
14

Empirical Evaluation and Enhancement of Enterprise

Storage System Request Scheduling

DENG ZHOU, San Diego State University

VANIA FANG, NetApp, Inc.

TAO XIE and WEN PAN, San Diego State University

RAM KESAVAN, TONY LIN, and NARESH PATEL, NetApp, Inc.

Since little has been reported in the literature concerning enterprise storage system file-level request schedul-
ing, we do not have enough knowledge about how various scheduling factors affect performance. Moreover,
we are in lack of a good understanding on how to enhance request scheduling to adapt to the changing char-
acteristics of workloads and hardware resources. To answer these questions, we first build a request sched-
uler prototype based on WAFL®, a mainstream file system running on numerous enterprise storage systems
worldwide. Next, we use the prototype to quantitatively measure the impact of various scheduling config-
urations on performance on a NetApp®’s enterprise-class storage system. Several observations have been
made. For example, we discover that in order to improve performance, the priority of write requests and non-
preempted restarted requests should be boosted in some workloads. Inspired by these observations, we further
propose two scheduling enhancement heuristics called SORD (size-oriented request dispatching) and QATS
(queue-depth aware time slicing). Finally, we evaluate them by conducting a wide range of experiments using
workloads generated by SPC-1 and SFS2014 on both HDD-based and all-flash platforms. Experimental results
show that the combination of the two can noticeably reduce average request latency under some workloads.

CCS Concepts: • Software and its engineering → Scheduling; File systems management;

Additional Key Words and Phrases: WAFL, enterprise storage system, file-level request scheduling

ACM Reference format:

Deng Zhou, Vania Fang, Tao Xie, Wen Pan, Ram Kesavan, Tony Lin, and Naresh Patel. 2018. Empirical Eval-
uation and Enhancement of Enterprise Storage System Request Scheduling. ACM Trans. Storage 14, 2, Article
14 (April 2018), 27 pages.
https://doi.org/10.1145/3193741

1 INTRODUCTION

Unlike an off-the-shelf computer, an enterprise-class storage system (hereafter, storage system) is
a specially designed device whose sole objective is to provide network data storage service (Hitz
et al. 1994). As a result, a storage system like a NetApp’s Filer or an EMC’s Isilon platform usually
owns a proprietary operating system, which is highly tuned for storage-serving purposes based on

This work is sponsored in part by the U.S. National Science Foundation under grant CNS-1320738.

Authors’ addresses: D. Zhou, T. Xie (Corresponding author), and W. Pan, San Diego State University, Department of Com-

puter Science, San Diego, CA, 92182, USA, emails: {dzhou, txie, wpan}@sdsu.edu; V. Fang, R. Kesavan, T. Lin, and N. Patel,

NetApp Inc., Sunnyvale, CA, 94089, USA, emails: {Vania.Fang, ram.kesavan, Tony.Lin, Naresh.Patel}@netapp.com.

ACM acknowledges that this contribution was co-authored by an affiliate of the national government of Canada. As such,

the Crown in Right of Canada retains an equal interest in the copyright. Reprints must include clear attribution to ACM

and the author’s government agency affiliation. Permission to make digital or hard copies for personal or classroom use is

granted. Copies must bear this notice and the full citation on the first page. Copyrights for components of this work owned

by others than ACM must be honored. To copy otherwise, distribute, republish, or post, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

© 2018 ACM 1553-3077/2018/04-ART14 $15.00

https://doi.org/10.1145/3193741

ACM Transactions on Storage, Vol. 14, No. 2, Article 14. Publication date: April 2018.

https://doi.org/10.1145/3193741
mailto:permissions@acm.org
https://doi.org/10.1145/3193741

14:2 D. Zhou et al.

Fig. 1. Storage operating system architecture.

a full-featured OS like freeBSD (Hitz et al. 1994; EMC 2015). Such proprietary operating system is
also called a storage operating system. NetApp’s Data ONTAP® (Dawkins et al. 2012) and EMC’s
OneFS (EMC 2015) are two well-known storage operating systems.

Figure 1 illustrates the architecture of a storage operating system, which consists of two ma-
jor parts: a network layer and a data layer. The network layer can be further divided into two
sub-layers: an array of adapters (e.g., HBA and NIC) connecting a host system to a storage and/or
network device as well as a group of NAS (network-attached storage) and SAN (storage area net-
work) protocols. The data layer includes three sections: an enterprise file system, a RAID-based
block management module, and disk arrays of hard disk drives (HDDs) or flash solid-state drives
(SSDs). Some storage systems like Filers and Isilon platforms support both NAS and SAN protocols
so that clients can access data by using either a file-level protocol (e.g., NFS or CIFS) or a block-
level protocol (e.g., iSCSI or FC) (EMC 2015). A block-level request will be directed to an LUN
(logical unit number), which is a logical representation of storage. It looks like an HDD or SSD to a
client, whereas it is treated as a file by an enterprise file system like WAFL. Therefore, all front-end
client requests (hereafter, client requests) are viewed as file-level requests no matter what types of
protocols are used. Normally, an enterprise file system uses an NVRAM (non-volatile RAM) to log
write requests. It also uses a flash cache module to improve performance by reducing the number
of disk reads. Figure 1 shows how three types of client requests are processed.

Apparently, a file system designed for a storage system is very different from a general-purpose
file system. This is because the performance, availability, and data management requirements of
applications running on a storage system are quite distinct from those running on a general-
purpose operating system with a locally attached storage (Hitz et al. 1994). In this article, a file
system designed for a storage system is simply called an enterprise file system. WAFL (write any-
where file layout) is one of such enterprise file systems and it is designed specifically to work in
NetApp’s Filers (Hitz et al. 1994). It is the main body of Data ONTAP, a leading storage operat-
ing system in the world (Berriman et al. 2015). An enterprise file system usually provides various
threads dedicated for different purposes. For example, while task threads are responsible for pro-
cessing client requests, cleaner threads and backup threads are dedicated for space reclaiming and
data backup service, respectively. In addition, its code paths for different types of requests are dis-
tinct and each code path is optimized for a particular type of requests. For instance, a single-block
request and a multiple-block request are processed along two different code paths. A single-block
read request can be responded immediately in case of a cache hit. Otherwise, it will be forwarded
to the block layer, which reads its needed data from a disk. Once the disk read is completed, the

ACM Transactions on Storage, Vol. 14, No. 2, Article 14. Publication date: April 2018.

Empirical Evaluation and Enhancement of Enterprise Storage System Request Scheduling 14:3

request is directly replied from the block layer. However, a multiple-block read request cannot be
simply forwarded to the block layer when some of its required blocks are not available in the cache.
Instead, it has to wait until all missed blocks have been fetched from disk to the cache. Only after
all of its required blocks are present in the cache can the request be replied. The main reason is that
the in-cache blocks could be modified by other requests while the cache-missed data are being read
from a disk. Further, an enterprise file system is normally well designed so that parallel accesses
can be achieved while lock contentions can be avoided. On the other hand, a general-purpose file
system normally does not have such features.

In many respects, enterprise file systems have been improved in recent decades (Dawkins et al.
2012; Rodeh 2008; ZFS 2015). New features such as block de-duplication (Appaji Nag Yasa and
Nagesh 2012), volume virtualization (Edwards et al. 2008), thin provisioning (Edwards et al. 2008),
volume mirroring (Patterson et al. 2002), writable clones (Dawkins et al. 2012), and back refer-
ences (Macko et al. 2010) have been added. The driving force behind these improvements is the
emergence of new technologies (e.g., virtualization and cloud storage), new data management
requirements, new hardware resources (e.g., multi-core CPU and flash memory), and changing
characteristics of workloads (e.g., more random file accesses and the decreasing ratio of data read
to data written (Leung et al. 2008)). Nowadays, an SSD can provide a much lower access latency
than that of an HDD (p32 2015). Ethernet bandwidth has been increased from 100Mb/s to 100Gb/s
in 20 years (Ban 2015). A modern CPU can have many cores and the size of DRAM in a storage
server has been increased to hundreds of GBs (FAS 2015). After analyzing two large-scale network
file system workloads, Leung et al. found that compared with year 2000, file sizes are up to an
order of magnitude larger and files live an order of magnitude longer (Leung et al. 2008). Their
conclusion is that file system workload features keep changing in the past one and a half decades
(Leung et al. 2008).

Modern hardware resources pose new challenges on request scheduling. For instance, a higher
network bandwidth makes a greater data transfer rate possible, which in turn increases user’s ex-
pectation on an even shorter request response time. Therefore, further lowering mean response
time becomes not only desirable but also essential. Along the same line, the multi-core CPU ar-
chitecture makes processing multiple client requests simultaneously feasible. However, a multi-
threaded request scheduler is very complicated to build, which is especially true when multiple
threads are concurrently processing requests fetched from different request queues with distinct
priorities (see Figure 2). Similarly, new considerations in request scheduling are needed in or-
der to adapt to the changing workload characteristics. For example, when file access becomes
more write-intensive (Leung et al. 2008), the priority of write requests needs to be boosted so that
mean response time could be reduced. The changing characteristics of workloads and hardware
resources motivate us to re-evaluate and enhance the effectiveness of existing request scheduling
techniques.

It is well recognized that request scheduling plays a central role in a storage system as its
efficacy can significantly impact performance. Nevertheless, efficient request scheduling for
a storage system is challenging because different workloads have distinct characteristics and
various types of requests have diverse timeliness constraints. Besides, the interplay between
front-end and back-end requests as well as the combined effect of a spectrum of scheduling factors
on performance make request scheduling even more complicated. Unfortunately, while there are
many studies on block-level disk I/O scheduling (Reddy and Wyllie 1993; Bruno et al. 1999; Shenoy
and Vin 1998; Iyer and Druschel 2001; Chen et al. 1991; Boutcher and Chandra 2010; Thomasian
2011; Kim et al. 2009; Rompogiannakis et al. 1998; Xu and Jiang 2011; Povzner et al. 2008), little has
been reported in the literature concerning enterprise storage system file-level request scheduling.
Thus, we have limited knowledge about how an enterprise file system scheduler works and, even

ACM Transactions on Storage, Vol. 14, No. 2, Article 14. Publication date: April 2018.

