
Improving Security for Periodic Tasks in
Embedded Systems through Scheduling

TAO XIE

San Diego State University

and

XIAO QIN

New Mexico Institute of Mining and Technology

While many scheduling algorithms for periodic tasks ignore security requirements posed by sen-

sitive applications and are, consequently, unable to perform properly in embedded systems with

security constraints, in this paper, we present an approach to scheduling periodic tasks in em-

bedded systems subject to security and timing constraints. We design a necessary and sufficient

feasibility check for a set of periodic tasks with security requirements. With the feasibility test

in place, we propose a scheduling algorithm, or SASES (security-aware scheduling for embedded

systems), which accounts for both security and timing requirements. SASES judiciously distributes

slack times among a variety of security services for a set of periodic tasks, thereby optimizing se-

curity for embedded systems without sacrificing schedulability. To demonstrate the effectiveness

of SASES, we apply the proposed SASES to real-world embedded systems such as an automated

flight control system. We show, through extensive simulations, that SASES is able to maximize

security for embedded systems while guaranteeing timeliness. In particular, SASES significantly

improves security over three baseline algorithms by up to 107%.

Categories and Subject Descriptors: C.3 [Special-Purpose and Application-Based Systems]:

Real-Time and Embedded Systems; F.2.2 [Analysis of Algorithms and Problem Complexity]:

Nonnumerical Algorithms and Problems—Sequencing and scheduling

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Real-time systems, security-sensitive applications, periodic

tasks, scheduling, embedded systems

ACM Reference Format:
Xie, T. and Qin, X. 2007. Improving security for periodic tasks in embedded systems through

scheduling. ACM Trans. Embedd. Comput. Syst. 6, 3, Article 20 (July 2007), 19 pages. DOI =
10.1145/1275986.1275992 http://doi.acm.org/ 10.1145/1275986.1275992

This research was supported in part by the New Mexico Institute of Mining and Technology under

Grant 103295 and by Intel Corporation under Grant 2005-04-070.

Authors’ addresses: Tao Xie, Department of Computer Science, San Diego State University,

San Diego, CA 92182; email: xietao@nmt.edu; Xiao Qin, Department of Computer Science, New

Mexico Institute of Mining and Technology, Socorro, NM 87801; email: xqin@cs.nmt.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn

Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2007 ACM 1539-9087/2007/07-ART20 $5.00 DOI 10.1145/1275986.1275992 http://doi.acm.org/

10.1145/1275986.1275992

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 3, Article 20, Publication date: July 2007.

2 • T. Xie and X. Qin

1. INTRODUCTION

Embedded systems, ranging from intelligent vehicle highway system [Godbole
et al. 1994] and hearing aids [Dijk et al. 1998] to satellite [Kawano and Ku-
doh 2001] and the electrical power grid [Salmeron et al. 2004], have been
applied to diverse environments, including real-time computing platforms,
which depend not only on results of computation, but also on time instants
at which these results become available [Maheswaran and Siegel 1998; Zhang
and Sivasubramaniam 2001]. The consequences of missing deadlines of hard
real-time systems may be catastrophic, whereas such consequences for soft
real-time systems are relatively less damaging. Examples of hard real-time ap-
plications include aircraft control [Faller and Schreck 1995], radar for tracking
missiles [Mahafza et al. 1998], and medical electronics [Suzuki et al. 2002].
Online transaction processing systems are examples of soft real-time applica-
tions [Nilsson and Dahlgren 1999].

Since many embedded systems need to access, store, and manipulate
security-sensitive data [Ravi et al. 2004], improving quality of security in
embedded systems is increasingly becoming a critical and challenging issue
in the design and development of embedded, real-time systems. Although
there exists a large body of research related to security in the context of
general-purpose computing systems, security techniques developed for PCs or
servers are inadequate for embedded systems. Securing real-time embedded
systems relies on a careful selection of security strategies, which are, in most
cases, computational intensive and likely to push computing resources to the
limit.

Today there are a variety of systems that have real-time and security con-
siderations, because sensitive data and processing require special safeguard
and protection against unauthorized access [Son et al. 2000]. In particular,
real-time applications running in embedded systems require security pro-
tections to completely fulfill their trustworthy computing needs. However,
conventional real-time systems, which are developed to guarantee timing con-
straints, while possibly posing unacceptable security risks, fail to meet the
requirements of information security and assurance for modern real-time
applications.

In this paper, we aim to develop fundamental and innovative real-time
scheduling algorithms that are intended to achieve high quality of security for
embedded systems while improving resource utilization. In particular, we pro-
pose a real-time scheduling algorithm, or SASES (security-aware scheduling
for embedded systems). SASES seamlessly integrates security requirements
into scheduling for real-time applications running in embedded systems.

The rest of the paper is organized as follows. Section 2 includes a summary of
related work in this area. Section 3 presents the preliminary system architec-
ture and task model. In Section 4, we propose a real-time scheduling algorithm
for the periodic task model. To demonstrate the effectiveness of our scheduling
algorithm, we present, in Section 5, the performance results based on a real-
world embedded system under various workload conditions. Finally, Section 6
concludes the paper with summary and future research directions.

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 3, Article 20, Publication date: July 2007.

Improving Security for Periodic Tasks in Embedded Systems • 3

2. RELATED WORK

Scheduler is an important part of an embedded system and various scheduling
techniques were reported in the literature. Grajcar [2000] made use of a data-
flow model to schedule a computation, including conditional branches in an
embedded system. Kadayif et al. [2002] proposed a locality-conscious scheduling
algorithm to potentially reuse data among processes. However, these algorithms
are unable to support real-time applications.

