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Abstract—Security-critical real-time applications such as military aircraft flight control systems have mandatory security requirements

in addition to stringent timing constraints. Conventional real-time scheduling algorithms, however, either disregard applications’

security needs and thus expose the applications to security threats or run applications at inferior security levels without optimizing

security performance. In recognition that many applications running on clusters demand both real-time performance and security, we

investigate the problem of scheduling a set of independent real-time tasks with various security requirements. We build a security

overhead model that can be used to reasonably measure security overheads incurred by the security-critical tasks. Next, we propose a

security-aware real-time heuristic strategy for clusters (SAREC), which integrates security requirements into the scheduling for real-

time applications on clusters. Further, to evaluate the performance of SAREC, we incorporate the earliest deadline first (EDF)

scheduling policy into SAREC to implement a novel security-aware real-time scheduling algorithm (SAEDF). Experimental results from

both real-world traces and a real application show that SAEDF significantly improves security over three existing scheduling algorithms

(EDF, Least Laxity First, and First Come First Serve) by up to 266.7 percent while achieving high schedulability.

Index Terms—Clusters, scheduling, real-time systems, security-critical applications, security overhead model.
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1 INTRODUCTION

CLUSTERS have become the most cost-effective computa-
tional platforms for scientific applications [29], [30]. As

typical scientific simulation and computation require a
large amount of computing power, it is common practice to
apply cluster computing systems where nodes are inter-
connected through high-speed networks to meet the needs
of complex scientific computing [4], [28]. Meanwhile, a
growing number of real-time applications have been
developed and deployed in clusters [4], [19], [31], [32].
The correctness of real-time applications depends not only
on the logical computation being performed, but also on the
time at which the results are produced [16]. Real-time appli-
cations can be classified into two camps: hard real-time and
soft real-time applications. Hard real-time applications
require a guarantee that all real-time tasks complete within
specified deadlines. Soft real-time systems, on the other
hand, are less restrictive and do not require the completion
of all tasks within deadlines. Examples of hard real-time
applications include aircraft control, radar for tracking
missiles, and medical electronics. Online transaction pro-
cessing systems are examples of soft real-time applications.

Nowadays, security is of critical importance for a wide

range of real-time applications on clusters [4], [5], [6], [11],

[27], [36]. For example, in a real-time stock quote update

and trading system, incoming requests from business

partners and outgoing responses from an enterprise’s

back-end application have deadlines and security require-
ments, which have to be dealt with by a cluster located
between the business partners and enterprise back-end
applications [13]. Unfortunately, since clusters are built to
execute a broad spectrum of unverified user-implemented
applications from a vast number of different users, both
applications and users can be sources of security threats to
clusters [47]. For example, the vulnerabilities of applications
can be exploited by hackers to compromise the clusters and
malicious users can access the clusters to launch denial of
service attacks. Even a legitimate user may tamper with
shared data or excessively consume computing cycles to
disrupt services available to other cluster users [47]. On the
other hand, however, many existing cluster computing
environments have not employed any security mechanism
to counter the security threats [11]. Thus, it is mandatory to
deploy security services to protect security-critical applica-
tions running on clusters. Since snooping, alteration, and
spoofing are three common attacks in cluster environments,
we considered three security services (authentication
service, integrity service, and confidentiality service) to
guard against the common threats to clusters. Snooping, an
unauthorized interception of information, can be countered
by confidentiality services. Alteration is an unauthorized
change of information. Integrity services can be used to
cope with threats of alteration. Spoofing, an impersonation
of one entity by another, can be countered by authentication
services [7]. With the three security services in place, users
can flexibly select the security services to form an integrated
security protection against a diversity of threats and attacks
in a cluster environment.

Scheduling algorithms play a key role in obtaining a high
performance in cluster computing [41], [49]. Unfortunately,
conventional real-time scheduling algorithms, which were
developed to mainly guarantee timing constraints while
possibly ignoring security requirements, are not adequate
for security-critical real-time applications on clusters. In this
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study, we focus on a way of scheduling security-critical real-
time applications in a cluster environment where the
aforementioned security services are employed. We propose
a security-aware real-time heuristic strategy on clusters
(SAREC) which integrates security requirements into real-
time scheduling for applications running on clusters. To
illustrate the effectiveness of SAREC, we implement a
security-aware real-time scheduling algorithm (Security-
Aware EDF or SAEDF for short) by incorporating the earliest
deadline first (EDF) scheduling into SAREC. It is worth
noting that SAREC is a flexible security-aware strategy in the
sense that 1) the fundamental idea of SAREC can be readily
extended to handle other QoS parameters such as power,
fault tolerance, etc. and 2) SAREC can be easily combined
together with other existing real-time scheduling policies like
the least-laxity-first algorithm [24] (see Section 6.8), thereby
making the existing scheduling algorithms adaptable to
accommodating security requirements.

Fig. 1 depicts the security-aware scheduling framework.
The scheduling core implements logic and timing mecha-
nisms for waiting and relies on the SAREC strategy to
decide quality of security for newly arrived tasks. SAREC is
independent of scheduling policies and it is implemented as
a module that can perform in concert with real-time
scheduling policies. In doing so, it is easy to integrate the
security-aware heuristic strategy into any real-time sche-
duling policy.

The main contributions of this paper are:

1. an analysis of security and real-time performance
needs of various applications running on clusters,

2. a security overhead model needed for quantita-
tively measuring overheads introduced by security
services,

3. a security-aware heuristic strategy that can be
integrated into existing real-time scheduling policies,

4. two new performance metrics used to evaluate the
security performance of our approach, and

5. a simulated cluster where the SAEDF algorithm is
implemented and evaluated.

The rest of the paper is organized as follows: Section 2
outlines related work in this area. In Section 3, we present a
security-aware real-time scheduling architecture and a task
model with security requirements. Section 4 proposes a
security overhead model. In Section 5, we present a
security-aware scheduling algorithm and investigate its
properties. Performance analysis of the SAEDF algorithm is
discussed in Section 6. Section 7 concludes the paper with a
summary and future work.