14:4 D. Zhou et al.

more importantly, how various scheduling factors such as request dispatching and queue weight
setting affect performance. Moreover, there is a lack of a good understanding on how to enhance
request scheduling to adapt to the changing characteristics of workloads and hardware resources.
To answer these questions, in this work we first build an enterprise file system request scheduler
prototype whose major scheduling factors are all configurable. The multi-threaded prototype is
built based on the WAFL scheduling model. Next, empirically evaluations on various scheduling
configurations are carried out by running the prototype within WAFL on a NetApp’s enterprise-
class storage system. In particular, we quantitatively measure system performance in terms of
mean response time (hereafter, MRT) at the client side. The response time of a client request
is defined as the elapsed time from when the request is issued by a user application to when
the response is received by the user application. It includes a networking delay and client-side
processing latency. Several observations have been obtained. Inspired by these observations, two
scheduling enhancement heuristics called SORD (size-oriented request dispatching) and QATS
(queue-depth aware time slicing) are proposed. SORD boosts the priorities of small requests (i.e.,
requests that have short service times) by sending them to a high-priority queue based on the
principle of shortest-job-first to reduce overall MRT. The size of a time slice generated by QATS
for a particular request is determined by not only the weight of the queue where the request comes
from but also the depth of the queue. A time- slice is a short interval of time during which a CPU
deals uninterruptedly with one thread, before switching to another. Finally, the two enhancements
are implemented in our prototype, which is then integrated into WAFL. Experimental results
from two categories of workloads (i.e., SPC-1 (Traeger et al. 2008) and SFS2014 (sfs 2015)) on both
HDD-based and all-flash platforms demonstrate their effectiveness. For example, the combination
of the two can reduce MRT by up to 51.42% under the SPC-1 workloads.

The rest of this article is organized as follows. The request scheduler prototype is introduced
in Section 2. Evaluations of various request scheduling configurations are presented in Section 3.
Section 4 discusses the two scheduling enhancement heuristics. Their evaluations are provided
in Section 5. Related work is presented in Section 6, which is followed by the conclusions in
Section 7.

2 ENTERPRISE FILE SYSTEM SCHEDULER

We first briefly introduce some basic knowledge of an enterprise file system request scheduler.
Next, we explain how our request scheduler prototype schedules requests in a storage system.
Finally, we discuss main functions of the scheduler prototype including queue weight setting,
request dispatching method, and time-slice computing.

2.1 Request Scheduling Basics

In general, scheduling algorithms of enterprise storage systems are not available in the public do-
main as they are closely guarded as proprietary intellectual properties. However, based on our
knowledge on the WAFL scheduling model and our understanding on the common needs of re-
quest scheduling among various storage systems, we can still develop a general request scheduler
prototype from which a good understanding of request scheduling can be gained. For example, we
understand that both Data ONTAP and OneFS utilize a multi-threaded manner to concurrently
process multiple requests (EMC 2015). Also, both of them employ an NVRAM to log writes so
that their response times can be largely reduced (EMC 2015). Besides, they all support NAS and
SAN protocols (EMC 2015). In fact, the entire scheduling mechanism of a storage operating sys-
tem can be separated into two levels: (a) scheduling of all threads/processes in the OS; and (b)
scheduling of all file operations generated from both clients and the system itself within specific
threads dedicated to file operations. While the first level of scheduling is driven by requirements

ACM Transactions on Storage, Vol. 14, No. 2, Article 14. Publication date: April 2018.

Empirical Evaluation and Enhancement of Enterprise Storage System Request Scheduling 14:5

that are common to most operating systems (Gupta et al. 1991; McKusick and Neville-Neil 2004),
the second level of scheduling exhibits characteristics quite different from a general OS request
scheduling. This article focuses on the second level of scheduling.

In a storage operating system, normally several file service threads work in a cooperative fashion
with service threads of other modules like networking, protocol stacks (e.g., NFS, CIFS, SAN),
RAID, and storage (see Figure 1). The scheduling of these threads tries to optimize for overall
system throughput while ensuring that workloads critical to the health of the system get some
kind of preferential treatment. Obviously, file service threads are given a large fraction of CPU
time to ensure sufficient parallelism and low waiting times for these threads. Once those threads
get scheduled, the second level of scheduling kicks in to decide which operations get executed.

File system operations can be generally classified into three broad categories: (a) front-end op-

erations created to service requests generated by protocol clients (NFS, CIFS, SAN, etc.); (b) data

management operations created to service requests generated by various features like snapshot
creation/deletion, replication, mobility, and so forth; and (c) back-end operations associated with
general file system health. Back-end operations can be further divided into critical work that needs
to complete in a short time interval versus lower priority work that needs to make forward progress
at some steady pace over a longer time frame. For example, a file system acknowledges a mutable
front-end client operation (e.g., a write) once it is logged in an NVRAM, which is replayed after a
crash to prevent data loss. Normally, to improve efficiency, a file system collects the results of sev-
eral thousands of mutable operations, and then flushes them to persistent storage as a consistent
image (Hitz et al. 1994). The mechanism is called a consistency point, aka a CP. For example, WAFL
creates a CP every 10 minutes and a CP needs to be completed within a few seconds to reclaim the
NVRAM log space. In most cases, hundreds of back-end operations are generated to accomplish a
CP. These back-end operations are critical for system health, and thus, are all deadline-sensitive.
This is because if they cannot be finished within a few seconds the NVRAM will run out of log space
soon. Consequently, it can no longer serve newly arrived write requests, and thus, largely delays
them. As a general rule, front-end operations need to finish quickly since the applications running
on those NAS/SAN clients are usually quite sensitive to the latency of these requests. Therefore,
most file system designs acknowledge these operations after completing a minimum amount of
work while ensuring that their schedulers minimize the waiting times for these operations. On the
other hand, back-end and data management operations are concerned about throughput.

To our knowledge, most enterprise file systems are originally built or have been eventually mod-
ified for parallelism such that operations can be run concurrently on multiple cores available in a
storage system. Most multi-processor (MP) models define access rules on file system data struc-
tures both on-disk and in-memory. The WAFL MP model (Curtis-Maury et al. 2016), for example,
defines multiple MP-contexts based on data structure access, and thus maintains several sets of
run-queues, one per MP-context. A recent study from NetApp (Curtis-Maury et al. 2016) explains
the WAFL MP model, which is out of the scope of this article. Although WAFL uses a complex set
of MP rules to choose between these sets, our request scheduler prototype only has a single set of
run-queues as this article focuses on how a scheduler chooses operations within one set of run-
queues. Although our prototype is a simplified version of a real-world storage system scheduler,
our results are still relevant.

2.2 The Request Scheduler Prototype

Since WAFL is one the most prevalent enterprise file systems, we build a request scheduler proto-
type based on its scheduling model, which consists of three key functional modules (i.e., a queue
selector, a request dispatcher, and a time-slice calculator), a multi-queue structure, and a thread
pool. To make our request scheduler prototype fully functional yet simple, our prototype inher-

ACM Transactions on Storage, Vol. 14, No. 2, Article 14. Publication date: April 2018.

14:6 D. Zhou et al.

Fig. 2. The request scheduling prototype.

its the three functional modules and the thread pool while simplifying the multi-queue structure
by only using three queues: a high-priority queue, a low-priority queue, and a system mainte-
nance queue. All major scheduling factors like request dispatching (i.e., different ways to dispatch
requests to the three queues) are tunable in our prototype, which is a multi-threaded scheduler.

The structure of the request scheduler prototype is shown in Figure 2. Our scheduler prototype
also consists of three functional modules: a queue selector, a request dispatcher, and a time slice
calculator. The period of time for which a request is allowed to be executed in a preemptive way
is called a time slice. In addition, it has three request queues with different priorities. While the
high-priority queue (HQ) and the low priority queue (LQ) are used to store client requests, the
maintenance queue (MQ) is reserved for critical back-end operations like consistency point op-
erations. There are n request service threads, which are managed in a thread pool. Normally, the
value of n is one or two fewer than the number of cores in a multi-core CPU. Requests can be
generally categorized into three types: client request (e.g., read request, write request), back-end
requests that are generated by system maintenance tasks (e.g., cache pre-fetching and log flushing),
and restarted requests (i.e., either a client request or a back-end request that cannot be completed
within its time slice due to the unavailability of a required resource such as a lock on a file).

When a request arrives, the request dispatcher forwards it to one of the three queues based on
its type, urgency, and source. Once a request enters a queue, the scheduler checks the thread pool
to find out whether there is an idle thread there. If so, an idle thread is woken up to execute the
request. Otherwise, the request has to wait in the queue until it is picked up by an active thread.
Figure 2 shows the entire process of how a request in the HQ is handled. Assume that Thread 1 is
just invoked to execute a request. It first consults the queue selector to find out from which queue
it should fetch a request. And then it asks the time-slice calculator how much time it can have to
execute the request. At this moment, the queue selector selects a queue for Thread 1 and sends a
queue ID to it (see step 1 in Figure 2). We assume that the HQ is selected in this case. Next, the
time- slice calculator computes an appropriate time slice for Thread 1 (see step 2). After the thread
obtains the queue ID and the time slice, it first checks whether the time slice is large enough for
one request execution. If yes, it goes to the HQ and fetches a request from its head for execution

ACM Transactions on Storage, Vol. 14, No. 2, Article 14. Publication date: April 2018.

Empirical Evaluation and Enhancement of Enterprise Storage System Request Scheduling 14:7

(see steps 3 and 4). The position of a request in a queue is determined by its deadline together
with other factors like its type. For example, requests can be categorized into two types: deadline-
driven and best-effort. To ensure the promised performance, only a certain amount of requests can
be tagged as deadline-driven. They must be processed quickly from the HQ. However, a storage
system also allows best-effort requests to enter into the HQ because it actually can serve more
requests than just the deadline-driven requests in most scenarios. However, quick response times
of these best-effort requests cannot be guaranteed as they are put into the back of the HQ. As
a result, a later arrived deadline-driven request will be placed in front of all earlier arrived best-
effort requests in the HQ so that it will not be delayed by the best-effort requests. If the execution
is successful, the thread then checks how much time is left. If the time left is still sufficient for one
more request execution, it repeats step 3 and step 4 to execute next request in the HQ. However,
if the execution is suspended due to the lack of a required resource (e.g., a lock on a file), the
request will be inserted into a suspended list where it waits for the resource (see step 5). After the
resource is available, the request will be sent to the LQ instead of its original HQ in step 6. This is
because the request scheduler thinks that a restarted request is more likely to be restarted again
in the future, and thus, it is not a short request. After Thread 1 parks the suspended request to the
suspended list, it goes back to execute next request in the HQ if its time slice permits.

As shown in Figure 2, there are a group of threads in the thread pool, which enables a file sys-
tem to serve multiple requests from different queues concurrently. For example, while Thread 1 is
serving requests in the HQ, Thread i and Thread j are processing requests from the LQ and the MQ,
respectively. For simplicity, Figure 2 only shows three threads that are working concurrently on
the three queues. However, in reality multiple threads (e.g., Thread j and Thread n) could simulta-
neously process requests from a particular queue (e.g., the MQ). Also, the number of threads (i.e.,
n) is normally set to one or two fewer than the number of cores. For example, our high-end HDD-
based experimental platform (see Table 1) has 20 cores. Thus, n is set to 19 so that one core can be
dedicated for other system tasks. Obviously, various factors including priority setting among the
three queues, queue selecting algorithm, request dispatching strategy, and time-slice calculation
method can impact the performance of a storage system.