Real-time scheduling is a key factor in obtaining high performance and
predictability for embedded systems. Real-time scheduling algorithms are
intended to map tasks onto embedded processors and order tasks’ execu-
tion in a way that deadlines are satisfied [Qin and Jiang 2001]. Various as-
pects of complicated real-time scheduling problems were addressed in the
literature. In general, real-time scheduling algorithms fall into two camps:
static [Abdelzaher and Shin 1999; Qin et al. 2000] and dynamic [Cheng
and Huang 2004; Kalogeraki et al. 2000]. Conventional real-time schedul-
ing algorithms like rate monotonic (RM) algorithm [Liu and Layland 1973],
earliest deadline first (EDF) [Stankovic et al. 1998], and spring schedul-
ing algorithm [Ramamritham and Stankovic 1984] were successfully applied
in real-time systems. We proposed static Qin et al. [2000, 2003] and dy-
namic [Qin and Jiang 2001] scheduling and load-balancing schemes. Since
many embedded, real-time systems provide security sensitive functions that
are likely to be sabotaged by malicious entities, security is one of the most
important issues to be addressed in embedded systems design. Most of ex-
isting scheduling algorithms perform poorly for security-sensitive real-time
applications because of the ignorance of security requirements posed by the
applications.

To protect embedded systems against all possible security threats, increasing
attention has been made to security awareness in the context of embedded sys-
tems. Sen et al. [2003] proposed a cryptosystem based on cellular automata to
ensure security of embedded systems. Ravi et al. [2004] analyzed challenges
involved in secure embedded system design. Shao et al. [2004] proposed a
hardware/software-defending technique to protect embedded systems against
buffer overflow attacks. However, the above security techniques are not appro-
priate for real-time applications because of the lack of ability to express and
handle timing constraints.

Some research has been conducted to factor in security concerns in a variety
of embedded, real-time systems [Ahmed and Vrbsky 1998; George and Haritsa
1997; Rao 1989]. Rao [1989] developed security audit subsystems for real-time
embedded avionics systems. George and Haritsa [1997] proposed concurrency
control protocols, which can be used to support applications with real-time and
security requirements. Ahmed and Vrbsky [1998] developed a secure optimistic
concurrency control protocol that makes trade-offs between security and real-
time requirements. Son et al. [2000] proposed a new scheme to improve timeli-
ness by allowing partial violations of security. Muresan et al. [2005] introduced
a novel system-on-chip architecture that prevents sensitive information from
disclosing by controlling, in real-time, the power and current consumption of

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 3, Article 20, Publication date: July 2007.

4 • T. Xie and X. Qin

an embedded system. Saputra et al. [2005] proposed an architecture used to
provide selective encryption protection for storage and processing protection to
attacks for security-sensitive data. Our work is fundamentally different from
the above approaches because ours is intended to develop a scheduling algo-
rithm, which can meet security constraints in addition to real-time require-
ments of periodic tasks running in embedded systems.

In our previous work, we proposed a family of dynamic security-aware
scheduling algorithms for clusters [Xie et al. 2005; Xie and Qin 2005b,
2006], and a grid [Xie and Qin 2005a]. These scheduling algorithms only
support aperiodic tasks and, therefore, we are motivated in this study to
propose a scheduling algorithm to improve security of a set of periodic
tasks.

3. SYSTEM MODEL

In this study, we consider periodic real-time tasks, because a variety of real-
time tasks are periodic in nature. For example, real-time tasks that receive,
process, and transmit video, audio, and images are, in most cases, periodic tasks.
It is assumed that periodic tasks are independent of one other [Thomadakis
and Liu 1999]. A periodic real-time task is modeled as a set of parameters,
e.g., Ti = (ei, pi, li, Si), where ei is the worst-case execution, pi is the period,
and li denotes the amount of data (measured in KB) to be protected. Si is a
vector of security requirements. Note that ei can be estimated by code profiling
and statistical prediction. Without loss of generality, we assume that the first
instance of Ti is ready for execution at time 0. Task Ti generates a new task
instance every pi time units, and the j th instance of Ti is invoked at time
(j − 1)pi. The deadline of the j th task instance is equal to the ready time of
the next instance, e.g., at time jpi. It is supposed that Ti, requires q security
services denoted by a vector of security-level ranges Si = (S1

i , S2
i , . . . , Sq

i), where

S j
i is the security-level range of the j th security service. Values of security

levels are normalized to the range from 0 to 1. Our scheduler is intended to
determine the most appropriate point si in space Si, e.g., si = (s1

i , . . . , sq
i), where

s j
i ∈ S j

i , 1 ≤ j ≤ q.

Since high security is achieved at the cost of performance degrada-
tion, we have to consider security overhead posed by security services.
In the following security-overhead model, we consider confidentiality, in-
tegrity, and authentication, which are three security services widely de-
ployed in embedded systems. The security-overhead model is general in the
sense that the model can be easily extended to incorporate more security
services.

Again, we assume that task Ti requires q security services provided in a
sequential order. Let ck

i j (s
k
i j) be the overhead of the kth security service for the

j th task instance, the security overhead ci j experienced by the j th instance of
Ti, can be computed using Eq. (1).

ci j =
q∑

k=1

ck
i j

(
sk
i j

)
, where sk

i j ∈ Sk
i . (1)

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 3, Article 20, Publication date: July 2007.

Improving Security for Periodic Tasks in Embedded Systems • 5

Table I. Authentication Overhead

Authentication Methods sa
i :Security Level ca

i (sa
i) :Computation Time (ms)

HMAC-MD5 0.25 90

HMAC-SHA-1 0.50 148

CBC-MAC-AES 0.75 163

Kerberos 1.0 3,060,000

The security overhead of the j th instance of Ti requesting for the
aforementioned three services can be modeled by the following equation:

ci j =
∑

k∈{a, e, g}
ck

i j

(
sk
i j

)
, sk

i j ∈ Sk
i (2)

where ce
i j (s

e
i j), cg

i j (s
g
i j), and ca

i j (s
a
i j) are overheads caused by the authentication,

confidentiality, and integrity services [Xie et al. 2005]. The authentication over-
head can be obtained from Table I [Elkeelany et al. 2002].

Based on the authentication methods’ performance, each authentication ap-
proach is assigned a normalized security level in the range (0, 1]. Since, in our
study, we consider four different mechanisms for authentication service, the
strongest one is assigned security level 1 while the security level of the weak-
est mechanism is set to 0.25 (i.e., level 0.25 implies that we use HMAC-MD5,
which is the weakest, yet fastest, method among the alternatives).

