa. Third,
the data of a failed data chip can be quickly recovered, because part of its data have a copy on the
mirroring chip, and thus, do not need to be reconstructed. A quick data recovery enhances data
reliability.

3.1.3 The Design and Implementation of CR5M. In this section, we first introduce an extended
address mapping table, which is the most important data structure of CR5M. Next, we explain how
CR5M processes each read/write request. Finally, an algorithm of CR5M write request processing
is provided.

In both normal mode and degraded mode, the RAID controller (see Figure 3) has to decide how
to handle a request. A traditional mapping table entry consists of two fields: logical page number
(LPN) and physical page number (PPN), to record the logical and physical address of a flash page.
Since the MW function of CR5M sometimes needs to store a copy of a data strip on a mirroring chip,
an extended mapping table is needed. In each entry of the extended mapping table, an additional
field called mirroring address (MA) is used to indicate whether there exists a mirrored data of
the current entry. If the value of the field is NULL, then the entry does not have a mirrored data.
Otherwise, an address will be stored in the MA field, which points to an entry of a mirroring
table. Each entry of a mirroring table has two fields: expired physical page number (EPPN) and
mirroring physical page number (MPPN). While EPPN records the physical page address of an
obsolete data, MPPN logs the physical address of a mirrored data. A physical address (e.g., PPN,
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Fig. 4. An example of the extended mapping table.

MPPN, and EPPN) is a concatenation of channel number, chip number, die number, plane number,
block number, and page number.

CR5M utilizes a semi-dynamic allocation scheme. The channel number is decided statically by
the least significant bits of a logical address so that sequential pages can be distributed onto differ-
ent channels to form a RAID5 organization. For each one-page write request, CR5M dispatches it
to a particular channel based on its LPN using the following equation: the destination channel of a
request = the request’s LPN% the number of channels in an SSD. Thus, at the channel-level CR5M
almost evenly distributes writes across all channels. After a one-page write request is sent to a
particular channel, a classical wear-leveling method can start to work with CR5M to achieve wear
leveling. In particular, it can now decide on which data chip, which die, which plane, and which
block the request will be sent to so that writes will be evenly distributed among all blocks under
the channel. In what follows, we use two request processing examples (i.e., R1 and R2) shown
in Figure 3 to explain how these two tables are utilized. For illustration purpose, we assume that
each chip shown in Figure 3 only has 20 pages. Figure 4 provides three snapshots of the two tables,
which only cover stripe 1 shown in Figure 3. Before the arrival of R1, the PPN of D3, D4, P1, D5
is 20, 120, 220, 320, respectively (see Figure 4(a)). After R1 is processed, D3′ and D4′ have been
written onto a data chip and the corresponding mirroring chip, respectively. Now the contents of
the two tables are shown in Figure 4(b). After R2 is served, stripe 1 returns to a standard RAID5
format (see Figure 4(c)). We assume that P1′ and D5′ have been written to PPN 222 on channel 2
and PPN 322 on channel 3, respectively. Now, we show the sizes of the two tables through an ex-
ample. Assume that the size of each flash page is 4KB and each address (i.e., MA, PPN, MPPN, or
EPPN) is a 32-bit binary number. So, the maximal possible capacity of a CR5M-based SSD is 16TB
(i.e., 232 ∗ 4KB = 16TB). Since a LPN is only used as an index to locate a PPN, it does not need to be
stored in the extended mapping table shown in Figure 4. Thus, each entry in the extended map-
ping table takes 64 bits. Similarly, each entry in the mirroring table requires 64 bits (see Figure 4).
Assume that a CR5M-based SSD has four channels and each channel has three data chips, one mir-
roring chip, and one spare chip, as shown in Figure 3. Assume that each chip (either a data chip or
a mirroring chip) has 220 4KB pages. Thus, the capacity of each chip is 4GB. The overall capacity of
the CR5M-based SSD is then 64GB (i.e., 4 channels ∗4 chips ∗4GB = 64GB). Note that the number
of entries in the extended mapping table is only decided by the aggregate capacity of all data chips.
Similarly, the number of entries in the mirroring table is only determined by the aggregate capac-
ity of all mirroring chips. Therefore, the number of entries in the extended mapping table is equal
to the total number of pages of all data chips, which can be calculated by 220 ∗ 4 ∗ 3 = 12M. So,
the size of the extended mapping table is 12M ∗64 bits = 96MB. Similarly, the size of the mirroring
table is 32MB. In a nutshell, for a 64GB CR5M-based SSD, the total size of its two mapping tables is
128MB, which is about 0.2% of its capacity. A modern flash SSD product normally has an on-chip
DRAM module whose size ranges from hundreds of MB to even 1GB. For example, a 120GB Sam-
sung 840 EVO Series Solid State Drives (model # MZ-7TE120BW) has a 256MB on-chip DRAM as a
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cache [28]. In addition, the price of an on-device DRAM is fairly stable at a very low level. Micron’s
average DRAM selling price per gigabit was as low as one dollar [37]. Furthermore, the price of
DRAM will continue to decline with the advances of manufacturing technologies [37]. Therefore,
we argue that caching 128MB mapping tables in an on-flash DRAM becomes affordable for a mod-
ern 64GB flash SSD. In the case that the two tables are too large to be accommodated in an on-flash
cache, we can store them in flash and only place popular mappings in cache like DFTL [7] does.