2 RELATED WORK

A large amount of work has been done to develop
scheduling algorithms for clusters [39], [41]. Zhang et al.
compared the advantages of various dynamic scheduling
strategies over traditional gang scheduling [49]. Subramani
et al. incorporated a buddy scheme for contiguous node
allocation into a backfilling job scheduler for clusters [39].
Vallee et al. proposed a global scheduler architecture that
can dynamically change scheduling policies while applica-
tions are running on clusters [41]. Although these schedul-
ing algorithms can achieve high performance for non-real-
time applications, they are not suitable for real-time
applications due to the lack of guarantee to finish real-time
tasks to meet their deadlines.

The problem of real-time scheduling was extensively
studied in the past both theoretically and experimentally.
Real-time scheduling algorithms generally fall into two
categories: static (offline) [1] and dynamic (online) [10], [21].
Many scheduling algorithms assume that real-time tasks are
independent of one other [40], whereas others can schedule
tasks with precedence constraints [1]. Conventional real-
time scheduling algorithms like the Rate Monotonic (RM)
algorithm [25], Earliest Deadline First (EDF) [38], and
Spring scheduling algorithm [33] were successfully applied
in real-time systems. Most existing real-time scheduling
algorithms perform poorly for applications with both time
and security constraints because they generally ignore
security requirements imposed by real-time applications.

Recently, increasing attention has been directed toward
the issue of security in the context of clusters because
efficient and flexible security has become a baseline
requirement. Apvrille and Pourzandi developed a new
security policy language named distributed security policy,
or DSP, for clusters [5]. Wright et al. proposed a security
architecture for a network of computers bound together by
an overlying framework that can be used to provide users a
powerful virtual heterogeneous machine [42]. The language
offers a precise way to customize security of clusters. Yurcik
et al. developed tools for managing cluster security via
process monitoring [46]. Connelly and Chien proposed an
approach to protecting tightly coupled, high-performance
component communications [11]. Azzedin and Maheswar-
an applied the notion of “trust” into resource management
of a large-scale wide-area system [6]. However, the security
techniques mentioned above are not appropriate for real-
time applications due to the lack of ability to express and
handle timing constraints.

Some work was done to incorporate security into a
variety of real-time applications. George and Haritsa
proposed concurrency control protocols to support applica-
tions with real-time and security requirements [15]. Ahmed
and Vrbsky developed a secure optimistic concurrency
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control protocol that can make trade-offs between security
and real-time requirements [3]. Son et al. proposed a way of
trading off quality of security to achieve required real-time
performance [35]. In [36], a new scheme was developed to
improve timeliness by allowing partial violations of
security. Our work is fundamentally different from the
above approaches because they are focused on concurrency
control protocols, whereas our goal is to develop security-
aware real-time scheduling algorithms.

Song et al. developed security-driven scheduling algo-
rithms for grids [37]. Very recently, we proposed a family of
dynamic security-aware scheduling algorithms for single
machines [45] and Grids [43]. We conducted simulations to
show that the proposed algorithms can consistently im-
prove overall system performance in terms of quality of
security and system schedulability under a wide range of
workload conditions.

3 SECURITY AND REAL-TIME REQUIREMENTS

3.1 Security-Aware Scheduling Architecture

We focus in this study on an m-node cluster in which
m identical nodes are connected via a high-speed network,
e.g., Myrinet and Fast Ethernet, to process soft real-time
tasks submitted by r users. Let N ¼ fN1; N2; . . . ; Nmg
denote a set of identical computational nodes. The
architecture of security-aware real-time scheduling shown
in Fig. 2 encompasses the SAREC strategy and a real-time
scheduler. The SAREC strategy is implemented in form of a
security level controller and an admission controller. In this
study, we build the real-time scheduler using the EDF
policy, for which other real-time scheduling policies can be
substituted. The admission controller determines if an
arriving task in a schedule queue can be accepted or not,
whereas the security level controller aims at maximizing the
security levels of admitted tasks.

The schedule queue maintained by the admission
controller is deployed to accommodate incoming real-time
tasks. If the deadline and minimal security requirements of
an incoming task can be guaranteed, the admission
controller will place the task in an accepted queue for further
processing. Otherwise, the task will be dropped into a
rejected queue. The real-time scheduler processes all the
accepted tasks by its scheduling policy before the tasks are
transmitted into a dispatch queue, where the security level

controller escalates the security level of the first task under
two conditions: 1) The security level promotion will not
make the first task miss its deadline and 2) increasing the
security level will not make any previously accepted task
miss its deadline. After being handled by the security level
controller, the task is dispatched to one of the designated
nodes Ni 2 N , referred to as a processing node, for execution.
Each processing node maintains a local queue.

3.2 Real-Time Tasks with Security Requirements

We consider a class of real-time applications, each of which
is composed of a collection of tasks performed to
accomplish an overall mission. It is assumed in this study
that tasks with soft deadlines are independent of one
another. The security requirements of each task are
represented by a set of security level ranges specified by a
user. Values of security levels are normalized to the range
from 0 to 1. For example, a task specifies security level
ranges ½0:25; 0:75� for the authentication service, ½0:3; 0:7� for
the integrity service, and ½0:2; 0:8� for the confidentiality
service. The higher the security levels, the more security-
sensitive the task is. The same security level value in
different security services has different meanings.

A task Ti submitted by a user is modeled as a set of

rational parameters, e.g., Ti ¼ ðai; ei; fi; di; li; SiÞ, where ai,

ei, and fi are the arrival, execution, and finish times, di is the

deadline, and li denotes the amount of data (measured in

KB) to be protected. ei can be estimated by code profiling

and statistical prediction [9]. Suppose Ti requires q security

services represented by a vector of security level ranges,

e.g., Si ¼ ðS1
i ; S

2
i ; . . . ; Sqi Þ. The vector characterizes the

security requirements of the task. Sji is the security level

range of the jth security service required by Ti. The security

level controller determines the most appropriate point si in

space Si, e.g., si ¼ ðs1
i ; s

2
i ; . . . ; sqi Þ, where sji 2 S

j
i , 1 � j � q.