The confidentiality overhead ce
i j is computed using Eq. (3), where π e

i is the
CPU time spent in encrypting security sensitive data.

ce
i j

(
se
i j

) = π e
i se

i j , where se
i ∈ Se

i (3)

The integrity overhead can be calculated using the following equation, where
li is the amount of security sensitive data, and μg (sg

i) is a function mapping a
security level into its corresponding integrity service performance.

cg
i j

(
sg
i j

) = li

/
μg(

sg
i j

)
(4)

4. THE SASES ALGORITHM

The main goal of the proposed scheduling algorithm is to maximize security
of periodic tasks while meeting timeliness constraints. To achieve this goal,
the SASES algorithm utilizes the following function to measure the security
benefits gained by a task instance. Specifically, the security benefit of the j th
instance of task Ti is modeled as a security-level function denoted by SL: Si→
�, where � is the set of positive real numbers:

SL(si j) =
q∑

k=1

wk
i sk

i j , where 0 ≤ wk
i ≤ 1 and

q∑
j=1

wk
i = 1. (5)

where wk
i is the weight of the kth security service for task Ti. Users specify in

their requests the weights to reflect relative priorities given to the required
security services.

The scheduling decision of the j th instance of task Ti is feasible if (1) its
deadline dij = jpi can be met and (2) all the security requirements are satisfied.

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 3, Article 20, Publication date: July 2007.

6 • T. Xie and X. Qin

It has been proved that there exists a feasible schedule for a set of periodic tasks
if, and only if, there is a feasible schedule for the planning cycle of the tasks [Hou
and Shin 1997]. Note that the planning cycle p is the least common multiple
of all the tasks’ periods. Given a periodic real-time task Ti, there are p/pi

instances of Ti in a planning cycle p and the security benefit of each instance
of Ti can be calculated using Eq. (5). Thus, by adding security benefits of p/pi

instances together, we can obtain the following nonlinear optimization problem
formulation to compute the optimal security benefit of Ti in one planning cycle:

maximize SLi =
p/pi∑
j=1

q∑
k=1

wk
i sk

i j

subject to min
(
Sk

i

) ≤ sk
i j ≤ max

(
Sk

i

)
fi j < jpi, (6)

where fij is the finish time ofthe j th instance of Ti, and min (S j
i) and max (S j

i)

are the minimum and maximum security requirements of task Ti. Note that
the above express includes both security and timeliness constraints.

The SASES algorithm attempts to maximize the system’s security value de-
fined as the sum of the security levels of all the tasks. The following security
value function has to be optimized, subjecting to certain timing and security
constraints:

maximize SV =
n∑

i=1

SLi =
n∑

i=1

p/pi∑
j=1

q∑
k=1

wk
i sk

i j

subject to min
(
Sk

i

) ≤ sk
i j ≤ max

(
Sk

i

)
(7)

n∑
i=1

p/pi∑
j=1

[
ei +

q∑
k=1

ck
i

(
sk
i j

)] ≤ p (8)

fi j < jpi, (9)

where n is the number of periodic tasks in the task set and p is the planning
cycle. The first constraint encodes the fact that the security requirements have
to be met. The second constraint indicates that the total computing demand
is not allowed to exceed the available processor capacity. The last constraint
states that the deadlines must be guaranteed.

To maximize security of all tasks, SASES selects the most appropriate se-
curity levels for tasks in a way that the tasks’ deadlines and periods are un-
affected. We now propose a way of checking feasibility, which is used to verify
that whether it is possible to complete all tasks within timing constraints un-
der selected security levels. Given a set of tasks with security requirements,
the following proposition presents a necessary and sufficient feasibility check.

THEOREM 1. Given a task set T={T1, . . . , Tn} and a set of security levels s=
{s1, . . . , sn}, all tasks can be feasibly scheduled on one processor if, and only if,

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 3, Article 20, Publication date: July 2007.

Improving Security for Periodic Tasks in Embedded Systems • 7

the total utilization is equal to or less than one. That is,

n∑
i=1

[(
ei +

q∑
k−1

ck
i

(
sk
i

))/
pi

]
≤ 1, where si = (

s1
i , s2

i , . . . , sq
i

)

PROOF. It has been proved in the necessary and sufficient feasibility check
for a task set under ideal EDF scheduling requires the total of the worst-case uti-
lizations be equal to or less than one, e.g.,

∑n
i=1

tci
pi

≤ 1 [Liu and Layland 1973],

where tci is the total execution time of the task. tci equals to ei + ∑q
k=1 c k

i (s k
i)

where
∑q

k=1 c k
i (s k

i) is the security overhead of task ti. After replacing tci by
ei + ∑q

k=1 c k
i (s k

i), we obtain the necessary feasibility test for security sensitive
tasks as

∑n
i=1 [(ei + ∑q

k c k
i (s k

i))/pi] ≤ 1.

Theorem 1 indicates that if there exists at least one feasible schedule, then
the total processor utilization should not exceed the available computing ca-
pacity. Hence, given a task set Tand a security level set s, there is no feasible

schedule for T under the security level set if
∑n

i=1 [(ei + ∑q
k−1 c k

i (s k
i))/pi] > 1.

Based on the previous theorem, it is clear that Corollary 1 holds.
Next we show that we can find a feasible schedule when the security level is

s = {(s k
1 j), . . . , (s k

nj)}, where s k
i1 = · · · = s k

ir , r = p/pi.

LEMMA 1. Given a task set T = {T1, . . . , Tn} and a set of security levels s =
{(sk

1 j), . . . , (sk
nj)}, if there exist a feasible schedule with s that maximize the security

value, then we also can find a feasible schedule with s′ = {(s′k
1 j), . . . , (s′k

nj)}(s′k
i1 =

· · · = s′k
ir = s′k

i = (
∑r

j=1 s k
i j)/r, r = p/pi, 1 ≤ i ≤ n, 1 ≤ k ≤ q) that can also

maximize the security value.

PROOF. As a premise ∀1 ≤ j ≤ r : min (Sk
i) ≤ sk

i j ≤ max (Sk
i).