After a write request arrives, if its address range spans two or more adjacent stripes (e.g., stripe 0
and stripe 1 shown in Figure 3 are two adjacent stripes), the RAID controller first splits it into
multiple sub-requests such that each of them is either a full-stripe request or a partial-stripe re-
quest. The sub-requests are served sequentially and each of them only accesses a particular stripe.
Next, the RAID controller further divides each sub-request into multiple one-page requests, which
will then be dispatched to different channels. CR5M’s semi-dynamic allocation scheme decides
which channel and chip a one-page request should be sent to. For each sub-request, the RAID
controller needs to make a decision on which parity updating method to use: RMW, RCW, MW,
or directly calculating parity without a pre-reading. Also, an MW operation concurrently writes a
page of data onto two different chips. Thus, a subsequent read request needs to select one of them
to retrieve the data.

Since one mirroring chip needs to store mirrored data from multiple data chips on the same
channel, it could receive more writes than a data chip, and thus, wear out quicker as more writes
cause more erasures. To make sure that a mirroring chip does not prematurely fail because of a high
concentration of erasure cycles, CR5M employs a mechanism called mirroring chip protection to
limit the number of MW operations on a mirroring chip so that it could not receive substantially
more writes than a data chip. For each channel, CR5M keeps track of two variables: number of
MW operations executed (i.e., MWNo [ChannelNo]) and average number of writes on a data chip
(i.e., AveWriteNo [ChannelNo]). The two variables for each channel are initialized to zero. The
value of AveWriteNo [ChannelNo] is equal to the total number of writes on all data chips of
channel ChannelNo divided by the number of data chips on that channel. A tunable parameter
called MWLimiter is used to limit the number of MW operations on the mirroring chip of a channel.
More precisely, for each channel, the value ofMWNo [ChannelNo] should be always no larger than
the product of MWLimiter and AveWriteNo [ChannelNo]. Clearly, a larger value of MWLimiter

leads to more performance improvement when an SSD is in the normal mode, because more MW
operations can be carried out. However, there is one obvious drawback. When the mirroring chip
on a channel receives more writes, it wears out quicker than a data chip. As a result, it could become
a performance/endurance bottleneck of the SSD. In fact, an appropriate value of MWLimiter is
workload-dependent. For a write-intensive trace, it is better to set MWLimiter larger than 1 as the
mirroring chip needs to accept more writes than a data chip on the same channel does. In our
experiments, MWLimiter is set to 1.1 so that the number of writes on a mirroring chip does not
exceed 1.1 times of the average number of writes on a data chip on the same channel. This value is
empirically found to be a good trade-off between performance and endurance for the five traces.

An algorithm of CR5M write request processing is shown in Algorithm 1. If a sub-request is
a full-stripe write, then the RAID controller directly generates a new parity data by executing
XOR operations on the request’s data without any pre-reading. Next, it updates all data strips and
the parity strip. Further, it invalidates all old strips. Finally, for each channel of an SSD, it adds
one to the total number of writes on all data chips. If a sub-request is a partial-stripe write, then
the RAID controller detects whether all involved mirroring chips are idle and for each involved
channel whether its number of MW operations performed so far is no larger than the product of
MWLimiter and the average writes on a data chip. If these two conditions hold, for each page of
data, then an MW operation will be invoked to write it onto both a data chip and the responding
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ALGORITHM 1: Processing a Write Request R

if R span n stripes and n ≥ 2 then
Split R into n sub requests

else
R itself is a sub-request;

end

for each each sub-request do

if it is a full-stripe request then
Directly calculate a new parity;

Update the entire stripe including the parity strip;

Invalidate all strips of the old stripe;
else if MWNo ≤ MWLimiter∗ AveWriteNo for all involved channels and all involved mirroring chips

are idle then
Perform an MW for each one-page request;

Update each request’s entries in the two tables;

++ MWNo for each involved channel;
else if RMW Pre-reading < RCW Pre-reading then

Perform RMW to update data and parity strips

else
Perform RCW to update data and parity strips

end

for each involved channels do
++ total number of writes

AveWriteNo = total number o f writes/number o f data chips on each channel
end

end

mirroring chip simultaneously. And then, each data strip’s multiple physical addresses (e.g., PPN,
MPPN, and EPPN) are recorded in the extended mapping table and mirroring table. Next, for each
involved channel, its number of MW operations executed is increased by one. If one of the two
conditions does not hold, then CR5M chooses either RMW or RCW to update a stripe. If the number
of pre-reading of RMW is fewer than that of RCW, then RMW will be selected to process data and
parity updating. Otherwise, RCW is chosen. Still, for each involved channel, the total number of
writes on all data chips is increased by one. The processing of a read request is relatively simple.
For each data strip of a read request, RAID controller first allocates its corresponding entry in the
extended mapping table based on its LPN. If the MA field is NULL, then the data is read out from
where PPN points to. Otherwise, the data can be fetched from either the data chip or the mirroring
chip. Figure 5 provides a flowchart of the CR5M request processing procedure.