It is imperative for a security-aware scheduler to adopt a

way of measuring security benefits gained by each admitted

task. As such, the security benefit of task Ti is quantitatively

modeled as a security level function denoted by SL : Si ! <,

where < is the set of positive real numbers:

SLðsiÞ ¼
Xq
j¼1

wjis
j
i ; 0 � w

j
i � 1;

Xq
j¼1

wji ¼ 1: ð1Þ
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Note that wji is the weight of the jth security service for
task Ti. Users specify in their requests the weights to reflect
relative priorities of the required security services.
Xi denotes all possible schedules for task Ti and xi 2 Xi

is a scheduling decision of Ti. xi is a feasible schedule if 1)
deadline di can be guaranteed, i.e., fi � di, and 2) the
security requirements are met, i.e., minðSji Þ � s

j
i � maxðSji Þ.

Given a real-time task Ti, the security benefit of Ti is
expected to be maximized by the security level controller
(see Fig. 2) under the timing constraint:

SBðXiÞ ¼ max
xi2Xi

SL siðxiÞð Þf g

¼ max
xi2Xi

Xq
j¼1

wjis
j
iðxiÞ

( )
;

ð2Þ

where the security level of the jth service sjiðxiÞ is obtained
under schedule xi, and minðSji Þ � s

j
iðxiÞ � maxðSji Þ. minðSji Þ

and maxðSji Þ are the minimum and maximum security
requirements of task Ti.

A security-aware scheduler aims at maximizing the
system’s quality of security, or security value, defined by
the sum of the security levels of admitted tasks (see (1)). Thus,
the following security value function needs to be maximized,
subject to certain timing and security constraints:

SV ðXÞ ¼ max
x2X

Xp
i¼1

yiSBðxiÞ
( )

; ð3Þ

where p is the number of submitted tasks, yi is set to 1 in
task Ti is accepted, and is set to 0 otherwise. Substituting (2)
into (3) yields the following security value objective
function. Our proposed security-aware scheduling algo-
rithm strives to schedule tasks in a way to maximize (4):

SV ðXÞ ¼ max
x2X

Xp
i¼1

yi max
xi2Xi

Xq
j¼1

wjis
j
iðxiÞ

( ) !( )
: ð4Þ

4 SECURITY OVERHEAD MODEL

It is critical and fundamental to quantitatively measure
overheads incurred by an array of security services because
security is achieved at the expense of performance.
However, attention paid to models used to measure
security overheads has been insufficient. Recently, Irvine
and Levin proposed a security overhead framework, which
can be used for a variety of purposes [20]. Nevertheless,
security overhead models for security services in the
context of real-time computing remains an open issue. To
enforce security in real-time applications while making
security-aware scheduling algorithms predictable and
practical, we propose in this section an effective model that
is capable of approximately, yet reasonably, measuring
security overheads experienced by tasks with security
requirements. In light of the security overhead model,
schedulers are enabled to incorporate security overheads
into the process of scheduling tasks. Particularly, the model
can be employed to compute the earliest start times and the
minimal security overhead (see (12) and (13)).

Without loss of generality, in this security overhead
model, we consider three security services widely de-
ployed in clusters, namely, confidentiality, integrity, and

authentication. We assume that the clusters are available,
i.e., they respond to tasks submitted by users. Please note
that security mechanisms are not independent of one
another. Rather, it is common that multiple security
mechanisms are needed to form an integrated security
solution, which can meet complex security demands. For
example, authentication must be used in concert with
message integrity. An array of primitive security services
can be provided as building blocks for users to form
integrated security solutions for applications. To examine
the performance impact of each security service on our
scheduling policies, we individually tested the three
security services. This experimental strategy by no means
implies that in reality security services should be sepa-
rated. The security overhead model (described in Section
4.4) consists of the following three items (Sections 4.1-4.3).

4.1 Confidentiality Overhead

Encryption mechanisms support confidentiality by enci-

phering real-time applications (executable files) and data

such that information and resources are not made available

or disclosed to unauthorized persons or processes. Suppose

there are eight encryption algorithms (see Table 1) deployed

in a cluster. In accordance to the cryptographic algorithms’

performance, each algorithm is assigned a security level in

the range from 0.08 to 1. For example, we assign security

level 1 to the strongest yet slowest encryption algorithm,

IDEA (see Table 1). Security levels for the rest of the

algorithms can be computed by (5), where �ci is the

performance of the ith (1 � i � 8) encryption algorithm.

slci ¼ 13:5=�ci ; 1 � i � 8: ð5Þ

Security levels of the algorithms are proportional to the
algorithms’ performance. Since computation overhead
caused by encryption mainly depends on the cryptographic
algorithms used and the size of data to be protected, Fig. 3a
shows encryption time in seconds as a function of
encryption algorithms and size of secured data measured
on a 175 MHz Dec Alpha600 machine [26].

Let sei be the confidentiality security level of task Ti and

the computation overhead of a selected confidentiality

service can be calculated using (6), where li is the amount of

data whose confidentiality must be guaranteed and �cðsciÞ is

a function used to map a security level to its corresponding

encryption method’s performance.
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cciðsciÞ ¼ li=�cðsciÞ; 1 � i � 8: ð6Þ

4.2 Integrity Overhead

Integrity services ensure that no one can modify or tamper
with data and applications while they are executing on
clusters without being detected. Integrity can be accom-
plished by using a variety of hash functions [8]. Seven
commonly used hash functions and their performance
(evaluated on a 90 MHz Pentium machine) are shown in
Table 2. Based on the hash functions’ performance, each
function is assigned a security level in the range from 0.18 to
1.0. We assign security level 1 to the strongest yet slowest
hash function, Tiger (see Table 2), and security levels for the
other hash functions can be calculated by (7), where �gi is
the performance of the ith (1 � i � 7) hash function.

slgi ¼ 4:36=�gi ; 1 � i � 7: ð7Þ

Let sgi be the integrity security level of task Ti and the
overhead of the integrity service can be calculated using (8),
where li is the amount of data whose integrity must be
achieved and �gðsgi Þ is a function used to map a security
level to its corresponding hash function’s performance. The
security overhead model for integrity is depicted in Fig. 3b.

cgi ðs
g
i Þ ¼ li=�gðs

g
i Þ; 1 � i � 7: ð8Þ

4.3 Authentication Overhead

It is necessary that tasks be submitted from authenticated
users and, therefore, authentication services are deployed
to authenticate users who intend to access clusters [12],
[14], [17].