Because s′k
i is the mean of sk

i1, . . . , sk
ir , s′ = {(s′k

1 j), . . . , (s′k
nj)} satisfies the

security constraint (see Expression 7). Since for all i ∈ [1, n] we have∑r
j=1

∑q
k=1 c k

i (s k
i j) = ∑r

j=1

∑q
k=1 ck

i (s′k
i j) = r

∑q
k=1 s′k

i , it is clear that substitut-

ing s′ = {(s′k
1 j), . . . , (s′k

nj)} for s = {(sk
1 j), . . . , (sk

nj)} will not affect the capac-

ity constraint (see Expression 8). In addition, replacing substituting s =
{(sk

1 j), . . . , (sk
nj)} by s′ = {(s′k

1 j), . . . , (s′k
nj)} will not decrease the security value.

Therefore, a feasible schedule with the security level set s′ = {(s′k
1 j), . . . , (s′k

nj)}
can optimize the security value.

The following theorem proves that given a task set Tand a security
level set s, there exists an optimal feasible schedule where the security
level of the kth security service of the ith task is a constant at every in-
stance.

THEOREM 2. Given a task set T = {T1, . . . , Tn} and a set of security levels
s = {s1, . . . , sn}, there exists a feasible schedule, where (1) the security value is
optimized, and (2) the security level of the kth security service of Ti is constant
at every instance, e.g., sk

i j = sk
i j ′ = sk

i , where j 	= j ′ and min(Sk
i) ≤ sk

i ≤ max

(Sk
i).

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 3, Article 20, Publication date: July 2007.

8 • T. Xie and X. Qin

PROOF. First we prove that the schedule is feasible. The capacity con-
straint is satisfied, e.g.,

∑n
i=1

∑p/pi
j=1 [ei + ∑q

k=1 ck
i (sk

i j)] ≤ p, and this is equiva-

lent to
∑n

i=1 [(ei + ∑q
k−1 ck

i (sk
i))/pi] ≤ 1, where si = (s1

i , s2
i , . . . , sq

i). It indicates
that an ideal EDF scheduling can be used to generate a feasible schedule for
the task set, where the security level of the kth security service of Ti is con-
stant at every instance. Therefore, the timing constraint (see Expression 9) is
satisfied. In addition, Lemma 1 shows that we can manage to find an optimal
schedule where the security level of kth security service of Ti is constant at ev-
ery instance. In conclusion, we prove that there is an optimal feasible schedule
where the security level of the kth security service of Ti is a constant at every
instance.

Theorem 2 reveals that finding appropriate security levels of security ser-
vices of each task can maximize security of a task set. Thus we have the follow-
ing corollary.

COROLLARY 1. Given a task set T = {T1, . . . , Tn} and a set of security levels
s = {(sk

1 j), . . . , (sk
nj)}, the objective function of the SASES scheduling algorithm is:

maximize SV =
n∑

i=1

SLi =
n∑

i=1

q∑
k=1

wk
i sk

i (10)

subject to min
(
Sk

i

) ≤ sk
i ≤ max

(
Sk

i

)
(11)

n∑
i=1

{
p
pi

[
ei +

q∑
k=1

ck
i

(
sk
i

)]}
≤ p (12)

In light of Corollary 1, we are in a position to present a scheduling algorithm
for periodic tasks with security constraints. To efficiently maximize security
of a task set, SASES judiciously distributes the slack time among an array of
security services for the tasks. Since it is imperative to give higher priorities
to security services with high weights and low security overhead, we define a
benefit–cost ratio function θk

i measuring the increase of security level by unit
security overhead. That is,

θk
i = wk

i �sk
i

/(
ck

i

(
sk
i + �sk

i

) − ck
i

(
sk
i

))
, for the kth service of task i (13)

where the numerators represent the weighted increase in the security level,
whereas the denominators indicate the corresponding increase in security over-
head.

SASES intentionally selects the best candidate security service of a task
with the highest benefit–cost ratio. The best candidate is chosen, based on the
following expression, which suggests that raising the security level of the k’th
service for task Ti′ can ultimately achieve maximized security.

θk′
i′ = max

1≤i≤n,1≤k≤q

{
θk

i

}
(14)

An overview of the SASES algorithm is shown in Figure 1. SASES
aims at maximizing quality of security under the timing constraints (see

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 3, Article 20, Publication date: July 2007.

Improving Security for Periodic Tasks in Embedded Systems • 9

Fig. 1. The SASES scheduling algorithm for periodic tasks.

Expression 11). In an effort to meet both timeliness and security requirements,
SASES first attempts to satisfy the timeliness constraints by setting all se-
curity levels to the minimal values of the security requirements. In doing so,
SASES can maintain a high schedulability, which reflects a strong ability of
guaranteeing deadline constraints.

If the available computing capacity is exceeded, Step 2 fully utilizes the
slack time to accommodate high security levels provided that the real-time
requirements are met. Step 2.1 gives the highest priority to a security service
and a task with the largest benefit–cost ratio (see Expression 13), distributing
the slack time on the most appropriate task. To optimize the security levels of
the tasks, Steps 2.2 makes an effort to increase security levels of the selected
security service for the task chosen in Step 2.1. The schedule of all the instances
of the selected task are updated in accordance with the increased security level
(see Step 2.2.2), because start times of the instances largely depend on how
the slack time is distributed. Before the schedule feasibility is analyzed using
Theorem 1, Step 2.4 calculates the system utilization. The time complexity of
SASES is given as follows.

THEOREM 3. The time complexity of SASES is O(h(nq + p/min
1≤i≤n

(pi))), where

h is the number of times Step 2 is repeated, q is the number of security services,
and p is the planning cycle.

PROOF. Step 1 takes time O(nq) to initialize the security levels of all the
tasks. The time complexity of selecting the most appropriate security service
of a task is O(nq) (see step 2.1). Step 2.2.2 takes time O(p/min

1≤i≤n
(pi)) to up-

date the schedule for the instances of the selected tasks. The time complexity

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 3, Article 20, Publication date: July 2007.

10 • T. Xie and X. Qin

Table II. Time Complexities of the Four Algorithms

Algorithms Time Complexity

minsEDF O(nq)

maxsEDF O(nq)

rndsEDF O(nq)

SASES O(h(nq + p/min
1≤i≤n

(pi)))

of Step 2, is O(nq + p/min
1≤i≤n

(pi)). Therefore, the time complexity of SASES is

O(nq + h(nq + p/min
1≤i≤n

(pi))) = O(h(nq + p/min
1≤i≤n

(pi))).