3.2 The MCR Data Reconstruction Strategy

Once a working chip (i.e., a data chip or a mirroring chip) fails, a CR5M-based SSD immediately
enters into the degraded mode. In this mode, the SSD continues to serve external user requests but
at a lower level of service while a background data reconstruction process is launched to recover
the data of the failed chip on a replacement chip. After the data reconstruction process finishes,
the SSD returns to the normal mode. Although various data reconstruction algorithms [1, 8, 9,
27, 29, 39, 40, 44] have been proposed, they share two common goals: speedup data rebuilding
process (i.e., shrinking the window of vulnerability) and alleviating performance degradation
during reconstruction. Since the efficiency of a data reconstruction algorithm not only impacts
an SSD’s performance during the degraded mode but also affects its data reliability, an efficient
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Fig. 5. The flowchart of CR5M request processing.

data reconstruction strategy is always a critical component of a parity-based RAID management
system like CR5M. In this section, we present design and implementation details of MCR, a data
reconstruction strategy developed for CR5M.

3.2.1 Recovering A Failed Mirroring Chip. Similar to CR5, CR5M can tolerate one working chip
(i.e., either a mirroring chip or a data chip) failure at a time. We first demonstrate that all data on
a failed mirroring chip can be recovered. Recall that the only way for a piece of data to be written
onto a mirroring chip is through an MW operation (see Section 3.1.2). Besides, an MW operation
guarantees that when a piece of data is written onto a mirroring chip, it is also simultaneously
written onto a data chip on the same channel. As a result, each piece of data on a mirroring chip
must have a replica on a data chip on the same channel, which makes recovering it simple. To
recover all the data on a failed mirroring chip, MCR searches the extended mapping table. For
each entry whose MA (i.e., mirroring address) field is not a NULL, it uses the address in the PPN
field to locate the replica of a piece of data on the failed mirroring chip (see Figure 4(b)). And then,
the data is copied to the replacement chip on the same channel. This process is repeated until all
entries in the extended mapping table have been examined. After all data have been recovered
on the replacement chip, the replacement chip now starts to serve as the mirroring chip so that
the CR5M architecture is still maintained in the SSD. In fact, when recovering a failed mirroring
chip, no data needs to be rebuilt. Rather, MCR simply copies the failed data from data chips to the
replacement chip on the same channel (see Algorithm 2).

3.2.2 Recovering A Failed Data Chip. Apparently, when a CR5M-based SSD is in the normal
mode, the mirroring chips help it postpone parity updating, and thus, its performance and
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ALGORITHM 2: The MCR Data Reconstruction Strategy

switch failed chip do

case mirroring chip do

for each entry in extended mapping table with a non-NULL MA field do
copy the data located in PPN to the replacement chip

end

case data chip do
——————Phase one——————

for each each stripe do

if one of its strips was on the failed data chip then

switch stripe type do

case non-MW stripe do
recover the strip by a standard DOR

case sibling-MW stripe do

if failed data is user data then
recover the strip using obsolete data in DOR

else if failed data is parity data then
update parity and reclaim obsolete data

end

case MW stripe do
mark it as "MW"

end

end

end

——————Phase Two——————

for each stripe marked as "MW" do

if the failed strip has been updated again so far then
skip the stripe

else
copy its replica to the replacement chip

end

end

end

endurance are enhanced. After it falls into the degraded mode due to a data chip failure, the
mirroring chip on the same channel can still provide support in two respects. First, part of data
on the failed data chip have a replica on the mirroring chip. Therefore, these data do not need
to be reconstructed. In fact, they can be simply copied from the mirroring chip to a replacement
chip, which improves data recovery speed. Second, external user read requests visiting these
data can still be served by the mirroring chip without the need to wait for the completion of
their reconstructions. Thus, the mirroring chip can assist the SSD to reduce its performance
degradation during the degraded mode.

Since the MCR data reconstruction strategy is derived from the classic DOR algorithm [8], we
first briefly introduce how DOR reconstructs data. After one disk fails in a disk array with n disks,
DOR launches two types of processes: n-1 data fetchers and one data deliverer. Each data fetcher
process associates with one surviving disk. It keeps transferring relevant data or parity strips from
its associated surviving disk to a central buffer. The data deliverer process grabs each piece of
reconstructed data from the central buffer and then writes it onto a replacement disk. The central
buffer consists of multiple pages and each page stores one strip. A page of the central buffer is
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Fig. 6. The architecture of MCR.

assigned to a particular stripe when its reconstruction starts. After all surviving n-1 strips from
the stripe are fetched and then sequentially XOR-ed with each other, the result (i.e., the once failed
strip of the stripe) is written back to the buffer page. At this moment, the status of the buffer page
changes from “Incomplete” to “Complete.” The goal of DOR is to absorb all bandwidth that is not
used by users. CR5M adopts a similar approach. Since CR5M treats each channel as an independent
disk, MCR associates a data fetcher to a channel without any failed chip. A data deliverer keeps
moving reconstructed pages from the buffer to the replacement chip on the channel that has a failed
data chip. The size of a central buffer for MCR is set to eight pages in our experiments. In other
words, MCR can reconstruct up to eight stripes simultaneously. We find that further increasing the
size of a central buffer cannot noticeably improve the performance of data reconstruction. Figure 6
demonstrates how MCR works after the data chip 0 on channel 0 fails.