Table 3 illustrates three authentication techniques: weak

authentication using HMAC-MD5, acceptable authentica-

tion using HMAC-SHA-1, and fair authentication using

CBC-MAC-AES. Each authentication technique is assigned

a security level, sai , in accordance with the performance. We

assign security level 1 to the CBC-MAC-AES method.

Security levels for the other two methods can be obtained

using (9), where �ai is the performance of the ith (1 � i � 3)

authentication method.

slai ¼ �ai =163; 1 � i � 3: ð9Þ

Authentication overhead cai ðsai Þ of task Ti is a function of

Ti’s security level sai . The security overhead model for

authentication is shown in Fig. 3c.

4.4 Security Overhead Model

We can derive security overhead, which is the sum of the

overheads imposed by all involved security services. Sup-

pose task Ti requires q security services provided in

sequential order. Let sji and cjiðs
j
iÞ be the security level and

overhead of the jth security service, the security overhead ci
experienced by Ti, can be computed using (10). In particular,

the security overhead of Ti with security requirements for the

three services above is measured by (11).

ci ¼
Xq
j¼1

cjiðs
j
iÞ; where sji 2 S

j
i ; ð10Þ

ci ¼
X

j2fa; c; gg
cjiðs

j
iÞ; where sji 2 S

j
i : ð11Þ

Note that cciðsciÞ, c
g
i ðs

g
i Þ, and cai ðsai Þ in (11) are derived from

(6), (8), and Table 3. In the subsequent section, (11) will be
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Hash Functions for Integrity

TABLE 3
Authentication Methods



applied to calculated the earliest start times and minimal
security overhead (see (12) and (13)).

5 THE SAEDF ALGORITHM

In Section 3, we proposed the SAREC strategy. Now, we
evaluate the effectiveness of SAREC by proposing a novel
security-aware real-time scheduling algorithm, SAEDF
(Security-Aware EDF), which incorporates the earliest
deadline first (EDF) scheduling algorithm into the SAREC
strategy.

To support the presentation of the proposed algorithm, it
is necessary to introduce three properties. The schedule of a
task is feasible if the task is completed before its deadline.
Hence, a task has a feasible schedule on a cluster if there
exists at least one node where a valid schedule is available
for the task. More formally, this fact can be expressed by the
following property:

Property 1. If task Ti has a feasible schedule on a cluster with m

nodes denoted by a set N ¼ fN1; N2; . . . ; Nmg, the following

inequality must be satisfied:

9Nj 2 N : esjðTiÞ þ ei þ cmini � di;

under the condition stated below:

8Tk 2 Nj; dk > di : esjðTkÞ þ ei þ cmini � dk;

where esjðTiÞ is the earliest start time of task Ti on node Nj, ei
and di are the execution time and deadline of Ti, and cmini is the

security overhead experienced by Ti when its minimal security

requirements are met. The condition enforced in Property 1

indicates that the execution of Ti on Nj results in no violation

of any deadlines of tasks that have been admitted to the cluster.

The earliest start time esjðTiÞ can be computed by (12).

esjðTiÞ ¼ rj þ
X

Tk2Nj;dk�di
ek þ

X
l2fa;c;gg

clkðslkÞ

0
@

1
A; ð12Þ

where rj represents the remaining overall execution time of

a task currently running on the jth node and ek þP
l2fa;c;gg c

l
kðslkÞ is the overall execution time (security over-

head is factored in) of task Tk whose deadline is earlier than

that of Ti. Thus, the earliest start time of Ti is a sum of the

remaining overall execution time of the running task and

the overall execution times of the tasks with earlier

deadlines.
The minimal security overhead cmini of Ti can be

calculated by the following equation:

cmini ¼
X

j2fa; c; gg
cji min Sji

n o� �
; ð13Þ

where cjiðminfSjigÞ denotes the overhead of the jth security
service when the corresponding minimal security require-
ment is satisfied.

Given an arrival task Ti and a node Nj (Nj 2 N) of the
cluster, the task scheduling problem is to generate a feasible
task schedule, which satisfies the following two properties:

Property 2. Task Ti meets its deadline. Thus,

esjðTiÞ þ ei þ
X

j2fa;c;gg
cjiðs

j
iÞ � di;

where sji 2 S
j
i is the security level of the jth security service.

Property 3. The security level of an accepted task Ti on node Nj

is maximized at the task’s arrival time under the assumption
that no more tasks arrive on Nj after this arrival time.

The SAEDF algorithm is outlined in Fig. 4. The goal of
the algorithm is to deliver high quality of security while
guaranteeing real-time requirements for tasks running on
clusters. To achieve the goal, SAEDF strives to maximize
security level (see (1)) of each accepted task (see Step 23)
while maintaining reasonably high guarantee ratios (see
Step 5).

Before optimizing the security level of task Ti on Nj,
SAEDF attempts to meet the real-time requirement of Ti.
This can be accomplished by calculating the earliest start
time (see (12)) and the minimal security overhead of Ti (see
(13)) in Steps 3 and 4. Next, Step 5 checks if the cluster can
meet the timing constraints of Ti and tasks whose deadlines
are later than that of Ti. If the timing constraints cannot be
satisfied, Step 19 sets the Ti’s security level on Nj to 0,
indicating that Ti cannot be allocated to node Nj. In case no
node in the cluster can produce a feasible schedule for Ti, it
is rejected by Step 25.

The security level of Ti on Nj is optimized in the
following way: The security service weights used in (1) and
(2) reflect the importance of the three security services,
indicating that it is desirable to give higher priorities to
security services with higher weights (see Step 6). In other
words, enhancing security levels of more important services
tends to yield a maximized security level of Ti on Nj.

In the case of a particular security service vl 2 fa; c; gg,
Step 12 escalates the security level svli while satisfying the
following two conditions: 1) Increasing the security level
will not lead to missing the deadline of Ti and 2) the
increment of the security level must not result in missing
deadlines of any previously admitted task. These two
conditions are, respectively, enforced by Steps 5 and 14.
Once Step 18 has finalized an array of the optimized
security levels SLji (1 � j � n), Step 23 is able to further
maximize the security level of Ti by identifying a node Nk

that provides the maximal security level. Finally, Ti is
dispatched to Nk (see Step 24).