2.3 Scheduler Main Functions

Requests have different properties and requirements. Some of them are short requests as they
can be finished within a very short period of time. For example, write requests are short requests
because an enterprise storage system like a NetApp’s Filer normally contains an NVRAM (e.g.,
battery backed up DRAM) to serve a write request and then immediately acknowledges to the
client that the request is completed. On the other hand, a restarted request might wait for another
resource during its subsequent execution, and thus, it probably cannot be completed quickly. Ob-
viously, scheduling short requests first can improve performance as it lowers MRT. So, different
types of requests should have distinct execution priorities. To this end, WAFL scheduler assigns a
unique weight for each of the three queues (see Figure 3). In the example illustrated in Figure 3,
the weights of the three queues are set to 60, 30, and 10, respectively. These values are empirically
decided by NetApp engineers because these values can normally provide a satisfied performance
for most workloads. The value of the weight of a particular queue decides the probability that it
will be selected for an idle thread in the thread pool. For the HQ in Figure 3, it has a 60% chance
to be chosen to acquire an idle thread (see step 1 in Figure 2).

The request scheduler dispatches different types of requests to different queues. In particular, all
client requests (including reads and writes) and general background requests (e.g., system main-
tenance requests) are sent to the HQ. This is because the majority of such requests are able to be
completed rapidly through an optimized code path, which is called a fastpath in WAFL. In order

ACM Transactions on Storage, Vol. 14, No. 2, Article 14. Publication date: April 2018.

14:8 D. Zhou et al.

Fig. 3. Request queues and default weight setting.

to quickly finish requests that do not have to restart or wait for a resource (e.g., disk I/O, memory
allocation, locking), WAFL provides the fastpath for these requests by eliminating some steps that
a regular request normally has to walk through. For instance, most write requests can be served
directly by NVRAM logging, whereas the large-size cache can greatly speed up the execution of
read requests. Another reason for putting all client requests in the HQ is that each of them can
have a chance to leave the system fast. Once a request needs to access disk or wait for a resource,
it is sent to the suspended list from which it will be further forwarded to the LQ after its resource
becomes available (see steps 5 and 6 in Figure 2). In addition, if a request takes too much CPU time
before it can be finished, it will be preempted and then also sent to the LQ. The critical back-end
operations needed to complete the CP are dispatched to the MQ. These operations need to get
scheduled at some steady pace to ensure the CP completes before resources like the NVRAM are
filled up. Therefore, these operations cannot starve for CPU. However, these operations should
also not get scheduled immediately, since that would starve the latency sensitive front-end oper-
ations of CPU. Thus, it is important to give the MQ a proper weight and time slice, given that the
number of operations enqueued to the MQ are typically much smaller than those enqueued to the
LQ and HQ. Additionally, the weight and time slice given to the MQ changes dynamically based
on a complex ratio of the two rates that are constantly measured: the rate of the CP progress and
the rate at which incoming front-end mutable operations consume resources like NVRAM. This
dynamic nature of the weight and time slice for the MQ is outside the scope of this article, which
focuses more on the HQ and LQ. In all experiments in this article, the weight of MQ is set to 10.

In addition to queue weight setting, time-slice computing also plays an important role in decid-
ing the waiting times of requests. In order to ensure a short waiting time for requests in the HQ,
the queue weight is a factor to be considered during time slice calculating. In fact, the time slice
calculator always generates a larger time slice for the HQ. As a result, the higher the weight of a
queue, the more CPU time it obtains. Currently, the request scheduler prototype uses the following
equation (i.e., Equation (1)) to calculate the time slice for a non-empty queue i:

TS (i) = C ∗ w (i)
∑

n

i=1w (i)
. (1)

C is a scheduling time window during which a Data ONTAP server can only execute either
serial requests or concurrent requests of WAFL. Since the server switches between the executions
of the two types of requests in every 2,000μs , the default value of C is set to 2,000μs . w(i) is the
weight of queue i, which is divided by the sum of weights of all non-empty queues. The unit of a

ACM Transactions on Storage, Vol. 14, No. 2, Article 14. Publication date: April 2018.

Empirical Evaluation and Enhancement of Enterprise Storage System Request Scheduling 14:9

Table 1. Configurations of the Four Platforms

Platforms Cores DRAM/NV Disks Flash
low-end 4 16/2GB 113 512GB
mid-range 12 96/4GB 281 1TB
high-end 20 128/16GB 281 2TB
all-flash 20 128/16GB 113 N/A

time slice is μs . Based on Equation (1), the default time slices for the HQ, LQ, and MQ are 1,200μs ,
600μs , and 200μs , respectively. Note that in all experiments the time slice of MQ keeps 200μs .

3 EVALUATION OF REQUEST SCHEDULING

As we discussed in the previous section, several factors like request dispatching method, queue
weight setting, and queue depth imbalance could affect the performance of a storage system. Un-
derstanding their impact is essential for us to further enhance request scheduling. In this section,
we empirically evaluate their impact on performance in terms of MRT under different load levels
(i.e., the number of requests arrived per second). In particular, various configurations of these fac-
tors have been tested using the workloads generated by the SPC-1 (Traeger et al. 2008) workload
generator.

3.1 Experimental Setup

Although three HDD-based platforms and one all-flash platform have been used in this research
(see Table 1), experiments presented in this section are conducted only on the mid-range HDD-
based (hereafter, mid-range) platform or the high-end HDD-based (hereafter, high-end) platform.
The low-end HDD-based (hereafter, low-end) platform is equipped with a four-core CPU, 16GB
DRAM, 2GB NVRAM, 113 disks, and a 512GB PCIe flash cache card, which is used to cache hot
data. All three HDD-based platforms use 450GB 15K SAS HDDs. The all-flash platform uses 113
SSDs with each having a 400GB capacity. In this platform, flash cache is disabled. SPC-1 represents
typical workloads of business-critical applications such as online transaction processing (OLTP)
systems, database systems, or mail server applications (Traeger et al. 2008). The SPC-1 workload
consists of a large number of random I/O operations and a smaller number of sequential operations
to mimic queries, updates, and table scans. It synthesizes a group of users targeting I/Os to the
storage that is logically organized in the form of three application storage units (ASUs). ASU-1
represents a Data Store, which stores raw incoming data for the application system. It holds 45%
of the total capacity. ASU-2 represents a User Store, which contains information processed by the
application system. It also holds 45% of the total capacity. ASU-3 represents a Log/Sequential Write,
which stores files written by the application system for the purpose of protecting the integrity of
data (Council 2017). It only possesses 10% of the total capacity. An ASU attracts one or more I/O
streams and each I/O stream consists of a sequence of I/O commands. For example, the Data Store
has four parallel I/O streams associated with it: one random walk, one sequential scan, and two
localized I/O streams. The I/O intensity for Data Store represents 59.6% of the total SPC-1 I/O
command traffic. SPC-1 has 40% read requests and 60% write requests. Also, while the chance of
a request being a sequential read/write is 40%, the chance of a request being a random read/write
with some temporal locality is 60% (Gill and Modha 2005). The size of most requests in SPC-1
workload is 4KB. An important reason for us to choose SPC-1 workload in this section is that
database and OLTP are two of the most deployed workloads on Data ONTAP servers worldwide.

Each experiment is carried out on a platform with three clients sending requests to it. Each client
is a Linux workstation on which a workload generator is running. During each experiment, the

ACM Transactions on Storage, Vol. 14, No. 2, Article 14. Publication date: April 2018.

14:10 D. Zhou et al.

platform goes through the following stages one by one: a warming up stage, a pre-measurement
stage, a measurement stage, and a post-measurement stage. The platform begins to collect the
experimental results after it runs into a steady status (i.e., measurement stage). If no exception
occurs, an experiment normally takes over 12 hours to complete. However, if an exception happens
(e.g., an experiment fails before it finishes) an experiment could take a much longer time. To have
a high level of confidence on experimental results, the following rules have been applied to all
experiments presented in this article: (1) Each experiment has been run at least twice under the
same conditions. If the peak throughput difference between the first two runs of an experiment is
less than 1%, the third run becomes unnecessary as the results are viewed as reproducible, which
means that the run-to-run variation is less than 1%. Otherwise, three more runs of the experiment
have to be carried out and the average values of the five runs are taken as the final experimental
results. For all runs of an experiment, we found that the peak throughput difference between any
two runs never exceeds 1.5%. Therefore, all experimental results presented in this article have
been verified to be reliable. (2) Only successful results are taken into consideration. The NetApp
Performance Lab automation infrastructure applies a group of strict rules (i.e., scripts) to conduct
a sanity checking for results from each experiment. A sanity checking covers a wide range of
examinations to make sure that an experiment behaves normally. For example, it checks to ensure
that all deadline-driven requests are finished before their deadlines and the system is in a consistent
status at the end of an experiment. Only after an experiment passes a sanity checking are its
results taken as successful, and thus, can be presented in this article. (3) All the experimental result
comparisons have been scrutinized by experienced performance analysts and technical experts in
NetApp to ensure the differences are real instead of variations or noises.

The experiments are very expensive in terms of time and resource consumption. For example,
experimental results shown in Figure 5(a) come from three experiments. Each of them measures
performance across 11 load points when the weight of HQ is set to a particular value. Also, each of
them has to be run at least twice. Totally, the three experiments require a high-end platform plus
three workstations for at least 72 hours (i.e., 3 HQ weight settings × 12 hours × 2 runs = 72 hours).
Note that the MRTs shown in all experimental result figures (i.e., Figures 4–8) in this article are
normalized to the MRT values of an existing approach like Baseline (see Table 4). The real MRTs
of different load points obtained from all three HDD-based platforms are in the range from less
than 1 millisecond to near 30 milliseconds. For experimental results from the all-flash platform,
the real MRTs vary from less than 1 millisecond to near 10 milliseconds.

3.2 Request Dispatching

Currently, the request dispatcher of the scheduler prototype (see Figure 2) sends all client requests
no matter reads or writes to the HQ in the hope that the vast majority of them could be completed
quickly. This strategy seems reasonable because most of client requests should be able to be served
without accessing disk due to the help from various existing mechanisms like NVRAM logging (for
writes) and buffering/caching (for reads). If a client request is blocked due to the lack of a resource,
it will be eventually sent to the LQ from where it waits for a future execution (see Figure 2). In other
words, a restarted request is treated as a second-class citizen by default in the request scheduler
prototype. The reason behind this is that the scheduler takes a pessimistic view of the future success
of a restarted request. It thinks that a restarted request is more likely to be suspended again in its
subsequent executions due to the lack of another resource. Therefore, the scheduler lowers the
priorities of restarted requests so that new client requests that are assumed to probably have a
shorter service time could be executed first. The shortest-job-first strategy has been proved to be
able to reduce MRT (Yang et al. 2006).