Stripes in a CR5M-based SSD can be classified into three categories: a non-MW stripe, a sibling-
MW stripe, and an MW stripe. Based on stripe category and lost data type (data strip or parity strip),
MCR uses different approaches to recover a lost strip. A data chip recovering process consists of
two phases (see Figure 6). In phase one, MCR uses a DOR manner to recover all failed strips that
belong to either a non-MW stripe or a sibling-MW stripe. In a non-MW stripe, none of its data
strips has been updated by an MW operation. For example, if chip 0 on channel 0 shown in Figure 3
fails, stripe 0 is a non-MW stripe as none of its three data strips has ever been updated by an MW
operation. Similarly, stripe 3 is also a non-MW stripe. MCR recovers D0 and P3 using a traditional
DOR manner. Data strips in one stripe are called siblings. A stripe is called a sibling-MW stripe if
it falls into one of the following two cases: (1) If the lost data is a data strip, then it has never been
updated by an MW operation but at least one of its sibling data strips has been updated by an MW
operation; (2) If the lost data is a parity strip, then at least one of data strips in the same stripe
has been updated by an MW operation. For example, after the write request R1 is processed and
then chip 1 on channel 3 shown in Figure 3 fails, stripe 1 becomes a sibling-MW stripe, because
although D5 has not been updated by an MW operation, its sibling data strips D3 and D4 have
been updated to D3′ and D4′ by an MW operation, respectively. In this case, MCR reconstructs D5

by using its obsolete sibling data strips (i.e., D3 and D4) and the out-of-date parity strip (i.e., P1)
in a DOR manner. In the second case, the lost data is a parity strip (e.g., P1). For instance, assume
that after the write request R1 is processed and then chip 1 on channel 2 shown in Figure 3 fails,
stripe 1 also becomes a sibling-MW stripe, because two of its data strips (i.e., D3 and D4) have
been updated by an MW operation. Instead of recovering the out-of-date P1, MCR updates it to
P1′, which is equal to D3′ ⊕ D4′ ⊕ D5. Next, MCR reclaims the obsolete strips (i.e., D3, D4, P1).

After MCR has reconstructed all failed strips from non-MW and sibling-MW stripes, it enters
into the second phase. In the second phase, MCR concentrates on recovering each data strip that
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belongs to an MW stripe. In an MW stripe, the failed data strip has been updated by an MW oper-
ation. Note that a parity strip can never have a replica on the mirroring chip as an MW operation
can only be performed on a data strip. Since each of these failed data strips has a replica on the
mirroring chip, MCR simply copies these replicas onto the replacement chip to recover them. For
example, assume that chip 0 on channel 0 fails right after the request R1 has been served and MCR
is going to recover D3′ (see Figure 3). At this moment, stripe 1 is an MW stripe. Since a copy of
D3 is on the mirroring chip (i.e., chip 3 on channel 0), MCR just copies D3 from the mirroring
chip to the replacement chip. Obviously, phase two can be completed quickly, which makes MCR
outperform DOR.

The algorithm of MCR is shown in Algorithm 2. MCR reconstructs failed data strips in MW
stripes at last due to the following two considerations. First, these data strips have not been lost
as their replicas still exist on the mirroring chip, which can serve relevant user read requests.
Therefore, they are not in a hurry to be rebuilt. Second, since a failed data strip of an MW stripe is
generally more popular than a data strip in other types of stripes, it is more likely that it has been
updated once again after the start of a data reconstruction process. In that case, MCR no longer
needs to reconstruct the failed data strip any more.

4 PERFORMANCE EVALUATION

In this section, we evaluate the performance of CR5M and MCR using both real-world traces and
synthetic benchmarks on a simulator that is extended from SSDsim [10]. We first explain how we
extend SSDsim [10], a hardware-validated single SSD simulator, so that it can support CR5M, CR5,
MCR, and DOR. Next, we introduce experimental setup including simulator parameter configu-
rations and the characteristics of the five real-world traces. Finally, we evaluate CR5M and MCR,
respectively.

4.1 The Simulator

SSDsim is an event-driven, multi-tiered single SSD simulator with various well-defined structures
including a buffer management layer, a request allocation layer, an FTL layer, and a hardware
module layer [10]. It does not support any RAID organization. To provide a channel-level array
architecture, we add an array controller layer on top of the FTL layer. Figure 7 shows a software
architecture of the extended simulator, which can be configured to simulate two types of channel-
level RAID5 SSDs: a CR5-based SSD and a CR5M-based SSD. The former only needs a RAID5
management module, which includes two parity updating methods RCW and RMW as well as a
traditional data reconstruction algorithm DOR [8] (see Figure 7). The latter also needs the RAID5
management module but requires the following changes. First, an MW module is added to work in
concert with RCW and RMW (see Algorithm 1). Second, the address mapping function in the FTL
layer needs to be redesigned so that data replicas on the mirroring chips can be tracked. Third, it
uses MCR rather than DOR for data reconstruction. No matter which type of SSD is simulated (i.e.,
CR5-based or CR5M-based) the underlying flash management functions like garbage collection and
wear-leveling are carried out by a simple page-mapping FTL provided by SSDsim [10]. Note that
CR5M can be readily extended to work with any existing complex page-mapping FTL scheme like
DFTL [7] or HAT [11]. In what follows, we will use DFTL [7] as an example to show how CR5M
can be combined with an existing complex FTL.