Now, we evaluate the time complexity of SAEDF as
follows:

Theorem 1. The time complexity of SAEDF is OðknmÞ, where m
is the number of nodes in the cluster, n is the number of tasks
in the local queue of a node, and k is the number of possible
security level ranks for a particular security service vl
ðvl 2 fa; c; gg; 1 � l � 3Þ.

Proof. The time complexity of finding the earliest start time
for task Ti on a node is OðnÞ (Step 3). To obtain the
minimal security overhead cmini of task Ti, the time
complexity is a constant Oð1Þ (Step 4). Sorting the
security service weights in decreasing order (Step 6) will
take a constant time Oð1Þ since we only have three
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security services. To increase Ti’s three security levels to

their possible maximal ranks under the constraints 14a

and 14b, the worst-case time complexity is Oð3knÞ (Steps

10-17). To find node Nk on which the security level of

task Ti is optimized (Steps 21-23), the time complexity is

OðmÞ. Thus, the time complexity of the SAEDF algorithm

is as follows:

OðmÞðOðnÞ þOð1Þ þOð1Þ þOð3knÞÞ þOðnÞ ¼ OðknmÞ:
ut

Since n, m, and k cannot be very big numbers in practice,

the time complexity of SAEDF should be low based on the

expression above. This time complexity indicates that the

execution time of SAEDF is a small value compared with

task execution times. Thus, the CPU overhead of executing

SAEDF is ignored in our experiments.
In what follows, we prove the correctness of the SAEDF

algorithm.

Theorem 2. The SAEDF algorithm satisfies Properties 2 and 3.

Proof. 1) First, we prove that SAEDF satisfies Property 2. A

task Ti is accepted by a cluster with m nodes denoted by

N ¼ fN1; N2; . . . ; Nmg. ) : There is at least one node Nj

(Nj 2 N) on which Ti has a feasible schedule. )
Pr operty1

:

The two inequalities in Property1 must hold. )
inequality1

:

Task Ti can be finished before its deadline di ) . The

deadline of task Ti must be met. Thus, each accepted task

meets its deadline.

2) Second, we prove that SAEDF satisfies Property 3.

We can provide a proof by contradiction. There are two

cases after task Ti is accepted: a) Task Ti is the last

element in the local queue of node Nj based on the EDF

order. In this case, there is no other task in the local

queue of node Nj which is behind Ti. The only constraint

for increasing the security level of Ti is its deadline di,

which is enforced by Step 14a in Fig. 4. The security level
of task Ti will eventually reach a critical value SLjc1i
(Steps 10-18 in Fig. 4), meaning that any further increase

in security level of Ti will violate its deadline di. Now,

suppose that there is a higher security level SLjb1i
(SLjb1i > SLjc1i ) for task Ti which is an accepted task on

node Nj. However, this SLjb1i definitely makes Ti violate

its deadline di based on the conclusion drawn above

because of the equality SLjb1i > SLjc1i . SLjb1i makes Ti
miss its deadline. di ) esjðTiÞ þ ei þ ci > di ) Ti cannot

be accepted by node Nj ) . This statement contradicts

our assumption that task Ti is an accepted task on Nj.

Thus, SLjc1i must be the maximal security level of Ti
under this situation.

b) Task Ti is not the last element in the local queue of

node Nj based on the EDF order. Thus, there exists at

least one previously accepted task to be executed after Ti
is finished. The timing constraint is enforced by Step 14a.
The security level of task Ti will also eventually reach a

critical value SLjc2i (Steps 10-18 in Fig. 4), which means

that a further increase in the security level of Ti will

either violate Ti’s deadline or the deadlines of earlier
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accepted tasks. Now, suppose SLjc2i is not Ti’s maximal
security level under this circumstance and, thus, there is

a larger security level SLjb2i (SLjb2i > SLjc2i ) for task Ti, an

accepted task on node Nj under this situation. However,

SLjb2i will violate either deadline di or the deadlines of

earlier accepted tasks because of the inequality

SLjb2i > SLjc2i .
Case one: SLjb2i violates Ti’s deadline) esjðTiÞ þ ei þ

ci > di ) Ti cannot be accepted on node Nj, which
contradicts our assumption that task Ti is an accepted
task on node Nj. Thus, SLjc2i must be the maximal
security level of Ti under this situation.

Case two: SLjb2i violates the deadlines of
earlier accepted tasks. Thus, 9Tk 2 Njdk > di:
esjðTkÞ þ ek þ cmink ðNjÞ > dk. The implication is that the
second inequality in Property 1 does not hold. Therefore,
task Ti has no feasible schedule on node Nj, meaning that
Ti is not an accepted task on node Nj. This statement
contradicts our assumption that Ti is an accepted task on
node Nj. Consequently, SLjc2i must be the maximal
security level of Ti under this situation. tu

6 EXPERIMENTAL RESULTS

We evaluate in this section the performance of the SAEDF
algorithm using extensive simulation experiments based on
real world traces consisting of 29,695 tasks. A competitive
advantage of conducting simulation experiments is that
performance evaluation on a large-scale cluster can be
accomplished without additional hardware cost. To reveal
performance improvements gained by our proposed algo-
rithm, we compare SAEDF with three well-known schedul-
ing algorithms, namely, EDF (Earliest Deadline First) [38],
LLF (Least Laxity First) [24], and FCFS (First Come First
Serve). To make the comparisons fair, we slightly modify the
three algorithms in such a way that they arbitrarily pick a
security level within the security level range of each service
required by a task. Although these algorithms are intended to
schedule real-time tasks with security requirements, they
make no effort to optimize the quality of security. The
baseline algorithms are briefly described below.

1. EDF: The task with the earliest deadline is always
executed first.

2. LLF: The task with the minimal laxity (slack time) is
always executed first.

3. FCFS: Tasks will be executed in nondecreasing order
of their arrival times.

The first goal of the performance evaluation is to
examine the performance improvements of SAEDF over
the three competitive algorithms. Second, we will investi-
gate the performance impacts of the security overhead
model presented in Section 4 on system performance in
terms of security value and guarantee ratio. We pay special
attention to the performance impacts of security service
weights on the four scheduling algorithms. Third, we study
the performance sensitivity of the SAEDF algorithm to CPU
capacities of the nodes in a cluster. Fourth, we evaluate the
scalability of the proposed SAEDF algorithm. Fifth, we
assess the performance impact of security-required data
size. Sixth, we compare SALLF with LLF to demonstrate
that SAREC is a general strategy, which can be incorporated

into not only EDF but also other existing scheduling
algorithms like LLF. Last but not least, we validate the
results from the synthetic real-time tasks by running a real-
world real-time application with SAEDF. Some preliminary
results in Sections 6.2-6.3 were presented in [44].