5. EXPERIMENT RESULTS

In the previous section, we proposed the SASESalgorithm, which integrates
security requirements into task scheduling for embedded systems. We imple-
mented a simulator to evaluate the performance of SASES using synthetic
workload and a real-world application.

We compare the proposed SASES with three baseline algorithms, which are
variants of EDF. Throughout this section, the baseline algorithms are referred
to as minsEDF, maxsEDF, and rndsEDF. Note that the baseline algorithms are
intended to schedule periodic tasks with security constraints. However, these
algorithms fail in optimizing security of periodic tasks. The baseline algorithms
are summarized as follows.

1. minsEDF: The scheduler selects the lowest security level of each security
services required by a task. Thus, for the kth security service of Ti, the
following equation is always held: svl

i = min{Svl
i }.

2. maxsEDF: The scheduler intentionally chooses the highest security level for
each security requirement posed by each task. This fact can be encoded by
the following expression: ∀Ti, 1 ≤ k ≤ q : sk

i = max{Sk
i }.

3. rndsEDF: rndsEDF randomly picks a value within the security level range
for each requested security service of a task. Formally, the following expres-
sion is held in rndsEDF: ∀Ti, 1 ≤ k ≤ q : sk

i = random{Sk
i }.

The time complexities of the three baseline algorithms are O(nq) (see The-
orem 3) because each of them only needs to execute an initialization step like
Step 1 and ignores all the rest of the steps (see Figure 1). Table II lists the
time complexities of all four algorithms evaluated in this section. Since h and
p/min

1≤i≤n
(pi) (see Theorem 3), are all bounded values decided by a particular em-

bedded system and the SASES algorithm is required to be executed only once to
generate a feasible schedule; the time overhead of SASES is acceptable under
most situations.

This section is organized as follows. Section 5.1 briefly describes the simula-
tor. Section 5.2 is to examine the performance improvements of SASES over the
three baseline algorithms. In Section 5.3, we will study the performance sensi-
tivity of SASES to CPU capacities. We evaluate the impact of security-sensitive
data size in Section 5.4. Section 5.5 presents the performance impact of security

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 3, Article 20, Publication date: July 2007.

Improving Security for Periodic Tasks in Embedded Systems • 11

Table III. Characteristics of System Parameters

Parameter Value (fixed) - (varied)

CPU Speed (100 million instructions/second or MIPS) – (100,

150, 200)

Task execution time (100 ∼ 1000) ms

Periods (10 ∼ 1000) ms

Mean size of data to be secured (60, 90, 120) KB

Required security services Confidentiality, integrity, and authentication

Weight of security services (authentication : confidentiality : integrity) – (0.5,

0.3,0.2);(0.2,0.5,0.3); (0.2, 0.3, 0.5)

Fig. 2. Performance impact of number of tasks.

service weights. Finally, we validate results from the synthetic workload using
a real application.

5.1 Simulator and Simulation Parameters

Table III summarizes the important configuration parameters of a simulated
embedded system used in our experiments.

Note that the number of tasks, size of data to be secured, CPU capacities,
and size of data to be secured are synthetically generated. However, we are
able to study impacts of these workload parameters on system performance
by controlling them as fundamental simulation parameters. Importantly, we
ran a real application to validate results from the synthetic periodic tasks. The
performance metric by which we evaluate system performance is Security Value
(see Eq. 10).

5.2 Overall Performance Comparisons

The goal of this experiment is to compare the proposed SASES algorithm
against the other three baseline schemes. Further, we tested the sensitivity
of SASES to the number of tasks. We evaluated three simulated embedded sys-
tems with 5, 10, and 15 periodic tasks, respectively. Without loss of generality,
we assume that each task requires three security services; and the mean size
of the data to be secured is 60 KB.

Figure 2 shows results for these four algorithms on an embedded system
where the CPU power is fixed at 100 MIPS. The period of each task is randomly

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 3, Article 20, Publication date: July 2007.

12 • T. Xie and X. Qin

generated in the range between 100 and 1000 ms. Similarly, the worst-case com-
putation time of each task is uniformly distributed between 10 and 1000 ms. In
addition, the computation times are adjusted in a way that the system utiliza-
tion is set to a desired value. It is assumed that each instance of a task spends
the worst-case computation time during its execution.

We observe from Figure 2a that SASES ties with maxsEDF in terms of se-
curity value when the utilization is smaller than 0.5, which implies that there
is plenty of slack time that can be used to improve security levels of the tasks.
Importantly, SASES significantly outperforms minsEDF during the utilization
range between 0.1 and 0.5. It is observed that the performance of rndsEDF
is not stable, because it always randomly selects security levels for each task,
meaning that its performance is unpredictable. When the utilization exceeds
0.5, maxsEDF immediately fails in generating feasible schedules; thus, its se-
curity value degraded to zero. Similarly, rndsEDF also failed to schedule the
task set with five tasks when utilization is over 0.8. This is mainly because
there is not enough slack time to be exploited to improve tasks’ security levels
when the system utilization is increased.

Figure 2b plots security values of the four algorithms under the workload
where there are ten tasks running in the embedded system. It reveals that
SASES consistently performs the four alternatives. For example, compared with
SASES, achieved improvement in security values over minsEDF and rndsEDF
by averages of 57.9 and 91.3%, respectively. This is because minsEDF and
rndsEDF are unable to employ slack times to promote security levels of tasks.
We noticed that when the utilization was larger than 0.2, maxsEDF is inca-
pable of scheduling the task set, whereas this situation only happened when
the utilization is larger than 0.4 (Figure 2a). This phenomenon can be explained
by the fact that more tasks compete with each other for the uniprocessor and,
therefore, some of tasks may miss their deadlines when maxsEDF is used to gen-
erate schedules. Such performance deterioration becomes more marked when
the system utilization is high (see Figure 2c).