To reduce cache overhead, DFTL only caches the most popular mappings in the on-flash SRAM
while storing the entire mapping table on flash device itself [7]. It segregates all flash pages into
two types: data pages and translation pages. Data pages contain the real data that is accessed or
updated during read/write operations, whereas pages that only store information about logical-
to-physical address mappings are called translation pages [7]. To work with DFTL, the following
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Fig. 7. The simulator software architecture.

changes need to be made in our CR5M design: (1) storing the entire extended mapping table and
mirroring table (see Figure 4) in the translation pages on flash; (2) caching some popular mapping
entries of the two tables in the on-flash SRAM; (3) adding a Global Translation Directory (GTD)
proposed by the authors of DFTL [7] to keep track of all translation pages on flash. Note that GTD
is always maintained in the on-flash SRAM. If the mapping information of an incoming request is
not presented in the SRAM, then GTD is consulted to find out its corresponding translation page
so that the mapping information can be fetched from flash. Detailed information about a DFTL
address translation process can be found in Reference [7]. We only consider page-mapping FTLs,
because page-level mapping can achieve the best performance among the three mapping schemes
(i.e., page-mapping, block-mapping, hybrid) [7].

Although we implement a complete array controller into the SSDsim, only the three modules
in grey (see Figure 7) are newly designed. Around 1,000 lines of C code are written to extend SS-
Dsim [10]. The default internal structure configurations and timing parameters of the simulator
are summarized in Table 1. GC threshold is set to 30%, which means that GC can be triggered
only after the free capacity of an SSD is less than 30 percent of its total capacity. When a data
reconstruction algorithm (i.e., DOR or MCR) is evaluated, we assume a data chip failure happens
at time instance failure_time, which is a tunable parameter of the simulator. During a playback of
a trace, the simulator initially runs in the normal mode to process user requests. At a certain time
(i.e., failure_time), we assume a data chip fails, and thus, the simulator immediately enters into the
degrade mode. In this mode, the SSD array controller generates internal read/write requests and
uses XOR operations to reconstruct data of the failed data chip onto a replacement chip. Mean-
while, the simulated SSD still serves external user requests. In our experiments of DOR and MCR,
the value of failure_time is always set to the arrival time of the middle request in a trace.

4.2 Experimental Setup

Five real-world traces are selected to evaluate the performance of CR5M and MCR. Financial2
(hereafter, Fin2) is an I/O trace collected from an OLTP application running at a large financial
institution [4]. It is read-dominant. The Build trace is generated from the activities on a Microsoft
Build server [36]. In this trace, the number of writes is close to the number of reads and most
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Table 1. Simulation Configurations

Parameter Value

Page size (KB) 4
Number of pages per block 64
Number of blocks per plane 4,096
Number of planes per die 2
Number of dies per chip 2
Number of data chips per channel 4
Number of channels 4
GC threshold 30%
Over-provisioning capacity 10%
Block erase time (ns) 1,500,000
Page write time (ns) 200,000
Page read time (ns) 20,000
Command write time (ns) 25
Register write time (ns) 25

Table 2. The Characteristics of Traces

Trace % of write Avg. size (KB) Req/s Duration (min) Data traffic (GB)

Fin2 17.7 2 90 683 7.0
Build 45.7 6.5 372 15 2.1
Exchange 46.4 12.5 166 15 1.8
Radius 88.5 6.8 57 35.2 0.8
ATTO 47.5 23.1 792.4 2.5 2.6

Table 3. Configurations of the Three SSDs

Configuration CR5M CR5 Capacity

SSD1 4 channel ∗ (3 +m + s ) chip 4 channel ∗ (4 + s ) chip 64GB
SSD2 8 channel ∗ (3 +m + s ) chip 8 channel ∗ (4 + s ) chip 128GB
SSD3 4 channel ∗ (7 +m + s ) chip 4 channel ∗ (8 + s ) chip 128GB

writes are new writes. The Exchange trace is collected from a Microsoft Exchange server and is
write-intensive [36]. Both Build and Exchange are collected from a server where a disk array is
employed. Radius is collected for the RADIUS authentication server [36]. ATTO is a benchmark
gathered from a PC with an NTFS file system by DiskMon [2]. The ATTO trace generates the same
amount of I/O requests irrespective of storage capacity and most of the random requests are the
accesses to small number of sectors. The characteristics of the traces are summarized in Table 2.
The “data traffic” of a trace is the amount of data that have been read/written during the replay
of the trace. The purpose of selecting these traces is that CR5M and MCR can be evaluated under
various workloads from read-dominant to read-write-even to write-dominant.

To fully evaluate the performance of CR5M on SSDs with various internal architectures (e.g.,
SSDs with different number of channels), we configure the simulator to simulate three types
of SSDs (i.e., SSD1, SSD2, and SSD3) as shown in Table 3. While m stands for a mirroring chip,
s represents a spare chip. For example, a CR5M-based SSD1 drive has four channels with each
channel having five chips including three data chips, one mirroring chip, and one spare chip.
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Fig. 8. Performance evaluation of CR5M under real-world traces.

However, a CR5-based SSD1 drive also has four channels and each channel has four data chips
and one spare chip (see Table 3). In fact, the difference between the two SSD1 drives is that the
former has one less data chip as it has been turned into a mirroring chip. Thus, the user-visible
capacity of a CR5M-based SSD1 drive is 25% less than that of a CR5-based SSD1 drive. To make
comparisons between CR5M and CR5 fair, the total number of chips of a CR5M-based SSD is
always equal to that of a CR5-based SSD. SSD1 is the default SSD configuration for both CR5
and CR5M. In all experiments, 10% of flash memory capacity is preserved as over-provisioning
capacity (see Table 1) for bad block management and garbage collection.