6.1 Simulator and Simulation Parameters

Before presenting empirical results in detail, we present the
simulation model as follows. Table 4 summarizes the key
configuration parameters of the simulated clusters used in
our experiments. The parameters of nodes in clusters are
chosen to resemble real-world workstations like the Sun
SPARC-20 and Sun Ultra 10.

We modified the traces used in [18], [48] by adding
randomly generated deadlines for all tasks in the traces,
which were collected from one workstation on six different
time intervals. The assignment of deadlines is controlled by
the deadline base (Tbase) denoted as �, which sets an upper
bound on tasks’ slack times. We use (14) to generate Ti’s
deadline di.

di ¼ ai þ ei þ cmaxi þ �; ð14Þ

where ai and ei are the arrival and execution times obtained
from the real-world traces. cmaxi is the maximal security
overhead (measured in ms), which is computed by (15).

cmax
i ¼

X
j2fa; c; gg

cji max Sji

n o� �
; ð15Þ

where cjiðmaxfSjigÞ represents the overhead of the
jth security service for Ti when the corresponding maximal
requirement is fulfilled.

Although CPU demands of tasks submitted to the clusters
are taken directly from the existing traces, deadlines are
synthetically generated in accordance with the above model.
The simplification weakens correlations between real-time
requirements and other workload characteristics. However,
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in the experiments, we can examine the impacts of
deadlines on system performance by controlling the
deadlines as fundamental simulation parameters (see
Section 6.2). Similarly, each task was synthetically as-
signed a block of data that needs to be protected from
being disclosed or tampered. The impact of security-
required data size is examined in Section 6.7. The
performance metrics by which we evaluate system
performance include: security value (SV, see (4)), guarantee
ratio (GR, measured as a fraction of total submitted tasks
that are found to be schedulable), and overall system
performance (OSP, defined as a product of the normalized
security value and guarantee ratio, see (16)).

OSP ¼ GR � SV : ð16Þ

6.2 Overall Performance Comparisons

The goal of this experiment is twofold: 1) to compare the
proposed SAEDF algorithm against the three alternatives
and 2) to understand the sensitivity of SAEDF to
parameter �, or deadline base (Tbase). To stress the
evaluation, we assume that each task arrived in the cluster
requires all of the three security services. Without loss of
generality, it is assumed that no page fault occurs during
the execution of each real-time task. This is because, in the
case where a task experiences page faults, time in handling
the page faults will be factored in its execution time.

Fig. 5 shows the simulation results for these four
algorithms on a cluster with 64 nodes. We observe from
Fig. 5a that SAEDF and EDF exhibit similar performance in
terms of guarantee ratio, whereas SAEDF noticeably out-
performs LLF and FCFS algorithms. Although LLF is a real-
time scheduling algorithm, it does not favor short tasks as
EDF does. Therefore, many subsequent short tasks are
likely to miss their deadlines due to the acceptance of long
tasks. FCFS has the lowest guarantee ratios because FCFS is
a non-real-time scheduling policy. It is observed that
SAEDF and EDF maintain high guarantee ratios. We
attribute the guarantee ratio improvement of SAEDF over
LLF and FCFS to the fact that SAEDF judiciously boosts the
security levels of accepted tasks under the condition that
timing constraints are met. Fig. 5b plots security values of
the four algorithms when the deadline base is increased
from 1 to 100 seconds. Fig. 5b reveals that SAEDF
consistently performs better, with respect to quality of
security, than all the rest of the approaches. Specifically,
SAEDF outperforms EDF, LLF, and FCFS in security value

by averages of 43.6 percent, 248.9 percent, and 266.7 percent,
respectively. Interestingly, when the deadlines become
loose, the performance improvements of SAEDF over the
three competitors are more pronounced. This is because the
SAEDF approach is capable of employing slack times to
improve the quality of security of accepted tasks. Therefore,
the more slack time available, the higher the security value
that can be achieved. The results clearly indicate that
clusters can gain more performance benefits from the
SAEDF algorithm under workload conditions where real-
time tasks have loose deadlines.

Fig. 5c plots the overall system performance improve-
ments achieved by SAEDF. An observation made from
Fig. 5c is that SAEDF significantly outperforms the other
three alternatives. This can be explained by the fact that,
although the guarantee ratios of SAEDF and EDF are
similar, SAEDF considerably improves security values over
the other algorithms while achieving higher guarantee ratio
than LLF and FCFS. The result suggests that, if quality of
security is the sole objective in scheduling, SAEDF is more
suitable for clusters than the other algorithms. In contrast, if
schedulability is the only performance objective, SAEDF can
maintain the same guarantee ratios as those of EDF, which
is inferior to SAEDF in terms of security.

6.3 Impact of the Security Overhead Model

This subsection is focused on the performance impact of the
security overhead model presented in Section 4. Specifically,
we evaluate the performance of the four algorithms in the
cases where each task poses a requirement on one of the three
security services. The goal is to examine the performance
impact of each security service on the scheduling policies.
These experimental settings do not necessarily imply that
security services should be separated. On the contrary,
multiple security mechanisms in most cases are aggregated
to form an integrated security solution.

Fig. 6, Fig. 7, and Fig. 8 show the performance impacts of
the authentication, confidentiality, and integrity services,
respectively. We observe from the figures that SAEDF
delivers better overall system performance than the other
competitors under a wide range of workload conditions.
This result is consistent with that observed from the
previous experiments (see Fig. 5), where each task requires
multiple security services. Interestingly, the security im-
provements are more pronounced when the confidentiality
or integrity service is required than when the authentication
service is needed. The reason is threefold. First, there
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simply exist three security levels for the authentication
service in the security overhead model and the granularity
of the security levels for authentication is coarser than those
of the confidentiality and integrity services. Second, the
authentication overhead is less than that of the confidenti-
ality and integrity services in most cases. Thus, it is
relatively easy to achieve a higher security level in the
authentication service for an accepted task. Third, the
confidentiality and integrity overheads rely on the amount
of data to be protected, whereas the authentication over-
head is independent of the security-required data size.