Figure 2c demonstratively shows that (1) maxsEDF completely failed to
generate any feasible schedule even when utilization is set as low as 0.1;
(2) rndsEDF can only be applied to embedded systems when utilization is very
low (e.g., lower than 0.3); (3) minsEDF maintains the same performance level;
and (4) SASES delivers an excellent performance in security under workload
conditions where the system is overloaded. More importantly, when system uti-
lization increases, SASES gracefully degrades its performance, while delivering
better performance compared with minsEDF under a very heavy workload. This
is because SASES can judiciously distribute slack time among the set of tasks
to improve the quality of security. When the slack time becomes tight, SASES
lowers security levels to ensure that timing constraints can be met.

In short, SASES consistently outperforms the three alternatives in all the
three cases. SASES demonstrates an ability to deliver high performance, even
when embedded systems are overloaded. Besides, its performance is predict-
able, which is desired feature for embedded systems. These valuable character-
istics show us that SASES can be successfully applied to real embedded systems
(see Section 5.6).

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 3, Article 20, Publication date: July 2007.

Improving Security for Periodic Tasks in Embedded Systems • 13

Fig. 3. Performance impact of SDS (size of data to be secured).

5.3 Impact of Size of Data to Be Secured

In this experiment, we evaluate the performance impact of size of data to be
secured. The number of tasks is fixed to five and the CPU capacity is set to
100 MIPS. As we described in Section 5.1, each task was synthetically assigned
a block of security-sensitive data that needs to be protected from being disclosed
or tampered with. The data size influences task completion times, because the
larger the data size, the longer time is needed to protect it. To discover the
performance impact of the data size, we tested three cases where mean data
size is 60, 90, and 120 KB, respectively.

The experimental results are shown in Figure 3. Several important obser-
vations are drawn from Figure 3. First, when the data size is varied from 60
to 90 KB, the security values of SASES, rndsEDF, and maxsEDF are decreas-
ing, whereas that of minsEDF remains the same. This can be explained by
the fact that for SASES, rndsEDF, and maxsEDF, increasing security overhead
results in less slack time spend in improving security values. In many cases,
rndsEDF and maxEDF are unable to yield feasible schedules because of the
large security-sensitive data volume. For example, maxsEDF failed in schedul-
ing the task sets when the utilization exceeds 0.9 (Figure 3a), 0.7(Figure 3b),
and 0.5(Figure 3c), respectively. Interestingly, minsEDF can keep a constant
performance in all three cases, because it always uses the minimal security
level for each task. Note that minsEDF can produce feasible schedules in all
the three situations, but minsEDF exhibits very low performance in terms of
security.

Second, Figure 3 shows that SASES is sensitive to change of the data size as
the security value decreases from 0.994 to 0.86. Nevertheless, SASES continu-
ously outperforms the baseline algorithms in these three cases.

Third, it is interesting to observe that the performance improvements of
SASES over rndsEDF and maxsEDF are increased with the increasing values
of the data size. For example, SASES improves security values over maxsEDF
by 11.8, 39.2, and 93.4%. Compared with rndsEDF, the improvements are 30.7,
38.6, and 44.9%. The improvements can be attributed to the rapid perfor-
mance deterioration of rndsEDF and maxsEDF because of their incapability

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 3, Article 20, Publication date: July 2007.

14 • T. Xie and X. Qin

Fig. 4. Performance impact of CPU capacity.

of generating feasible schedules when the overhead of securing data becomes
significant. The performance degradation of SASES is more graceful than those
of the alternatives. Compared with minsEDF, the performance improvement of
SASES reduces from 107 to 79.1%, because minsEDF maintains an unchanged
security level regardless of the value of data size.

5.4 Sensitivities to CPU Capacity

To examine performance sensitivities of the four algorithms to CPU capac-
ity, we varied the CPU capacity from 100 to 200 MIPS with increments of
50 MIPS. In this set of experiments, the mean size of data to be secured is 90 KB
and the number of tasks is 15. The results reported in Figure 4 reveals that
SASES delivers better performance than the other alternatives. However, the
performance discrepancy between SASES and maxsEDF is narrowed with the
increasing CPU capacity. Figure 4 shows that SASES gradually degrades to
maxsEDF when the computing capacity of the system is increased. This is
mainly because when the system has adequate computing capacity, both SASES
and maxsEDF are enabled to select the highest security levels for periodic tasks.

Figure 4a shows that neither rndsEDF nor maxsEDF can generate feasible
schedules when there are 15 tasks sharing one 100 MIPS CPU. Conversely,
SASES can provide feasible schedules for the task set, offering high security
performance. Figure 4b indicates that SASES exhibits higher performance in
the case where the CPU capacity increases by 50%. Figure 4c demonstrates that
SASES potentially degrades to maxsEDF when the CPU capacity continuously
increases. The conclusion is that the CPU capacity can greatly boost security
performance, especially when the system is overloaded.

5.5 Impact of Security Service Weights

Recall that the security level model proposed in Section 4 is comprised of multi-
ple security levels for various security services like authentication, confidential-
ity, and integrity. Each required service of a periodic task is assigned a weight,
which reflects the priority of the service. To study the impact of security service
weights on performance of SASES, we tested three configurations of security

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 3, Article 20, Publication date: July 2007.

Improving Security for Periodic Tasks in Embedded Systems • 15

Fig. 5. Performance impact of security service weights.

service weights. In this set of experiments the data size was set to 90; the CPU
capacity is 100 MIPS.

Results presented in Figure 5 show that security service weights impose
little performance impact on SASES and maxsEDF. This is partially because
the system load is not heavy and they can achieve the maximal or near opti-
mal security performance in many cases. The second observation drawn from
Figure 5 is that the performance of minsEDF is noticeably improved when the
authentication weight is high. This result can be explained as follows. The se-
curity overhead caused by authentication is relatively lower compared with the
other two security services. Hence, minsEDF can obtain the maximal security
levels from the authentication service at the cost of little CPU time. The third
observation is that Figure 5b is very similar to Figure 5c, meaning that the
performance impact of the confidentiality service is almost identical to that of
the integrity service. This result is reasonable because the security overhead
caused by improving levels of the confidentiality service is close to the security
overhead in increasing integrity levels.

5.6 Evaluation in Real Application

To validate the results from the synthetic simulations, we evaluated the
SASES algorithm based on a real system—an automated flight control sys-
tem [Abdelzaher et al. 2000]. The motivation of this experiment is to verify
that SASES can outperform the baseline algorithms in the context of existing
embedded systems.