ACM Transactions on Storage, Vol. 14, No. 2, Article 14. Publication date: April 2018.

Empirical Evaluation and Enhancement of Enterprise Storage System Request Scheduling 14:11

Table 2. Restart Count Statistics

Count 0 1 2 3 + at least twice
SPC-1 80.67% 18.38% 0.95% 0.007% 4.91%

DATABASE 89.94% 6.47% 2.64% 0.96% 35.69%
SWBUILD 86.18% 3.45% 1.69% 8.68% 75.04%

VDA 92.19% 4.58% 1.65% 1.58% 41.36%
VDI 88.54% 5.73% 4.41% 1.32% 50%

However, is the long-held belief that a restarted request is more likely to be suspended again
in its next execution still true under the new workload and hardware conditions? To answer this
question, we track request executions of workloads generated by SPC-1 and SFS2014, which in-
cludes SFS2014_DATABASE (hereafter, DATABASE), SFS2014_SWBUILD (hereafter, SWBUILD),
SFS2014_VDA (hereafter, VDA), and SFS2014_VDI (hereafter, VDI). More information about
SFS2014 can be found at the beginning of Section 5.3. Table 2 lists restart counts that we dis-
cover from the executions of these workloads. For SPC-1, 80.67% requests can be finished without
a restart. While 18.38% requests are restarted once before they are successfully completed, only
0.95% requests need to be restarted twice to complete. The percentage of requests that need to be
restarted three times or more is 0.007%. The last column in Table 2 is called “at least twice.” which
represents the ratio between the number of restarted requests that require at least two restarts
and the number of all restarted requests. For SPC-1, among all restarted requests, only 4.91% of
them require to be restarted twice or more. In other words, 95.09% restarted requests can be fin-
ished without the need for a second restart. The implication is that in SPC-1 a restarted request
has a very low chance to be suspended again during its second execution, which contradicts the
long-held belief.

Similar to SPC-1, the four workloads of SFS2014 also have a large percentage of requests (i.e.,
86.18%∼ 92.19%) that can be finished without any restart. However, in terms of “at least twice” they
exhibit a pattern that is very different from that of SPC-1. Results from Table 2 show that 35.69%–
75.04% of restarted requests in the four workloads demand two or more restarts. The suggestion is
that the long-held belief of a restarted request still holds to some extent for the SFS2014 workloads.

Observation 1. The vast majority of client requests in a workload can be completed without a

restart in a contemporary storage system. However, after a request has been restarted once, the proba-

bility of its second restart is workload-dependent. The long-held belief that a restarted request is more

likely to be suspended again in its next execution is no longer generally true as it only holds for some

workloads.

To understand how various request dispatching methods affect system performance, we conduct
several groups of experiments. To ensure the results are comparable, all experiments presented in
this section are carried out on a mid-range platform using the SPC-1 workloads. The only ex-
ceptions are results shown in Figure 4(c) and Figure 5(a), which are obtained from the high-end
platform specified in Table 1 because the mid-range platform is unavailable at the time of exper-
iments. The abbreviations of different types of requests are defined in Table 3 and the definitions
of different request dispatching methods are summarized in Table 4. Note that in all experiments
back-end requests are sent to the MQ and its weight is set to 10. The range of request arrival
rates is calibrated with a predefined performance target value, which is set to 30 milliseconds in
our experiments. This is because an MRT longer than 30 milliseconds is taken as unacceptable by
users. Since the high-end platform can serve more requests per second than the mid-range plat-
form, the request arrival rates for the experiments shown in Figure 4(c) and Figure 5(a) start at

ACM Transactions on Storage, Vol. 14, No. 2, Article 14. Publication date: April 2018.

14:12 D. Zhou et al.

Table 3. Summary of Request Type Abbreviations

Request type abbreviation Definition
RS Restarted requests
W Write requests
All Client and restarted requests
NP Non-preempted restarted requests

Table 4. Summary of Request Dispatching Methods

Request dispatching method Definition
Baseline Client requests to the HQ, RS to the LQ
RS-to-HQ RS are sent to the HQ, others to the LQ
All-to-HQ All requests are sent to the HQ
All-to-LQ All requests are sent to the LQ
W-to-HQ W are sent to the HQ, others to the LQ
W-RS-to-HQ W and RS are sent to HQ, others to LQ
NP-to-HQ NP are sent to HQ, others keep default

Fig. 4. The impact of request dispatching on performance.

120,000 requests per second rather than 75,000 requests per second. The values of MRT of all re-
quest dispatching methods (e.g., All-to-HQ) shown in Figure 4 are normalized to the MRT values
of Baseline.

We first compare the default request dispatching method (i.e., new client requests are sent to
the HQ while restarted requests are sent to the LQ) with two new approaches: RS-to-HQ (i.e., only
restarted requests are sent to the HQ while new client requests are sent to the LQ) and All-to-HQ
(i.e., all requests including new client requests and restarted requests are sent to the HQ). The two
new approaches propose two different ways to boost the priority of restarted requests. RS-to-HQ

ACM Transactions on Storage, Vol. 14, No. 2, Article 14. Publication date: April 2018.

Empirical Evaluation and Enhancement of Enterprise Storage System Request Scheduling 14:13

escalates the priority of restarted requests while decreasing the priority of new client requests.
Thus, it is an extreme approach to boosting the priority of restarted requests. Unlike RS-to-HQ,
All-to-HQ is a milder way to achieving the same goal as it allows restarted requests to enjoy
the same priority as new client requests. Figure 4(a) demonstrates that the two new approaches
degrade performance as they result in higher MRTs compared with the baseline at the same load
points. Compared with Baseline, RS-to-HQ increases MRT up to 14.5% (at the load point of 84 k/s),
whereas All-to-HQ increases MRT up to 11.6% (at the load point of 77 k/s). Load point 77k/s means
that clients send 77,000 I/O requests per second to the system. The conclusion is two-fold. First,
switching the priorities of restarted requests and new client requests cannot improve performance.
After all, for most workloads the number of restarted requests is far fewer than that of new client
requests. A large number of new client requests crowded in the LQ noticeably enlarges MRTs.
Secondly, simply sending all restarted requests to the HQ so that they can enjoy a weight equal to
that of new client requests does not work. This is because All-to-HQ mistakenly places preempted
restarted requests in the HQ.

Restarted requests can be generally categorized into two camps: preempted restarted requests
and non-preempted restarted requests. Preempted restarted requests are the requests that are sus-
pended by CPU because they have consumed too much CPU time before their completion. They
are long requests and normally are not deadline-sensitive. For example, a request of cache pre-
fetching most likely is a preempted restarted request. Unlike a preempted restarted request, a
non-preempted restarted request has to be suspended due to either the lack of a resource or wait-
ing for a disk I/O. Based on our observations, the majority of restarted requests are non-preempted
restarted requests. Obviously, preempted restarted requests should be sent to the LQ so that they
will not delay the executions of short requests in the HQ. Figure 4(b) demonstrates the correct-
ness of our analysis. From Figure 4(b) we can see that if only non-preempted restarted requests
are sent to the HQ, a better performance can be achieved. For example, compared with Baseline,
NP-to-HQ can reduce MRT by up to 6.8% at the load point of 82k/s (see Figure 4(b)). In addition,
Figure 4(b) shows that NP-to-HQ consistently outperforms All-to-HQ in all cases. The suggestion
from Figure 4(b) is that preempted restarted requests should stay in the LQ.

The purpose of experiments shown in Figure 4(c) is to find out where write requests should
be dispatched. As we can see, boosting the priority of write requests in most cases can improve
performance. In particular, compared with Baseline W-to-HQ reduces MRT by up to 9%, whereas
W-RS-to-HQ on average decreases MRT by 8.7%. W-RS-to-HQ consistently performs better than
W-to-HQ and it can improve performance by up to 15.3% (see Figure 4(c)).

Observation 2. Promoting the priorities of all client requests (i.e., read and write) and all restarted

requests (i.e., preempted and non-preempted) simultaneously degrades performance. To improve per-

formance, the priorities of write requests and non-preempted restarted requests should be boosted in

some workloads like SPC-1.

3.3 Queue Weight Setting

To understand the impact of HQ weight on performance, we conduct three groups of experiments
shown in Figure 5. All MRT values shown in Figure 5(a) (data comes from high-end system 7(a))
and Figure 5(b) (data comes from mid-range system 7(b)) are normalized to that of “HQ weight=60”
under various request arrival rates. We first measure the impact of the HQ weight on performance
in the default request dispatching mode: all restarted requests are sent to the LQ while all client
requests are forwarded to the HQ. In particular, we adjust the HQ weight from 60 (i.e., the default
value) to 90 to 120. Figure 5(a) shows that assigning a higher weight to the HQ in the default request

ACM Transactions on Storage, Vol. 14, No. 2, Article 14. Publication date: April 2018.

14:14 D. Zhou et al.

Fig. 5. The impact of queue weight and queue depth on performance under workload SPC-1.

dispatching mode cannot improve performance. In most cases, it even degrades performance (see
Figure 5(a)). The reason is that the default request dispatching method (i.e., Baseline in Table 2)
ignores the fact that most restarted requests are short requests, and thus, mistakenly sends them
to the LQ. Besides, increasing the weight of HQ lowers the relative weight of the LQ, and thus,
delays the executions of LQ requests. Note that most back-end requests are sent to the LQ but
some of them such as requests of NVRAM flushing (i.e., making a CP), checking point updating,
and snapshotting are also deadline-sensitive. These back-end operations are called critical work
in Section 2.1. They could block the executions of front-end client requests if they are not finished
in time. As a result, the overall performance becomes worse. This also explains the reason why
the default HQ weight 60 always provides the best performance in all cases. The implication of
Figure 5(a) is that increasing HQ weight alone without changing the request dispatching method
cannot improve performance.

Observation 3. Counter-intuitively, simply increasing the weight of HQ in the default request

dispatching mode degrades performance for some workloads like SPC-1. This is because the default

request dispatching mode mistakenly sends most restarted requests, which are short requests in some

workloads, to the LQ. Besides, overly increasing the weight of HQ further delays the executions of

some deadline-sensitive LQ requests whose delayed completion could block the executions of client

requests.

Figure 5(b) shows that adopting the W-RS-to-HQ request dispatching method can improve per-
formance when the HQ weight is increased from 60 to 90. On average, performance is improved
by 12.2%. In the best case, the performance can be improved by 17.6%. However, further increasing
the HQ weight from 90 to 120 results in a worse performance in most scenarios. This is because
overly increasing the weight of the HQ could starve the requests in the LQ. Still, in most cases,
HQ weight 120 delivers a better performance than the default HQ weight 60. Figure 5(b) suggests
that tuning the weight of the HQ could achieve a better performance only when it is accompanied
with a right request dispatching method.