6.4 Impact of Security Service Weights

Recall that the security level model proposed in Section 3.2
is comprised of multiple security levels for a diversity of

security services like confidentiality, integrity, and authen-
tication. Each service required by a task is assigned a
weight, which reflects the priority of the service. To study
the impact of security service weights on performance of
SAEDF, we set the authentication weight to a constant value
and varied the confidentiality and integrity weights.
Specifically, Fig. 9 plots the performances of the four
algorithms when the confidentiality weight is increased
from 0.1 to 0.8, whereas Fig. 10 depicts the performances
when the confidentiality weight varies from 0.1 to 0.6.

The first observation drawn from Fig. 9 and Fig. 10 is
that, for all the algorithms, the performance in guarantee
ratio is independent of the security service weights. The
implication of this result is that the security service weights
are irrelevant to the overall execution times of tasks. The
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second intriguing observation made from Fig. 9 and Fig. 10

is that the confidentiality and integrity weights slightly

affect the security performance of SAEDF, while making

considerable impact on the other three algorithms in terms

of security value. This is because, at the same security level,

the confidentiality service overhead is relatively smaller

than the integrity service overhead. Consequently, the

overall security values of accepted tasks tend to increase

when the confidentiality weight goes up. These results

indicate that SAEDF can marginally improve security

performance for workloads where confidentiality service

is more important than the other concerns.

6.5 Sensitivities to CPU Capacity

To examine the performance sensitivities of the four

algorithms to CPU capacity, in this set of experiments, we

varied the CPU capacity from 100 to 800 MIPS with

increments of 100 MIPS.
The results reported in Fig. 11 reveal that SAEDF

outperforms the other three alternatives in terms of security

value and overall system performance. With respect to

guarantee ratio, SAEDF exhibits a similar performance to

EDF and LLF. The guarantee ratio of FCFS even decreases

when CPU capacity enlarges. This is mainly because tasks

with long execution times can be admitted when the CPU

capacity is high and, therefore, there is a strong likelihood

for more small tasks to miss their deadlines.

6.6 Scalability

This experiment is intended to investigate the scalability of
the SAEDF algorithm. We scale the number of nodes in a
cluster from 8 to 256. Fig. 12 plots the performances as
functions of the number of nodes in the cluster. It is
observed from Fig. 12 that the amount of improvement
achieved by SAEDF becomes more prominent with the
increasing value of the node number. This result shows that
the SAEDF approach exhibits good scalability.

Fig. 13 shows the improvements of SAEDF in overall
system performance over the other three policies. SAEDF
outperforms the three baseline algorithms in terms of
overall system performance by averages of 70.4 percent,
201.2 percent, and 625.6 percent, respectively.

6.7 Security-Required Data Size

In this set of experiments, we evaluated the performance
impact of security-required data size. We tested three
configurations of data size (see Table 4). The laxity is chosen
to be 1,000 milliseconds. Without loss of generality, we
assume that the distribution of the data size is a normal
distribution. The mean size of the security-required data
varies from 50 KB to 4 MB and the standard deviation
changes from 40 to 20,000. For example, in config1, the
mean size is 50 KB for short tasks, 500 KB for middle tasks,
and 1 MB for long tasks. The standard deviation is set to 40
for short tasks and set to 20,000 for medium and long tasks.

There are several important observations that can be
drawn from Fig. 14. First, when the security-required data
size increases, the guarantee ratio of SAEDF remains almost
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unchanged, while SAEDF’s security value drops. This
phenomenon reveals that SAEDF is a security-aware
algorithm, which judiciously lowers the accepted tasks’
security levels under heavily loaded conditions in order to
accommodate more tasks. Unlike SAEDF, the guarantee
ratio of EDF noticeably decreases with the increasing size of
security-required data. Second, Fig. 14 shows that the
guarantee ratios of LLF and FCFS increase with the growing
size of security-required data. This is because large tasks are
more likely to be dropped due to their high security
overhead caused by enlarged security-required data size.
As a result, a vast majority of the small tasks submitted to
the cluster can be finished before their deadlines.

6.8 Integrate SAREC into LLF

To demonstrate that SAREC is a general security-aware
strategy that can be incorporated into other existing real-time

scheduling algorithms, we integrate SAREC with the least-
laxity-first algorithm (LLF) [24] to construct a new
algorithm called SALLF (Security-Aware LLF). Now, we
evaluate the performance of SALLF in this subsection.

One important observation from Fig. 15 is that SALLF
outperforms LLF in all cases. Specifically, SALLF improves
the guarantee ratio over LLF by an average of 6.1 percent
and outperforms LLF in terms of security value by an
average of 55.8 percent. The rationale behind these results is
that SALLF can maximize guarantee ratios by adaptively
adjusting tasks’ security levels, while LLF has no capability
of optimizing security levels.

6.9 A Real Application—Aircraft Flight Control

To validate the results from the trace-driven simulations,
we applied our SAEDF algorithm to a real world system—
an automated flight control system [2]. Table 5 shows the
set of parameters present for all real-time tasks, including
execution time, period, and three configurations of size of
data to be secured.

The automated flight control system was utilized to fly a
simulated model of an F-16 fighter aircraft. Details of the
automated flight control system can be found in [23], [24].
In this system all the flight control tasks—including Guid-
ance, Slow Navigation, Fast Navigation, Controller, and
Missile Control—need to be executed in real-time to meet
their deadlines. The functions of these five tasks are
summarized as follows [2]: The “Guidance” task sets the
reference trajectory of the aircraft in terms of altitude and
heading; the “Controller” is responsible for executing the
closed-loop control functions that deal with actuator
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commands; the two “Navigation” tasks read sensor values
distinguished by the required update frequency; and,
finally, the “Missile Control” task is responsible for reading
radar and firing missiles. These separate tasks are manda-
tory to control the aircraft during flight and they are all
cyclic tasks with multiple versions.

It is assumed that

1. all tasks have known bounded execution times,
2. task arrivals are independent,
3. each task’s deadline is equal to its period, and
4. tasks are nonpreemptive in nature [2].

Table 5 shows that each of the five tasks has multiple
versions distinguished by their period or execution time.