The simulated aircraft flies around a pattern in which it executes a takeoff
and climb, keeps a constant altitude around a rectangular course, and then
descends through final approach and landing [Abdelzaher et al. 2000]. The
mission goals are to complete the flight around the pattern and to destroy any
observed enemy targets using onboard radar and missiles. Detailed information
regarding the system, except for the size of data to be secured, can be found
in Abdelzaher et al. [2000]. Table IV shows the set of parameters present for
periodic tasks, including execution time, period, and three configurations of the
data size.

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 3, Article 20, Publication date: July 2007.

16 • T. Xie and X. Qin

Table IV. Task Model Parameters for Automated Flight Control System

Task Exec. Time (ms) Period (s) Config1 (KB) Config2 (KB) Config3 (KB)

Guidance 100 1 300 400 500

Controller 80 5 300 400 500

Slow navigation 100 1 300 400 500

Fast navigation 60 0.2 300 400 500

Missile control 500 10 300 400 500

Table V. Experimental Parameters for Automated Flight Control System

Parameter Value

CPU speed (1000, 1500, 2000)MIPS

Required security services Confidentiality, integrity, and authentication

Weight of authentication 0.2

Weight of confidentiality 0.5

Weight of integrity 0.3

Number of F-16 aircraft 1

Utilization 0.71

The automated flight control system was utilized to fly a simulated model of
an F-16 fighter aircraft. In this system all the flight control tasks—including
guidance, slow navigation, fast navigation, controller, and missile control—need
to be executed in real time to meet their deadlines. The functions of these five
periodic tasks are summarized as follows. The “guidance” task sets the refer-
ence trajectory of an aircraft in terms of altitude and heading; the “controller” is
responsible for executing the closed-loop control functions that deal with actu-
ator commands; the two “navigation” tasks read sensor values distinguished by
the required update frequency; and finally, the “missile control” task is respon-
sible for reading radar and firing missiles. These separate tasks are manda-
tory to control the aircraft during flight. It is assumed that (1) all tasks have
known bounded execution times, (2) task arrivals are independent, (3) each
task’s deadline is equal to its period, and (4) tasks are nonpreemptive in nature
[Abdelzaher et al. 2000].

Since the automated flight control system is applied in military battlefields,
where security requirements, such as data confidentiality, are mandatory, we
synthetically create different sizes of security-sensitive data during the execu-
tion of each version of the five tasks. The security requirements of each task in-
clude confidentiality, integrity, and authentication services. Each task instance
experiences security overhead determined by Eq. (1). To evaluate the perfor-
mance of SASES under various scenarios, we constructed three configurations
of the data size (see columns 4–6 in Table IV). In Config1, we chose relatively
low security levels for each task. Config2 represents medium security levels,
whereas Config3 allocates relatively high security levels to the tasks. The ex-
perimental parameters for the automated light control system are summarized
in Table V.

We conducted three experiments. In particular, the first one (Figure 6a) is
focused on the size of security-sensitive data, the second one (Figure 6b) is
intended to test the CPU capacity sensitivity of SASES in the real system, and
the third one (Figure 6c) is to verify impact of the security service weights.

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 3, Article 20, Publication date: July 2007.

Improving Security for Periodic Tasks in Embedded Systems • 17

Fig. 6. Real application experiment.

Results plotted in Figure 6 are consistent with those reported in Figures 3–5,
thereby verifying that SASES can gain performance improvements in the real
world system.

Figure 6a shows that the mean security value of SASES decreases when
the data size increases. This observation is consistent with the one drawn from
Figure 3. Similarly, Figures 6b and 6c validate the results presented in Sections
6.4–6.5. It is worth noting that SASES marginally outperforms maxsEDF in
this set of experiments. This is because (1) the system load is light (e.g., there
are only five tasks), and (2) the CPU capacity is as high as 1000 MIPS. The high
performance CPU implies that the security overhead is a nondominant part in
the overall execution time of each task. As such, maxsEDF can achieve similar
performance as SASES.

We consider the results discussed in this subsection to be a strong valida-
tion of our previous simulations, which suggest that SASES can be successfully
applied to real embedded systems. In summary, the strength of SASES can
be fully exhibited in a high workload situation, where 15 real-time tasks are
running on a uniprocessor embedded system (see Section 5.2). When the work-
load is light, SASES will be gracefully degraded to maxsEDF. This fact hints
that SASES can significantly improve security of real-world embedded systems
without extra hardware cost; this is especially true when the embedded systems
are overloaded.

6. CONCLUSIONS

This paper addressed the scheduling problem for periodic tasks with secu-
rity and timing constraints. We designed a necessary and sufficient feasibil-
ity check, which can be used to test schedulability for a set of periodic tasks
running in embedded systems. The feasibility check suggests that any periodic
task scheduler that can achieve 100% CPU utilization is capable of generat-
ing optimal schedules. We proposed a scheduling algorithm, or SASES, which
considers both security and timing requirements of periodic tasks. SASES dis-
tributes slack times among an array of security services for a set of periodic
tasks. Therefore, SASES can optimize security for embedded systems without

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 3, Article 20, Publication date: July 2007.

18 • T. Xie and X. Qin

sacrificing schedulability. We conducted extensive simulation experiments to
show that our SASES algorithm can consistently improve both security and
performance over three alternatives. Specifically, our measurements showed
that SASES achieves up to 107% improvement in security.

In our future work, we will focus on networked embedded systems, where
communication overhead and network security must be factored in. Improving
security for networked embedded systems is of critical importance, because a
vast majority of networked embedded systems are inevitably exposed to the
increasing threats from external and internal hackers. We will also develop dy-
namic scheduling algorithms for aperiodic task with various security require-
ments. A third future research direction is to extend the security overhead
model to incorporate additional security services.

REFERENCES

ABDELZAHER, T. F. AND SHIN., K. G. 1999. Combined task and message scheduling in distributed

real-time systems. IEEE Trans. Parallel and Distributed Sys., vol.10, no.11. (Nov.), 1179–1191.

ABDELZAHER, T. F., ATKINS, E. M., AND SHIN., K. G. 2000. QoS negotiation in real-time systems

and its application to automated flight control, IEEE Trans. Computers, vol. 49, no. 11, (Nov.),

1170–1183.