ACM Transactions on Storage, Vol. 14, No. 2, Article 14. Publication date: April 2018.

Empirical Evaluation and Enhancement of Enterprise Storage System Request Scheduling 14:15

Observation 4. In order to improve performance, an HQ weight adjustment should go hand-

in-hand with an appropriate request dispatching method. In particular, properly increasing the HQ

weight achieves the most performance improvements when all short requests are dispatched to the HQ.

To understand the impact of HQ weight on performance under various load levels, we conduct
a group of experiments whose results are shown in Figure 5(c). All y-axis values of the four curves
are normalized to the MRT of load level 88k/s when the weight of HQ is set to 30. Four observations
can be drawn from Figure 5(c). First of all, a heavier load always results in a larger MRT, which
represents a lower performance. Secondly, increasing HQ weight with a right request dispatching
method (i.e., W-RS-to-HQ) always improves performance across all four load levels. Specifically,
under all four load levels, system performance is noticeably improved when the weight of HQ is
increased from 30 to 60. After that, system performance becomes either slightly better (e.g., 80k/s)
or even a little bit worse (e.g., 84k/s). The reason is that further increasing the weight of the HQ
after 60 could starve the requests in the LQ because its relative weight is decreased. As a result,
although the response times of requests in the HQ are decreased, the response times of requests in
the LQ are enlarged. The overall effect is that system performance in terms of MRT barely changes
when the weight of HQ is higher than 60. Thirdly, HQ weight should be at least 60. However, 60 is
not the best HQ weight value under some load levels. For example, load level 76k/s achieves its best
performance when HQ weight is set to 90, whereas load level 80k/s reaches its peak performance
when HQ weight is equal to 100. Finally, we discover that increasing the weight of HQ from 30
to 60 improves performance more significantly under a lighter load level (e.g., 76k/s) than under
a heavier load level (e.g., 88k/s). For example, when HQ weight is increased from 30 to 60, the
four load levels 76k/s, 80k/s, 84k/s, and 88k/s reduce their MRTs by 2.33, 1.79, 1.41, and 1.24 times,
respectively. Obviously, HQ weight has a higher impact on performance when a storage system
is under a lighter load level. We speculate that the phenomenon may be related to the fact that
there are more requests in the LQ when system load becomes heavier, and thus, increasing HQ
weight could delay the executions of these LQ requests. Thus, overall MRT cannot be significantly
reduced by increasing the HQ weight.

Observation 5. The relative weight of HQ should be sufficiently high (e.g., at least 60% of the total

weight for the SPC-1 workloads). However, setting HQ weight constantly (e.g., 60%) cannot always

achieve the best performance under various load levels. The HQ weight has a higher impact on the

performance of a storage system when it is under a lighter load condition.

3.4 Queue Depth Imbalance

Queue depth imbalance could negatively impact performance. For example, when there are a large
number of requests in HQ while there are only a few requests in LQ, a low-priority request in
LQ could be finished before a high-priority request in HQ even if the two requests enter their
respective queues at the same time. This is unfair for the high-priority request. To measure the
impact of the queue depth imbalance between the HQ and the LQ, we test two extreme cases: all
requests are sent to the HQ and all requests are sent to the LQ. Each of these two cases represents an
extreme situation of queue depth imbalance as one of the two queues must be empty. As expected,
the results from Figure 5(d) tell us that neither of the two extreme cases can improve performance.
All-to-HQ can achieve a similar performance as Baseline although all short restarted requests (i.e.,
non-preempted restarted requests) have been sent to the HQ. This is because All-to-HQ leads to a
very crowded HQ, which in turn results in a higher MRT for requests in the HQ. Compared with
All-to-HQ, All-to-LQ delivers a much worse performance as the time slice of the LQ is shorter than
that of the HQ. As a result, All-to-LQ wastes more CPU time due to frequent thread switching. In
fact, sending all the requests to the LQ does not make any sense in reality. The reason to test it

ACM Transactions on Storage, Vol. 14, No. 2, Article 14. Publication date: April 2018.

14:16 D. Zhou et al.

is two-fold. First, we want to measure the impact of queue depth imbalance between the HQ and
LQ. Obviously, the most severe queue depth imbalance between the two queues happens when all
requests are sent to one of them while leaving the other completely empty. After conducting this
experiment, we can have a concrete idea about how bad it is when the depth of the two queues
is totally imbalanced. Secondly, this experiment also suggests to us that it is better for us to have
two separate queues (i.e., HQ and LQ) rather than one merged queue. Note that the values of MRT
of All-to-HQ and All-to-LQ shown in Figure 5(d) are normalized to that of Baseline.

In particular, MRT is increased from −0.4% (i.e., at the load point of 82k/s) to 11.6% (i.e., at the
load point of 77k/s) under different load points when all requests are sent to the HQ. Compared
with Baseline, All-to-HQ on average increases MRT by 6.3%. When all requests are dispatched to
the LQ an even worse performance degradation occurs as MRT is increased from 14.3% (i.e., at the
load point of 86k/s) to 83% (i.e., at the load point of 76k/s) (see Figure 5(d)). Compared with Baseline,
All-to-LQ on average increases MRT by 48.6%. Although all requests sent to the LQ never happens
in the real world, this experiment indicates that how queue depth imbalance can hurt system
performance. In addition, the huge performance gaps between the two extreme cases indicate that
queue weight setting indeed plays an important role in improving system performance.

Observation 6. Queue depth imbalance between the HQ and the LQ negatively affects perfor-

mance. However, the extent of its influence on system performance depends on queue weight setting.

4 TWO SCHEDULING ENHANCEMENT HEURISTICS

Based on the six observations, we propose two scheduling enhancement heuristics SORD and
QATS to further improve performance. The two heuristics are independent from each other, and
thus, they can be applied to the scheduler prototype either individually or together. While the idea
of SORD is not novel, QATS is a new scheduling approach.

4.1 SORD

We propose the SORD strategy to boost priorities of small requests based on the principle of
shortest-job-first. Inspired by the Observation 1, SORD prioritizes write and restarted requests by
sending them to the HQ. SORD only sends non-preempt restarted requests to the HQ. Preempted
restarted requests are still dispatched to the LQ as they are not deadline sensitive. SORD could de-
lay large read requests as it sends them to the LQ. To solve this issue, WAFL is now equipped with
a read-ahead engine, which can detect sequential I/O operations and pre-fetch multiple blocks of
data at once. Thus, large read requests would not be punished. With a read-ahead engine, these
read requests actually can be executed quicker, although they are in the LQ.

It is difficult to estimate the size of a request (i.e., its service time) before it is executed as both ac-
cess pattern and platform may vary. However, some predictions can be made based on hardware
resource characteristics. For example, an enterprise-class storage server like an NetApp storage
server normally uses a large-size NVRAM to log write requests, which means most write requests
could complete without having to be suspended for NVRAM space. Thus, write requests should
also be considered short requests. In fact, the effectiveness of SORD has been demonstrated in Fig-
ure 4(c) where W-RS-to-HQ is equivalent to SORD. We will further evaluate SORD in this section.

4.2 QATS

Observation 5 indicates that a static queue weight setting cannot always achieve the best per-
formance for various load scenarios. In addition, the current time-slice computation method (see
Equation (1)) only amplifies the weight ratio among the three queues. Further, Observation 6 sug-
gests that queue depth imbalance degrades performance. Thus, it is desirable to decouple time-slice

ACM Transactions on Storage, Vol. 14, No. 2, Article 14. Publication date: April 2018.

Empirical Evaluation and Enhancement of Enterprise Storage System Request Scheduling 14:17

calculation and queue weight setting. We propose a queue-depth aware time slicing (QATS) method
(i.e., Equation (2)) to address the queue depth imbalance issue. In this method, q_dep (i) represents
the number of requests waiting in queue i . q_p (i) is the priority factor of queue i and it takes the
weight of queue i into consideration. While the queue weight w(i) is statically assigned by the
WAFL scheduler, the priority factor q_p (i) can be dynamically adjusted. It is expected that the
HQ should be assigned a larger time slice than the LQ when the queue depth of both queues is
equal. After all, HQ requests should have a higher priority. The application of q_p (i) allows us to
satisfy this requirement. For example, if the ratio of q_p (HQ) to q_p (LQ) is 2, the HQ will obtain
an equal length of time slice as LQ when its queue depth is only half of that of the LQ. In our
experiments of QATS, default values of the priority factors for the HQ, LQ, and MQ are set to 1, 1,
and 1, respectively.

TS (i) =
q_dep (i) ∗ q_p (i)

∑
n

i=1 q_dep (i) ∗ q_p (i)
∗Cap + Base . (2)

A very small time slice leads to a high scheduling overhead caused by frequent thread switch-
ing. On the other hand, assigning a very large time slice to requests in a particular queue may
starve requests in other queues. To avoid the two extreme scenarios, the proposed time slice equa-
tion (i.e., Equation (2)) guarantees that a time slice is at least larger than Base but no more than
Cap+Base. While Base represents a base value of a time slice, Cap limits a maximal value that a
time slice could be. In our experiments, the Base and Cap are set to 300μs and 5,000μs , respectively.
Unlike Equation (1), Equation (2) considers the depth of a queue when it calculates a time slice
for the queue. Equation (1) is used by the current WAFL scheduling model, on which our request
scheduler prototype is built. While QATS and Combo (see Section 5.2) employ Equation (2) to cal-
culate time slices, SORD and Baseline utilize Equation (1) to accomplish the same task. By default,
QATS is combined with the Baseline request dispatching method unless otherwise specified. Since
the default time slice for a request in the LQ is 600μs (see Equation (1)), we take half of it as the
Base so that the time slice for a request is at least more than 300μs . The Cap is set to 5,000μs be-
cause based on our observations it is very rare for a single request to take more than 5,000μs to
complete.

5 PERFORMANCE EVALUATION OF SORD AND QATS

In this section, we conduct an array of experiments using workloads generated by SPC-1 (Traeger
et al. 2008) and SFS2014 (sfs 2015) on both HDD-based and all-flash platforms to verify the effec-
tiveness of SORD and QATS.

5.1 Characteristics of SFS2014

Four platforms (see Table 1) and five different workloads (i.e., SPC-1 and four branches of SFS2014
as shown in Table 5) are used to verify the effectiveness of the two proposed scheduling poli-
cies. The dataset size of each experiment is configured to 10–20 times the memory size, which is a
typical setting for performance measurements. While all SPC-1 experiments use the FC (fiber chan-
nel) protocol, all SFS2014 experiments employ NFS (network file system) protocol (see Figure 1).
Like most existing empirical investigations on a computing system, we decide to use some well-
recognized workloads to evaluate the performance of the two proposed scheduling enhancement
heuristics. SPC-1 is selected because it has been recognized as an industry-standard benchmark and
it represents typical workloads of business-critical applications such as online transaction process-
ing (OLTP) systems, database systems, or mail server applications. We choose SFS2014 because it
is the latest version of the SPEC (Standard Performance Evaluation Corporation) benchmark suite
measuring file server throughput and response time. It represents new workload characteristics,

ACM Transactions on Storage, Vol. 14, No. 2, Article 14. Publication date: April 2018.