Since the automated flight control system is applied in a
military battle field, where security requirements such as
data confidentiality are mandatory, we synthetically choose
security-required data sizes during the execution of each
version of the five tasks. Each version of a task requires
confidentiality, integrity, and authentication services. The
security overhead for each task instance, which is computed
using (11), largely depends on the security-required data
size. To evaluate the performance of our SAEDF algorithm
under various scenarios, we constructed three configura-
tions of the security-required data size for each version of
the tasks (see columns 4, 5, and 6 in Table 5). In config1, we
choose a relatively low security level for each task instance.
Config2 represents a medium security level, whereas
config3 reflects a relatively high security level to each task
version. The experimental parameters for the automated
light control system are summarized in Table 6.

In this experiment, the arrival times, deadlines, and
execution times of task instances are based on the real
application. The arrival time of a task instance Ti can be

derived from Ti’s period, and the deadline of Ti is equal to

Ti’s period. All five tasks start to submit their task instances

to the system at the same time, e.g., start time Ts. Each task

randomly selects one of its versions and submits it to the

system. The rationale behind the random task version

submission is that available system resources are dynamic
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and unpredictable. For example, when some nodes in the
system fail at an unknown time, an inferior version of a task
will be executed. We sampled task instances that were
submitted to the system within 600 seconds since Ts
because the system behavior was already manifest after
this period of time. In this experiment, we sampled
1,293 task instances.

We simulated a 128-node system where each node has a
1,000 MIPS CPU. We considered two node-to-aircraft
configurations: 1) 128 nodes were used to control 128 aircraft
and 2) 128 nodes controlled 64 aircraft. In the first
experimental setting, each node was responsible for con-
trolling one aircraft and, in the second setting, two nodes
controlled one aircraft in a cooperative manner. The goal of

the first case is to test the performance under a heavily
loaded condition, whereas the second case is focused on the
system performance under relatively light workloads.

The experimental results are shown in Fig. 16 and Fig. 17.
Three observations are evident from Fig. 16. First, when the
size of the security-required data increases, the guarantee
ratio, security, and overall performance of the four
algorithms noticeably decrease. This is because the security
overhead rises with the increasing security-required data
size. Consequently, the number of feasible tasks is reduced
and the quality of security suffers.

Second, when 128 nodes are utilized to control 128 aircraft,
the guarantee ratio of SAEDF on average is only 79.84 percent,
meaning that the system is slightly overloaded. In such a
workload situation, SAEDF consistently outperforms the
other three algorithms in quality of security (see Fig. 16b)
while maintaining the same guarantee ratio performance as
EDF (see Fig. 16a). The results demonstrate that SAEDF can
maintain the same level of schedulability as EDF while
significantly improving the security (by an average of
50.13 percent). More importantly, SAEDF significantly out-
performed EDF, LLF, and FCFS in overall system perfor-
mance, which is the most crucial metric for security-critical
real-time systems, by averages of 50.11 percent, 50.97 percent,
and 49.61 percent, respectively. The implication of this
finding is that, when system workloads are high, SAEDF
can significantly improve overall system performance with-
out adding extra hardware.

In the case where 128 nodes control 64 aircraft, the
average guarantee ratio of SAEDF is 93.93 percent (see
Fig. 17). Under such a light workload condition, the
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guarantee ratios of SAEDF and the other three alternatives
are almost identical. We attribute this result to the fact that,
when an aircraft is controlled by two computers, almost all
the tasks dedicated to the aircraft can be accomplished
before their deadlines because of the sufficient computa-
tional resources. In addition, the results presented in Fig. 17
indicate that, although EDF and LLF can achieve 94.12 per-
cent and 93.26 percent in guarantee ratio, their average
security values are as low as 0.62. These results suggest that
EDF and LLF are unsuitable for security sensitive applica-
tions. By using SAEDF as a security-aware scheduling
heuristic, performance in security value is improved by an
average of 50 percent over EDF and LLF.

7 SUMMARY AND FUTURE WORK

We presented in this paper a novel security-aware heuristic
strategy (SAREC) for real-time applications on clusters. This
strategy paves the way to the design of security-aware real-
time scheduling algorithms. To make such security-aware
scheduling algorithms practical, we proposed a security
overhead model to quantitatively measure overheads of
security services such as confidentiality, integrity, and
authentication required by real-time applications. In doing
so, security overheads can be taken into consideration in the
process of scheduling real-time tasks. The effectiveness of
the SAREC strategy was evaluated by implementing a novel
security-aware real-time scheduling algorithm (SAEDF),
which incorporates the earliest deadline first (EDF) sche-
duling algorithm into the SAREC strategy. SAREC is a
general strategy in the sense that it can be applied to other
existing real-time scheduling policies like LLF (see Sec-
tion 6.8). To quantitatively validate the performance of the
SAEDF algorithm, we conducted extensive trace-driven
simulations and introduced two new performance metrics,
namely, security value (see (4)) and overall system
performance (see (16)). Security value is a collective value
of each accepted application’s security level and it can be
used to measure the quality of security experienced by all
schedulable real-time tasks. Overall system performance,
the most important performance metric for security-critical
real-time systems, is a comprehensive metric defined as a
product of security value and guarantee ratio. Experimental
results based on real-world traces and a real application
show that SAEDF achieves overall system performance over
three existing scheduling algorithms (EDF, LLF, and FCFS)
by an average of 32.9 percent, 575.7 percent, and 713.6 per-
cent, respectively. In addition, the empirical results reveal
that SAEDF significantly improves quality of security for
real-time tasks while maintaining high guarantee ratios
under a wide range of workload characteristics.

Future studies in this research can be performed in the
following directions:

1. Extend our security overhead models to multi-
dimensional computing resources. For now, we
simply consider CPU time, which is only one
computing resource consumed by the security
services. Memory, network bandwidth, and storage
capacities should be considered in the future.

2. Accommodate more security services into our
security overhead model. Besides the three security

services discussed, we plan to take authorization
and auditing services into consideration.

3. Extend SAREC strategy to heterogeneous distribu-
ted systems. In a heterogeneous computing system,
different nodes have different powers and resources.
Thus, the same security requirement for a particular
security service will result in different amounts of
overhead. A node-dependable security overhead
calculating model should be developed.
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