4.3 Evaluation of CR5M

Since mean response time is a commonly used metric for evaluating the performance of an SSD,
we measure it throughout all experiments in this research. To evaluate the effectiveness of CR5M,
we compare it with CR5, which is a standard RAID5 organization applied on the channel level of an
SSD. Similar to CR5M, CR5 treats each channel as an independent disk. We also measure number
of pre-readings (i.e., pre-reading count) and number of parity writes (i.e., parity write count) for
both CR5M and CR5 to find out how many such operations can be diminished by CR5M compared
with CR5. A fewer number of such operations is the source of strength of CR5M. In addition, a
write distribution among the four chips (i.e., three data chips and one mirroring chip) on channel 0
of a CR5M-SSD1 drive is provided to demonstrate that the mirroring chip receives a fewer number
of writes as a data chip. The implication is that it does not become a bottleneck of performance
and endurance. To understand the impact of some key features of a workload such as write request
percentage and average request size, we also test CR5M under a synthetic benchmark.

Performance comparisons between CR5M and CR5 on the three types of SSDs are shown in Fig-
ure 8. Note that on each channel a CR5M-based SSD always has one less data chip than a CR5-based
SSD. Therefore, its user-visible SSD capacity and chip-level parallelism are both lower than its CR5
counterpart. However, experimental results shown in Figure 8 show that CR5M outperforms CR5
in all cases, which demonstrates that turning a data chip on each channel into a mirroring chip is
worthwhile. This is because the mirroring chips can absorb some small writes so that their asso-
ciated parity updates can be delayed. Ultimately, the benefits of employing a mirroring chip per
channel outweigh the disadvantages caused by a reduced user-visible SSD capacity and chip-level
parallelism. On average, CR5M reduces mean response time by 15.8%, 19.4%, and 15.4% under the
five real-world traces on SSD1, SSD2, and SSD3, respectively. In particular, CR5M achieves the
largest performance improvement over CR5 under Radius (i.e., 40.2% on SSD2 in Figure 8(b)) and
Build (i.e., 33% on SSD1 in Figure 8(a)). In the worst case, CR5M can only decrease mean response
time by 3.2% (i.e., Fin2 on SSD1 in Figure 8(a)). The reason is that Fin2 is a read-dominant workload,
which has few chances for CR5M to execute an MW operation. When the number of channels in-
creases from four to eight (i.e., from SSD1 to SSD2), the performance of both CR5M and CR5 have
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Fig. 9. Comparisons in number of internal operations on SSD1.

been improved noticeably across all five traces (compare Figures 8(a) and 8(b)). This observation
is expected, because the effect of adding more channels in an SSD is equivalent to inserting more
disks in a disk array. More importantly, the performance improvement of CR5M over CR5 rises
under most traces when the number of channels is increased from four to eight. For instance, the
performance improvement of CR5M over CR5 increases from 7% on SSD1 to 18.6% on SSD2 for
Exchange. However, comparing results shown in SSD1 (Figure 8(a)) and SSD3 (Figure 8(c)), we
observe that the performance of both CR5M and CR5 keeps almost unchanged. The insight is that
chip-level parallelism has a very limited impact on SSD performance, which also motivates us to
turn a data chip into a mirroring chip in a CR5M architecture.

Compared with CR5, CR5M serves user requests quicker, because it can reduce the number of
parity writes and number of pre-reading operations caused by parity updates. In addition, a fewer
number of parity writes implies less wear out, which is beneficial to the endurance and reliability
of an SSD. To understand how many such operations can be saved by CR5M compared with CR5,
we measure the numbers of these two operations for both CR5 and CR5M on SSD1 in Figure 9. Note
that all three vertical axises in Figure 9 are in a log scale, because values vary greatly. Figure 9(a)
shows that on average CR5M reduces the number of parity writes by 47.9%. In the best case, it
diminishes the number of parity writes by 86.8% for Fin2. In the worst case, it can still reduce the
number of parity writes by 23.8% for ATTO. Since each MW operation can save one parity write
plus one or more pre-reading operations, CR5M can save an even larger number of pre-reading
operations (see Figure 9(b)). It at least reduces the number of pre-readings by 42.1% for Exchange.
On average, CR5M reduces the number of pre-readings by 66.5% (see Figure 9(b)). To discover
whether a mirroring chip receives much more writes than a data chip on the same channel, we
also measure the number of writes on each chip of a CR5M-SSD1 drive. Since all four channels of
the SSD1 drive exhibit a similar write distribution, Figure 9(c) only shows the write distribution
on all working chips (i.e., three data chips and one mirroring chip) of channel 0. From Figure 9(c),
one can see that in call cases the number of writes of the mirroring chip is fewer than that of a
data chip. For example, the number of writes on the mirroring chip for Exchange is only 16.4%
of the average number of writes on a data chip. In the worst case, the number of writes on the
mirroring chip is 81.9% of the average number of writes on a data chip for Radius, which is the
most write-intensive trace among the five (see Table 2). Figure 9(c) manifests that the mirroring
chip does not become a performance/endurance bottleneck for an SSD. Another implication of
Figure 9(c) is that recovering a failed mirroring chip takes less time than rebuilding a failed data
chip as it contains less amount of data.