14:18 D. Zhou et al.

Table 5. Main Characteristics of SFS2014

File operation Read size Write size

Workload Composition distribution distribution distribution

DATABASE

DB_TABLE
(database
component)

79% random read and
20% random write

99% are 8 KB 100% are 8 KB

DB_LOG
(database log
writer)

80% sequential write and
20% random write

N/A 50% are >=8
KB

SWBUILD
N/A 70% perform stat() sys-

tem call on a file to
45% are 4 KB ∼
8 KB

39% are 1 KB ∼
8 KB;

retrieve its attributes 36% are 64 KB
∼ 128 KB

VDA

VDA1 (data
stream)

100% sequential write N/A 95% are >=64
KB

VDA2 (com-
panion appli-
cations)

84% random read 100% are >= 64
KB

N/A

VDI
N/A 20% random read and

64% random write
59% are 16 KB
∼ 32 KB

71% are <= 4
KB;

21% are 0.5 KB

and thus, it is more meaningful than some old workloads. Its four branches cover a broad scope of
applications from database, software building, and video streaming, to desktop systems. Thus, the
two heuristics have been fully tested by the five representative file-level workloads.

Since the SPC-1 workload has been introduced in Section 3.1, in this section we only summarize
the four workloads in SFS2014, which provides a standardized method for comparing performance
across different vendor platforms. The SFS2014 benchmark consists of four workloads: SWBUILD
is a classic metadata intensive build workload, which was derived from analysis of software builds.
VDA generally simulates applications that store data acquired from a streaming resource such
as surveillance cameras. DATABASE represents typical behavior of a database. VDI simulates a
steady-state high-intensity knowledge worker in a virtual desktop infrastructure environment that
uses full clones (sfs 2015). The four SFS2014 workloads are running on both the mid-range platform
and the all-flash platform (see Table 1). We evaluate Baseline and Combo on the eight workload-
platform combinations. Table 5 summarizes the characteristics of the four workloads of SFS2014.
DATABASE has two branches: DB_TABLE and DB_LOG. The former is read dominant as 79%
of its operations are random reads and 99% of them have a size of 8KB (see Table 5). Only 20%
of operations in DB_TABLE are random writes, which are all 8KB. The latter is sequential write
dominant for 80% of its operations are sequential writes with 50% of them larger than 8KB (sfs
2015). Similarly, VDA also has two branches. While VDA1 is a 100% sequential write workload with
95% operations larger than 64KB, VDA2 is random read dominant with all operations larger than
64KB. SWBUILD is a read-dominant workload, whereas VDI is a small random write-dominant
workload. The four workloads in SFS2014 show distinct characteristics from large sequential write
(i.e., VDA1), small random write (i.e., VDI), large random read (i.e., VDA2), to small random read

ACM Transactions on Storage, Vol. 14, No. 2, Article 14. Publication date: April 2018.

Empirical Evaluation and Enhancement of Enterprise Storage System Request Scheduling 14:19

Fig. 6. The impact of QATS on the mid-range platform.

(i.e., DB_TABLE). Thus, the two heuristics can be well evaluated under different types of workloads,
which makes the insights drawn from the experiments more general.

5.2 Experimental Results from SPC-1

In this section, we first evaluate the performance of SORD and QATS individually. Next, we test
their combined effects. All experiments in this section were carried out under the SPC-1 workloads
running on both HDD and all-flash storage servers. Evaluations of the individual effects of the
two heuristics are conducted on the mid-range platform (see Table 1). The combination of the two
proposed scheduling heuristics is referred to as Combo, which is measured across all platforms.
The weight of HQ is set to 90 in Combo.

Figure 6 shows the performance of QATS with different request dispatching methods. Note that
the values of MRT of all approaches (e.g., QATS and SORD) shown in Figure 6 are normalized to
that of Baseline. We can see that MRT is reduced significantly by integrating QATS with differ-
ent request dispatching methods including Baseline. In particular, Figure 6(a) displays the results
of combining QATS with the Baseline request dispatching. It shows that MRT is reduced up to
31% with an average reduction of 21.85%. The substantial performance improvement shown in
Figure 6(a) demonstrates the effectiveness of QATS. To measure the effect of QATS under an ex-
treme request dispatching method, we integrate it with All-to-LQ and All-to-HQ, respectively.
Figure 6(b) confirms the conclusion drawn from Figure 5(d) that All-to-LQ is a poor request dis-
patching approach. As we can see, it results in a lower performance than that of Baseline even
with the help of QATS. Figure 6(b) discloses that QATS (All-to-HQ) performs consistently better
than Baseline. On average, QATS (All-to-HQ) reduces MRT by 19.9%. QATS (All-to-HQ) performs
much better than QATS (All-to-LQ), which once again is confirmed by Figure 6(b).

We compare the performance of Baseline with SORD, QATS, and Combo in Figure 6(c). Two con-
clusions can be immediately drawn. First, SORD and QATS can noticeably improve performance in-
dividually. Compared with Baseline, SORD reduces MRT by up to 23.24% with an average reduction

ACM Transactions on Storage, Vol. 14, No. 2, Article 14. Publication date: April 2018.

14:20 D. Zhou et al.

Fig. 7. Experimental results under the SPC-1 workloads on different platforms.

of 13%. QATS performs even better than SORD. On average, it reduces MRT by 25.69% compared
with Baseline. In the best case, it reduces MRT by 35%. Secondly, Combo always delivers the
best performance among the four approaches. It lowers MRT from 11.8% to 51.42% with an av-
erage of 35.68% (see Figure 6(c)). The superior performance of Combo suggests that a request
dispatching method (e.g., SORD) and a time-slicing strategy (e.g., QATS) can complement each
other.

To measure the performance of Combo across different platforms, we conduct six groups of
experiments on the servers summarized in Table 1. Results from the first four graphs in Figure 7
demonstrate that Combo consistently outperforms Baseline across all four platforms. It achieves
the largest performance improvement on the mid-range platform, on which it reduces MRT from
14.3% to 46.29% with an average reduction of 30.55% (see Figure 7(b)). On the high-end platform,
Combo improves performance in a range from 3% to 42.15% with an average reduction of 17% (see
Figure 7(a)). On the low-end platform, Combo is only able to decrease MRT from 2.4% to 5.2% with
an average reduction of 4.27% (see Figure 7(c)). We speculate that the limited number of cores (i.e.,
four cores) on the low-end platform prevents the system from fully capitalizing on the scheduling
improvements. This is supported by the observation that the CPU utilization is above 397% while
the total is 400%.

ACM Transactions on Storage, Vol. 14, No. 2, Article 14. Publication date: April 2018.

Empirical Evaluation and Enhancement of Enterprise Storage System Request Scheduling 14:21

Since all-flash storage systems become more and more prevalent, the impact of the two sched-
uling heuristics on the performance of an all-flash storage system is also tested. Figure 7(d) shows
MRTs of SORD, QATS, and Combo normalized to that of Baseline. All three methods can still im-
prove performance compared to Baseline. However, their MRT reductions are not as significant as
the ones achieved on an HDD-based system. For example, Combo can reduce MRT by up to 24%
with an average of 9.5% on the all-flash platform while it can decrease MRT by up to 42.15% with an
average of 17% on the high-end HDD-based platform. Note that both the all-flash platform and the
high-end HDD-based platform are equipped with the same CPU capability and memory size (see
Table 1). We think that the decline of performance improvement is mainly because the access la-
tency gap between main memory and storage becomes smaller when HDDs are replaced by SSDs,
which cancels the impact of SORD. In an HDD-based storage system, the disk I/O latency is at the
millisecond level while a high-performance SSD can maintain a response time at the microsecond
level. Therefore, SSDs largely shrink the performance gap between memory and storage. That is
why the impact of SORD on a storage system becomes insignificant. The very small performance
improvement of SORD (i.e., only 1% MRT reduction on average) confirms our speculation. QATS,
on the other hand, still exhibits its strength as it reduces MRT about 8% on average. In most cases,
Combo still delivers the best performance among the four approaches in Figure 7(d).

Since throughput in terms of IOPS (Input/Output Operations Per Second) is also an important
performance metric for a storage server, we measure IOPS of Combo on these platforms as well.
Figure 7(e) illustrates peak throughputs of Combo and Baseline when MRTs are less than 30ms,
which is considered an acceptable MRT threshold. We find that Combo can slightly improve peak
throughput by 2.34%, 3.87%, and 0.02% for the high-end, mid-range, and low-end platforms, re-
spectively. Generally speaking, in industry a more than 1% reproducible throughput improvement
is considered as a real improvement instead of a run-to-run variation. Throughput boost above
3% is taken as a significant improvement in industry. Unlike an HDD-based platform that can im-
prove peak IOPS in a single digit by applying the Combo method, the all-flash platform can only
gain very little throughput improvement (i.e., less than 0.8%) (see Figure 7(f)). This is because we
maintain a much smaller cutoff (i.e., the threshold of MRT for a valid output) when evaluating
performance in an all-flash platform.

5.3 Experimental Results from SFS2014

The results from SFS2014 are shown in Figure 8. The scales and starting points on the y-axis of
the nine sub-figures may differ. The values of MRT of Combo are normalized to that of Baseline.
Some general observations can be made from Figure 8. First, in total eight workload-platform
combinations (i.e., Figure 8(a)–Figure 8(h)), Combo usually outperforms Baseline in five of them
(i.e., Figure 8(a), Figure 8(c), Figure 8(d), Figure 8(f), and Figure 8(h)). Secondly, Combo generally
performs better than Baseline in all four workloads on either one platform or both platforms. For
example, Combo improves performance in terms of MRT in DATABASE (HDD) (see Figure 8(a)),
SWBUILD (HDD and all-flash) (see Figure 8(c) and Figure 8(d)), VDA (all-flash) (see Figure 8(f)),
and VDI (all-flash) (see Figure 8(h)). Thirdly, except DATABASE Combo improves performance
in all three other workloads when it is running on the all-flash platform. Two indications of the
three observations are the following: (1) In general, Combo is effective for all SFS2014 workloads;
(2) Combo exhibits its strength for most SFS2014 workloads on the all-flash platform, which is
becoming increasingly prevalent.

Among the four SFS2014 workloads, Combo performs best in SWBUILD (see Figure 8(c) and
Figure 8(d)). When system load is light (i.e., request arrival rate is no more than 50k/s on the HDD
platform and 70k/s on the all-flash platform), Combo almost ties with Baseline. However, after
these load points, Combo on average reduces MRT by 18.5% on the HDD platform and 11% on the

ACM Transactions on Storage, Vol. 14, No. 2, Article 14. Publication date: April 2018.

14:22 D. Zhou et al.

Fig. 8. Experimental results under the SFS2014 workloads on different platforms.

ACM Transactions on Storage, Vol. 14, No. 2, Article 14. Publication date: April 2018.

Empirical Evaluation and Enhancement of Enterprise Storage System Request Scheduling 14:23

all-flash platform. Combo offers the best performance improvement at 60k/s (i.e., 60,000 requests
arrived per second) load point on the HDD platform and at 80k/s load point on the all-flash plat-
form. Compared with Baseline, it reduces MRT by 73.5% on the HDD platform (see Figure 8(c))
and by 74% on the all-flash platform (see Figure 8(d)). However, Combo performs very differently
between the two platforms under DATABASE (see Figure 8(a) vs. Figure 8(b)). While it reduces
MRT by up to 34% with an average of 4.3% on the HDD platform (see Figure 8(a)), it on average in-
creases MRT by 2.8% on the all-flash platform (see Figure 8(b)). The characteristics of DATABASE
can explain the phenomenon. DATABASE is a mixture of DB_TABLE and DB_LOG workloads.
While DB_TABLE is read-intensive (e.g., 79% of its operations are random reads with an average
read size of 8KB), DB_LOG is write dominant (e.g., 80% of its operations are sequential writes with
an average write size of 9.375KB) (sfs 2015). On an HDD, normally a sequential write request can
be finished quicker than a random read request with a similar request size. Therefore, sending
write requests to the HQ while dispatching read requests to the LQ as Combo does is appropri-
ate on an HDD-based platform as sequential writes are shorter requests compared with random
reads. That is why Combo performs better than Baseline as shown in Figure 8(a). However, on an
SSD, a random read request usually has a smaller turnaround time than a sequential write request
with a similar size because the read performance of flash memory is noticeably higher than its
write performance. Thus, sequential write requests are no longer shorter requests compared with
random read requests on an all-flash platform. Still dispatching write requests to the HQ while
sending read requests to the LQ is inappropriate. This is the reason why Combo cannot improve
performance on the all-flash platform as shown in Figure 8(b). Note that compared with Baseline
the MRT of Combo suddenly drops significantly when the request arrival rate reaches the point
12 (see Figure 8(a)). This is because the MRT of Baseline increases dramatically while the MRT of
Combo does not. We conjecture that the reason is that the system has reached its saturation point
under the Baseline strategy, and thus, the depth of the two queues (HQ and LQ) increases rapidly.
As a result, the MRT of Baseline is enlarged substantially due to the accumulated queuing delay.
This phenomenon does not appear in Figure 8(b). The reason is that the system has not reached its
saturation point under the load point of 12 because SSDs can process both read and write requests
much faster than HDDs.

For VDA and VDI workloads (see Figure 8(e)–Figure 8(h)), Combo shows a reversed effect com-
pared to DATABASE as it improves performance on the all-flash platform but suffers a regression
on the HDD platform. Specifically, it reduces MRT by 1% for VDA and 3% for VDI on the all-flash
platform, whereas on the HDD platform it increases MRT by 2.28% and 2.7% for VDA and VDI,
respectively. This effect is caused by the features of these two workloads. Take VDI, for example;
64% of its operations are random writes with 71% of them having a request size no larger than
4KB (sfs 2015). Although both platforms employ an NVRAM to log writes in order to speed up
their executions (see Figure 1), the capacity of the NVRAM on the all-flash platform (i.e., 16GB) is
four times that of on the mid-range HDD-based platform (i.e., 4GB) (see Table 1). Consequently,
the small random write requests of VDI are still short requests on the all-flash platform because
they can be quickly served by leveraging the large size NVRAM. Therefore, Combo outperforms
Baseline on the all-flash platform (see Figure 8(h)) because it correctly sends small random write
requests to the HQ while dispatching read requests to the LQ. After all, compared with read re-
quests, these small random writes are shorter requests. However, since there are too many small
random writes in VDI, they can rapidly fill up the small size NVRAM on the mid-range HDD-based
platform. As a result, the mid-range HDD-based platform needs to flush writes from its NVRAM to
HDDs frequently, which delays the executions of subsequent write requests as a CP normally takes
a few seconds to complete (see Section 2.1). Therefore, the average response time of the large num-
ber of small random writes increases. Compared with read requests, these random write requests

ACM Transactions on Storage, Vol. 14, No. 2, Article 14. Publication date: April 2018.

14:24 D. Zhou et al.

are no longer shorter requests. Still, only sending write requests to the HQ while dispatching all
read requests to the LQ on the mid-range HDD-based platform becomes inappropriate, and thus,
cannot improve performance (see Figure 8(g)). An appropriate approach is to send both reads and
writes into the HQ just like Baseline does. That is why Baseline performs better than Combo on
the mid-range HDD-based platform for the VDI workload (see Figure 8(g)). We also measure peak
performance improvement in IOPS for the four workloads on the two platforms in Figure 8(i). In
terms of peak IOPS improvement, Combo shows an excellent performance under SWBUILD. It
delivers an improvement of 26.1% on the HDD-based platform and 21.5% on the all-flash platform.
For VDI, peak IOPS delta ranges from −2.6% (HDD-based platform) to 0.75% (all-flash platform).
Peak IOPS delta is insignificant for the remaining two workloads of SFS2014.

6 RELATED WORK

There is little closely related work of this research. Here we only discuss a few scheduling schemes
that are relevant to file system request scheduling and some loosely related work on block-level
disk I/O scheduling.

Batsakis et al. develop a holistic framework for adaptively scheduling asynchronous requests in
distributed file systems (Batsakis et al. 2009). Their study is the closest to our work in the sense that
both address the problem of request scheduling on a distributed file system. However, their only
goal is to solve the congestion problem (Batsakis et al. 2009). Another research team studies how to
best schedule scans of large data files in the presence of tens of thousands simultaneous requests
to a common set of files in data processing environments like Map-Reduce systems (Agrawal et al.
2008). Their smart idea is to schedule non-sharable scans prior to ones that can share I/O work in
the future. Very recently, LADS (layout-aware data scheduler) has been developed for terabit net-
works (Kim et al. 2015). It exploits the underlying storage layout to optimize throughput. Again,
its focus is to solve congestion on the path of an end-to-end data transfer when bulk data move-
ment occurs. Although Yang et al. (2006) and Zaharia et al. (2010) address job scheduling rather
than request (or data) scheduling, the principles (e.g., prioritizing short jobs) that they used are
similar to file system request scheduling. When a request stalls its execution due to some reasons
(e.g., waiting for disk I/O), it is tagged as a textitrestarted request and then immediately sent to a
suspended list (see Figure 2). Other requests can still use the time slice until it expires. Yang et al.
study the delay distribution of SMART scheduling policies including SRPT (Shortest-Remaining-
Processing-Time) and PSJF (Preemptive-Shortest-Job-First) (Yang et al. 2006). They prove that all
SMART policies have the same delay distribution as SRPT and SMART policies are superior to
FCFS (First-Come-First-Served) (Yang et al. 2006). Our scheduler prototype also prioritizes short
requests in order to improve user perceived delay. The work of Yang et al. (2006) provides a theo-
retical foundation for SORD.

Existing disk I/O scheduling research studies (Reddy and Wyllie 1993; Bruno et al. 1999; Shenoy
and Vin 1998; Iyer and Druschel 2001; Chen et al. 1991; Boutcher and Chandra 2010; Thomasian
2011; Kim et al. 2009; Rompogiannakis et al. 1998; Xu and Jiang 2011; Povzner et al. 2008) mainly
focus on improving block-level disk I/O performance for an operating system (Shenoy and Vin
1998; Xu and Jiang 2011; Povzner et al. 2008) or a particular computing system like a multimedia
server (Reddy and Wyllie 1993; Rompogiannakis et al. 1998). Xu and Jiang develop a lightweight
disk scheduling framework that does not require any process knowledge for analyzing request
locality (Xu and Jiang 2011). Povzner et al. propose the Fahrrad disk I/O scheduler, which provides
correct real-time scheduling of a combination of hard and soft real-time I/O streams within a sin-
gle scheduler (Povzner et al. 2008). Both schedulers are finally implemented into a Linux operating
system to improve its disk scheduling efficiency. On the other hand, Reddy et al. propose a new
scheduling algorithm called SCAN-EDF based on unique features of disk requests in a multimedia

ACM Transactions on Storage, Vol. 14, No. 2, Article 14. Publication date: April 2018.

Empirical Evaluation and Enhancement of Enterprise Storage System Request Scheduling 14:25

server (Reddy and Wyllie 1993). Similarly, Romboyannakis et al. investigate disk scheduling algo-
rithms for mixed workloads in a multimedia server (Rompogiannakis et al. 1998). Most of disk I/O
scheduling techniques (Bruno et al. 1999; Shenoy and Vin 1998; Iyer and Druschel 2001; Chen et al.
1991; Rompogiannakis et al. 1998) are old and they are only for HDDs. After SSDs start to replace
HDDs in various computer systems, new I/O schedulers like IRBW-FIFO and IRBW-FIFO-RP have
been developed to fully utilize the potential of SSDs (Kim et al. 2009). All these existing disk I/O
scheduling techniques target on block-level I/O requests, which can only be seen by HDDs or SSDs.
On the contrary, this article concentrates on file-level request scheduling, which is accomplished
by a file system request scheduler.

7 CONCLUSIONS

Based on our understanding on the common request scheduling needs of some well-known storage
operating systems such as Data ONTAP (Dawkins et al. 2012) and OneFS (EMC 2015), we empiri-
cally evaluate various scheduling configurations on an enterprise storage system using workloads
generated by SPC-1 (Traeger et al. 2008), which is recognized as an industry-standard benchmark
(Traeger et al. 2008). Several observations are made from our evaluation results. First, we find that
certain factors like request dispatching method, queue depth imbalance, and queue weight setting
all affect the performance of a storage system. Moreover, their combined effect sometimes may
have an even higher influence. Secondly, traditionally a restarted request is always treated as a
second-class citizen as it most likely needs a longer time to finish in its next execution. Therefore,
it is normally thrown into a low-priority queue by a scheduler so that the processing of other
requests can be sped up. We find, however, that the conventional wisdom of scheduling restarted
requests does not hold for some workloads. For example, we find that a restarted request in the
SPC-1 workloads actually is more likely to have a shorter service time compared with a newly
arrived client request. Thirdly, we discover that adjusting queue weight setting alone to control
the speeds of request executions in distinct queues might not be effective if queue depth imbal-
ance is not taken into account. Next, inspired by the six observations, we develop two scheduling
enhancement heuristics SORD and QATS. Experimental results demonstrate that they can sub-
stantially improve performance under the SPC-1 workloads. To verify whether the observations
drawn from the SPC-1 workloads are applicable for other types of workloads, we further evaluate
the two heuristics under the SFS2014 workloads (sfs 2015). Results from SFS2014 show that the
two heuristics can still noticeably enhance performance in most cases, which confirms that the
insights from the six observations have some universality.