To understand the impact of free capacity of an SSD on the performance of CR5M, we conduct
a group of experiments to measure the performance of CR5 and CR5M in different initial used
capacities (i.e., from 0% to 85%) across the three SSDs shown in Table 3 under the Radius trace.
When the initial used capacity of an SSD is set to 0%, Radius is run on an empty SSD. Similarly,
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Fig. 10. Impact of initial used capacity and MWLimiter on CR5M.

when the initial used capacity is configured to 80%, it starts to run on an SSD whose 80% capacity
has been occupied by other user data. We choose Radius, because it is the most write-intensive
workload among the five traces. The more write intensive, the more GC operations occur, which
makes the impact of initial used capacity on performance more obvious. In addition, the GC thresh-
old is set to 30%, which means that GC can be triggered only after the free capacity of an SSD is less
than 30 percent of its total capacity. We only show the results from SSD2 in Figure 10(a), because
results from the other two SSDs are very similar to that of SSD2. When the initial used capacity
is less than or equal to 60%, we can see that for both CR5 and CR5M their performance remains
unchanged. This is because there are still plenty of free pages in the SSD, and thus, GC does not
occur. Therefore, shrinking the free capacity of the SSD has little influence on performance. How-
ever, after the initial used capacity is larger than 70%, the performance of CR5 and CR5M drops
dramatically, because GC operations have been triggered after the GC threshold is reached. We
find that CR5M still outperforms CR5 after the initial used capacity is larger than 70%. In general,
CR5M gains more performance improvements over CR5 when the SSD has enough free space (i.e.,
the initial used capacity is no larger than 60%). After GC operations are triggered (i.e., the initial
used capacity is between 70% and 85%), on average CR5M outperforms CR5 by 21.4%. We do not
test extreme cases where the initial used capacity is equal to 90% or even larger. This is because in
real-world scenarios no user would run a workload on an SSD that can only provide 10% or less
of its capacity.

To understand the impact of MWLimiter on the performance of CR5M, we run Radius on SSD2
under various MWLimiter values (i.e., from 0 to 1.3). Again, we choose Radius as it is the most
write-intensive workload among the five traces. Figure 10(b) shows the experimental results. When
MWLimiter is set to 0, CR5M degrades to CR5 as an MW operation can never happen. As MWLim-

iter is enlarged from 0 to 1.1, we notice that the performance of CR5M increases. This is because
more MW operations occur, which reduces the parity updating cost. After MWLimiter reaches
1.1, further increasing its value is not helpful for performance, because the number of MW oper-
ations is also limited by the status of each chip (i.e., “busy/idle”). The experimental results from
Figure 10(b) guided us to set 1.1 as the default value of MWLimiter in all our experiments.

The impact of two key features of a workload (i.e., write request percentage and average request
size) on CR5M is evaluated in Figure 11. Their default values are set to 50% and 8KB, respectively.
On average 100 requests arrived per second and there are totally 100,000 requests in the syn-
thetic benchmark. The request arrival time and request size all follow a uniform distribution. All
experiments in this group are conducted on an SSD1 (see Table 3). Figure 11(a) shows that the
performance improvement of CR5M over CR5 increases from 1.5% to 9.8% when the write request
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Fig. 11. Impact of two key workload characteristics.

percentage enlarges from 10% to 90%. The reason is that CR5M can save more internal operations
(i.e., pre-readings and parity writes) caused by parity updates when a workload becomes more
write-intensive. When the average request size increases from 4KB to 64KB, the performance of
both CR5M and CR5 decreases as shown in Figure 11(b). This result is understandable as a larger
request requires more time to serve. However, the performance improvement of CR5M over CR5
decreases from 7.4% to 3.1% when the average request size enlarges from 4 to 64KB. The reason
is that when the sizes of most requests are larger than the stripe width there are many full-stripe
sub-requests, which cannot utilize MW operations (see Algorithm 1).

4.4 Evaluation of MCR

To evaluate MCR, we compare it with DOR, a widely used traditional data reconstruction algo-
rithm. Most existing data reconstruction algorithms are either not appropriate to a channel-level
RAID-structured single SSD (e.g., MICRO [44], PRO [39], and s2-RAID [40]) or not designed for
RAID5 (e.g., PDB [21]). For example, MICRO [44] relies on a multi-level cache architecture, which
does not exist in an SSD. s2-RAID [40] requires multiple spare disks in an HDD array. For a channel-
level RAID5 SSD, paying multiple spare channels for a fast data recovery might be too expensive
to be acceptable in industry. However, the basic idea of PRO is to rebuild popular data first, which
is contradictory to the fact that in a CR5M-based SSD a popular page of data on a failed data chip
most likely has a replica on the mirroring chip, and thus, do not need to be recovered first as we
explained in the last paragraph of Section 3.2.2. Since recovering a failed mirroring chip is much
faster than rebuilding a failed data chip, in this section, we only compare MCR with DOR when a
data chip fails.