To the best of our knowledge, this article is the first investigation on file-level request scheduling
of an enterprise-class storage system. It, for the first time, discloses how an enterprise file system
request scheduler works and how various scheduling factors impact performance. The insights
drawn from the six observations can further enhance storage system performance through request
scheduling. We take these as the major contributions of this article. Although our prototype is
mainly built based on the WAFL scheduling model, we believe that the insights drawn from this
study are also helpful for other storage systems. The reason is two-fold. First, a multi-threaded
request scheduler becomes a natural design choice after the multi-core CPU architecture becomes
available. Secondly, file-level requests in a storage system normally have distinct priorities, which
necessitates multiple queues with different weights. Therefore, we believe that the lessons learned
here are portable to other storage systems. We find that it is very challenging to find a one-size-
fits-all scheduling solution for all workloads. The current scheduler prototype is static in the sense
that its key parameters like queue weight setting are all implemented in the kernel space, and
thus, cannot be tuned on the fly. In future work, we plan to add a dynamical request dispatching

ACM Transactions on Storage, Vol. 14, No. 2, Article 14. Publication date: April 2018.

14:26 D. Zhou et al.

mechanism so that a destination queue is dynamically selected for each request based on workload
patterns.

REFERENCES

2015. Bandwidth (Computing). Retrieved Sept. 11, 2015 from https://en.wikipedia.org/wiki/Bandwidth_(computing).

2015. [NetApp FAS8080 EX Datasheet. Retrieved Sept. 11, 2015 from http://www.netapp.com/us/media/ds-3580.pdf.

2015. P320h HHHL PCIe Enterprise SSD. Retrieved Oct. 19, 2015 from https://www.micron.com/∼/media/documents/

products/product-flyer/brief_p320h_hhhl.pdf.

2015. SPEC SFS 2014 Benchmark. Retrieved Sept. 11, 2015 from https://www.spec.org/sfs2014/.

2015. ZFS at OpenSolaris community. Retrieved Sept. 11, 2015 from http://opensolaris.org/os/community/zfs/.

Parag Agrawal, Daniel Kifer, and Christopher Olston. 2008. Scheduling shared scans of large data files. Proceedings of the

VLDB Endowment 1, 1 (2008), 958–969.

Giridhar Appaji Nag Yasa and P. C. Nagesh. 2012. Space savings and design considerations in variable length deduplication.

ACM SIGOPS Operating Systems Review 46, 3 (2012), 57–64.

Alexandros Batsakis, Randal Burns, Arkady Kanevsky, James Lentini, and Thomas Talpey. 2009. CA-NFS: A congestion-

aware network file system. ACM Transactions on Storage (TOS) 5, 4 (2009), 15.

Ellie Berriman, Paul Feresten, and Shawn Kung. 2015. IDC worldwide quarterly enterprise storage systems tracker.

David Boutcher and Abhishek Chandra. 2010. Does virtualization make disk scheduling passé? ACM SIGOPS Operating

Systems Review 44, 1 (2010), 20–24.

John Bruno, Jose Brustoloni, Eran Gabber, Banu Özden, and Abraham Silberschatz. 1999. Disk scheduling with quality

of service guarantees. In Proceedings of the IEEE International Conference on Multimedia Computing and Systems, 1999,

Vol. 2. IEEE, 400–405.

Shenze Chen, John A. Stankovic, James F. Kurose, and Don Towsley. 1991. Performance evaluation of two new disk sched-

uling algorithms for real-time systems. Real-Time Systems 3, 3 (1991), 307–336.

Storage Performance Council. 2017. PC Benchmark 1 (SPC-1) Specification - Revision 3.1. http://www.storageperformance.

org/specs/SPC1_v310.pdf.

Matthew Curtis-Maury, Vinay Devadas, Vania Fang, and Aditya Kulkarni. 2016. To waffinity and beyond: A scalable archi-

tecture for incremental parallelization of file system code. In Proceedings of the12th USENIX Symposium on Operating

Systems Design and Implementation (OSDI’16). USENIX Association, 419–434.

Scott Dawkins, Kaladhar Voruganti, and John D. Strunk. 2012. Systems research and innovation in data ONTAP. ACM

SIGOPS Operating Systems Review 46, 3 (2012), 1–3.

John K. Edwards, Daniel Ellard, Craig Everhart, Robert Fair, Eric Hamilton, Andy Kahn, Arkady Kanevsky, James Lentini,

Ashish Prakash, Keith A Smith, and others. 2008. FlexVol: Flexible, efficient file volume virtualization in WAFL. In

Proceedings of the USENIX 2008 Annual Technical Conference on Annual Technical Conference. USENIX Association, 129–

142.

EMC. 2015. EMC Isilon OneFS: A Technical Overview. https://www.emc.com/collateral/hardware/white-papers/h10719-

isilon-onefs-technical-overview-wp.pdf.

Binny S. Gill and Dharmendra S. Modha. 2005. Wow: Wise ordering for writes-combining spatial and temporal locality in

non-volatile caches. In Proceedings of the 4th Conference on USENIX Conference on File and Storage Technologies-Volume

4. USENIX Association, 10–10.

Anoop Gupta, Andrew Tucker, and Shigeru Urushibara. 1991. The impact of operating system scheduling policies and

synchronization methods of performance of parallel applications. In ACM SIGMETRICS Performance Evaluation Review,

Vol. 19. ACM, 120–132.

Dave Hitz and others. 1994. File system design for an NFS file server appliance. In USENIX Winter, Vol. 94.

Sitaram Iyer and Peter Druschel. 2001. Anticipatory scheduling: A disk scheduling framework to overcome deceptive idle-

ness in synchronous I/O. In ACM SIGOPS Operating Systems Review, Vol. 35. ACM, 117–130.

Jaeho Kim, Yongseok Oh, Eunsam Kim, Jongmoo Choi, Donghee Lee, and Sam H. Noh. 2009. Disk schedulers for solid state

drivers. In Proceedings of the 7th ACM International Conference on Embedded Software. ACM, 295–304.

Youngjae Kim, Scott Atchley, Geoffroy R. Vallée, and Galen M. Shipman. 2015. LADS: Optimizing data transfers using

layout-aware data scheduling. In Proceedings of the 13th USENIX Conference on File and Storage Technologies. USENIX

Association, 67–80.

Andrew W. Leung, Shankar Pasupathy, Garth R. Goodson, and Ethan L. Miller. 2008. Measurement and analysis of large-

scale network file system workloads. In Proceedings of the USENIX Annual Technical Conference, Vol. 1. 5–2.

Peter Macko, Margo I. Seltzer, and Keith A. Smith. 2010. Tracking back references in a write-anywhere file system. In

Proceedings of FAST. 15–28.

Marshall Kirk McKusick and George V. Neville-Neil. 2004. Thread scheduling in FreeBSD 5.2. Queue 2, 7 (2004), 58–64.

ACM Transactions on Storage, Vol. 14, No. 2, Article 14. Publication date: April 2018.

https://en.wikipedia.org/wiki/Bandwidth_(computing).
http://www.netapp.com/us/media/ds-3580.pdf.
https://www.micron.com/protect $elax sim $/media/documents/products/product-flyer/brief_p320h_hhhl.pdf.
https://www.spec.org/sfs2014/
http://opensolaris.org/os/community/zfs/.
http://www.storageperformance.org/specs/SPC1_v310.pdf
https://www.emc.com/collateral/hardware/white-papers/h10719-penalty -@M isilon-onefs-technical-overview-wp.pdf

Empirical Evaluation and Enhancement of Enterprise Storage System Request Scheduling 14:27

Hugo Patterson, Stephen Manley, Mike Federwisch, Dave Hitz, Steve Kleiman, and Shane Owara. 2002. SnapMirror®: File

system based asynchronous mirroring for disaster recovery. In Proceedings of the 1st USENIX Conference on File and

Storage Technologies. USENIX Association, 9–9.

Anna Povzner, Tim Kaldewey, Scott Brandt, Richard Golding, Theodore M. Wong, and Carlos Maltzahn. 2008. Efficient

guaranteed disk request scheduling with fahrrad. In ACM SIGOPS Operating Systems Review, Vol. 42. ACM, 13–25.

AL Reddy and Jim Wyllie. 1993. Disk scheduling in a multimedia I/O system. In Proceedings of the 1st ACM International

Conference on Multimedia. ACM, 225–233.

Ohad Rodeh. 2008. B-trees, shadowing, and clones. ACM Transactions on Storage (TOS) 3, 4 (2008), 2.

Y. Rompogiannakis, Guido Nerjes, Peter Muth, Michael Paterakis, Peter Triantafillou, and Gerhard Weikum. 1998. Disk

scheduling for mixed-media workloads in a multimedia server. In Proceedings of the 6th ACM International Conference

on Multimedia. ACM, 297–302.

Prashant J. Shenoy and Harrick M. Vin. 1998. Cello: A disk scheduling framework for next generation operating systems.

In ACM SIGMETRICS Performance Evaluation Review, Vol. 26. ACM, 44–55.

Alexander Thomasian. 2011. Survey and analysis of disk scheduling methods. ACM SIGARCH Computer Architecture News

39, 2 (2011), 8–25.

Avishay Traeger, Erez Zadok, Nikolai Joukov, and Charles P . Wright. 2008. A nine year study of file system and storage

benchmarking. ACM Transactions on Storage (TOS) 4, 2 (2008), 5.

Yuehai Xu and Song Jiang. 2011. A scheduling framework that makes any disk schedulers non-work-conserving solely

based on request characteristics. In Proceedings of FAST. 119–132.

Chang-Woo Yang, Adam Wierman, Sanjay Shakkottai, and Mor Harchol-Balter. 2006. Tail asymptotics for policies favoring

short jobs in a many-flows regime. ACM SIGMETRICS Performance Evaluation Review 34, 1 (2006), 97–108.

Matei Zaharia, Dhruba Borthakur, Joydeep Sen Sarma, Khaled Elmeleegy, Scott Shenker, and Ion Stoica. 2010. Delay sched-

uling: A simple technique for achieving locality and fairness in cluster scheduling. In Proceedings of the 5th European

Conference on Computer Systems. ACM, 265–278.

Received April 2017; revised December 2017; accepted February 2018

ACM Transactions on Storage, Vol. 14, No. 2, Article 14. Publication date: April 2018.