We measure data recovery speed (i.e., the amount of lost data that can be recovered per second)
and mean response time (MRT) during reconstruction throughout the experiments in this section.
In addition, we also examine the number of strips that are reconstructed through an XOR opera-
tion and the number of data strips that are recovered by copying a replica from the mirroring chip
to a replacement chip in CR5M. All experiments in this section have been conducted on an SSD1
configuration (see Table 3). Figure 12(a) shows mean response times during reconstruction for
both DOR and MCR under the five real-world traces. We find that MCR delivers a mean response
time during reconstruction very similar to DOR. The reason is that similar to DOR, MCR insert a
pre-read request to a channel once the channel is idle. Thus, a channel keeps busy all the time in
both DOR and MCR. Therefore, user requests will be treated similarly in two data reconstruction
schemes, which results in a similar mean response time. In the worst case, MCR only increases
mean response time during reconstruction by 0.6% under Build compared with DOR. As for the
best case, MCR reduces mean response time during reconstruction by 3.6% under Exchange. On
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Fig. 12. Performance evaluation of MCR under real-world traces.

Fig. 13. Impact of write percentage on data reconstruction.

average, MCR improves performance in terms of mean response time during reconstruction by
0.9%, which can be explained by random variation. Figure 12(b) shows that MCR always achieves
a higher data recovery speed among all five traces compared with DOR. On average, MCR in-
crease data recovery speed by 7.4%. In the best scenario, MCR improves data recovery speed by
11.5% under Fin2. Results from Figure 12(b) demonstrate that MCR can further shrink the window
of vulnerability. Figure 12(c) illustrates that among all reconstructed strips (either a data strip or
a parity strip) during a data reconstruction process how many of them are recovered by copying
a replica from the mirroring chip to a replacement chip. We find that at least 4.6% (Exchange) of
reconstructed data can be recovered by directly copying from the mirroring chip. In the case of
Radius, 45.9% of reconstructed data can be recovered without any XOR operations. Note that copy-
ing one strip of data from the mirroring chip to a replacement chip on the same channel demands
one internal read (from the mirroring chip to the RAID controller) and one internal write (from
the RAID controller to a replacement chip). However, recovering a strip in DOR needs multiple
parallel internal reads, multiple XOR operations, and one internal write (see phase one in Figure 6).
Considering that the CPU time spent on the multiple XOR operations is trivial compared with the
read/write time of one strip of data, the saving of a directly copying is not substantial. That is why
on average MCR only improve data recovery speed by 7.5%.

Similar to CR5M evaluation, we also test the impact of two major workload characteristics on
the performance of MCR. We use the same synthetic benchmark described in Section 4.3. Again,
the value of failure_time is always set to the arrival time of the middle request in the benchmark.
Figure 13 shows the impact of write request percentage on the performance of MCR and DOR. The
general trend shown in Figure 13(a) is that mean response time during reconstruction increases
for both MCR and DOR as the write request percentage escalates. Another observation is that the
mean response time of MCR is very close to that of DOR. On average, the mean response time
during reconstruction of MCR is only 0.8% longer than that of DOR (see Figure 13(a)). However,
Figure 13(b) demonstrates that MCR on average can improve data recovery speed by 12.5%.
In particular, when 90% requests are writes MCR improves data recovery speed by 15.9%. The
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Fig. 14. Impact of average request size on data reconstruction.

implication is that MCR exhibits its full strength under a write-intensive workload. Figure 13(c)
shows that the percentage of data strips recovered by directly copying a replica from the mirroring
chip to a replacement chip increases when the percentage of write requests enlarges. When the
percentage of write requests is 10%, only 4.7% reconstructed strips are recovered through directly
copying. However, this number increases to 36.5% when the percentage of write requests becomes
90%. Obviously, with more write requests, more MW operations can be performed when an SSD
is the normal mode. Thus, more data can be recovered by directly copying when the SSD is in the
degraded mode, which accelerates data recovery speed. Figure 14 shows the impact of average
request size on the performance of MCR and DOR. When average request size enlarges from 4KB
to 64KB, Figure 14(a) shows that the mean response times during reconstruction of both MCR
and DOR substantially increase. In the best case, when the average request size is 16KB MCR
delivers a mean response time shorter than that of DOR by 3.3%. In the worst case, the mean
response time of MCR is longer than that of DOR by 2.5% when average request size is 64KB.
Still, in terms of data recovery speed, MCR always outperforms DOR as shown in Figure 14(b).
On average, MCR improves data recovery speed by 10.1% compared with DOR%. MCR achieves
its largest data recovery speed improvement over DOR by 22.6% when average request size is 4KB
(see Figure 14(b)). The results shown in Figure 14(c) demonstrate that the percentage of number
of reconstructed strips by directly copying decreases from 24.6% to 20.8% as average request size
increases from 4 to 64KB. The reason is that when average request size increases there are more
full-stripe sub-requests, which cannot use an MW operation (see Algorithm 1).

5 CONCLUSIONS

An off-the-shelf SSD may not be able to satisfy the data reliability requirements demanded by a
safety-critical mobile application. Thus, applying a data redundancy mechanism like RAID at a
higher level within an SSD becomes necessary. In this article, we first propose a new RAID5 archi-
tecture called CR5M at the channel-level of a single SSD. Next, an associated data reconstruction
strategy called MCR is developed to further shrink the window of vulnerability. Experimental re-
sults demonstrate their effectiveness. A CR5M-based SSD requires the same amount of flash chips
as a CR5-based SSD does (see Table 3). However, it can deliver a better performance/endurance
and data reliability for a safety-critical mobile application.
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