AHMED, Q. AND VRBSKY, S. 1998. Maintaining security in firm real-time database systems. In Proc.
14th Ann. Computer Security Application Conf.

CHENG, S. AND HUANG, Y. 2004. Dynamic real-time scheduling for multi-processor tasks using

genetic algorithm. In Proc. 28th Ann. Int’l Conf. Computer Software and Applications. 154–160.

ELKEELANY, O., MATALGAH, M., SHEIKH, K., THAKER, M., CHAUDHRY, G., MEDHI, D., AND QADDOURI, J.

2002. Performance analysis of IPSec protocol: encryption and authentication. In Proc. IEEE
Int’l Conf. Communications, New York, (April). 1164–1168.

FALLER, W. E. AND SCHRECK, S. J. 1995. Real-time prediction of unsteady aerodynamics: appli-

cation for aircraft control and maneuverability enhancement. IEEE Trans. Neural Networks 6,

6, 1461–1468.

GEORGE, B. AND HARITSA, J. 1997. Secure transaction processing in firm real-time database sys-

tems. In Proc. ACM SIGMOD Conf. (May).

GODBOLE, D. N., LYGEROS, J., AND SASTRY, S. S. 1994. Hierarchical hybrid control: an IVHS case

study. In Proc. Conf. Control and Decision. 1592–1597.

GRAJCAR, M. 2000. Conditional scheduling for embedded systems using genetic list scheduling.

In Proc. Int’l Symp. System Synthesis (Sept.). 123–128.

HOU, C.-J. AND SHIN, K. G. 1997. Allocation of periodic task modules with precedence and deadline

constraints in distributed real-time systems. IEEE Trans. Computers 46, 12, 1338–1356.

KADAYIF, I., KANDEMIR, M., KOLCU, I., AND CHEN, G. 2002. Locality-conscious process scheduling in

embedded systems. In Proc. Int’l Symp. Hardware/Software Codesign. 193–198.

KALOGERAKI, V., MELLIAR-SMITH, P. M., AND MOSER, L. E. 2000. Dynamic scheduling for soft real-

time distributed object systems. In Proc. 3rd IEEE Int’l Symp. Object-Oriented Real-Time Dis-
tributed Computing. 114–121.

KAWANO, K. AND KUDOH, J. 2001. Real-time satellite data transfer system for siberian NOAA

image database. In Proc. Int’l Symp. Geoscience and remote Sensing, vol. 5 (July). 2277–2279.

LIU, C. L. AND LAYLAND, J. W. 1973. Scheduling algorithms for multiprogramming in a hard

real-time environment. JACM 20, 1, 46–61.

MAHAFZA, B., WELSTEAD, S., CHAMPAGNE, D., MANADHAR, R., WORTHINGTON, T., AND CAMPBELL, S. 1998.

Real-time radar signal simulation for the ground based radar for national missile defense. In

Proc. the 1998 IEEE Radar Conf. (May). 62–67.

MAHESWARAN, M. AND SIEGEL, H. J. 1998. A Dynamic matching and scheduling algorithm for

heterogeneous computing systems. In Proc. the 7th Heterogeneous Computing Workshop. 57–69.

MURESAN, R., VAHEDI, H., ZHANRONG, Y., AND GREGORI, S. 2005. Security-oriented application spe-

cific architectures: power-smart system-on-chip architecture for embedded cryptosystems. In

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 3, Article 20, Publication date: July 2007.

Improving Security for Periodic Tasks in Embedded Systems • 19

Proc. 3rd IEEE/ACM/IFIP Int’l Conf. Hardware/Software Codesign and System Synthesis. 184–

189.

NILSSON, J. AND DAHLGREN, F. 1999. Improving performance of load-store sequences for transaction

processing workloads on multiprocessors. In Proc. Int’l Conf. Parallel Processing (Sept.). 246–255.

QIN, X. AND JIANG, H. 2001. Dynamic, reliability-driven scheduling of parallel real-time jobs in

heterogeneous systems, In Proc. 30th Int’l Conf. Parallel Processing, Valencia, Spain, (Sept.).

113–122.

QIN, X., JIANG, H., XIE, C., AND HAN, Z. 2000. Reliability-driven scheduling for real-time tasks

with precedence constraints in heterogeneous distributed systems. In Proc. Int’l Conf. Parallel
and Distributed Computing and Sys. (Nov.).

QIN, X., JIANG, H., AND SWANSON, D. R. 2002. An efficient fault-tolerant scheduling algorithm for

real-time tasks with precedence constraints in heterogeneous systems. In Proc. Int’l Conf. on
Parallel Processing, (Aug.), British Columbia, Canada. 360–368.

QIN, X., JIANG, H., ZHU, Y., AND SWANSON, D. R. 2003. Dynamic load balancing for I/O-intensive

tasks on heterogeneous clusters. In Proc. the 10th Int’l Conf. High Performance Computing, (Dec.).

Hyderabad, India, 300–309.

RAMAMRITHAM, K. AND STANKOVIC, J. A. 1984. Dynamic task scheduling in distributed hard real-

time system. IEEE Software, 1, 3 (July).

RAO, K. N. 1989. Security audit for embedded avionics systems. In Proc. Annual Computer
Security Applications Conference. 78–84.

RAVI, S., RAGHUNATHAN, A., KOCHER, P., AND HATTANGADY, S. 2004. Security in embedded systems:

design challenges. ACM Trans. Embedded Computing Systems, 3, 3, 461–491.

SALMERON, J., WOOD, K., AND BALDICK, R. 2004. Analysis of electric grid security under terrorist

threat. IEEE Trans. Power Systems, 19, 2, 905–912.

SAPUTRA, H., OZTURK, O., VIJAYKRISHNAN, N., KANDEMIR, M., AND BROOKS, R. 2005. A data-driven

approach for embedded security. In Proc. IEEE Annual Symp. VLSI. 104–109.

SEN, S., HOSSAIN, S. I., ISLAM, K., CHOWDHURI, D. R., AND CHAUDHURI, P. P. 2003. Cryptosystem

designed for embedded system security. In Proc. Int’l Conf. VLSI Design. 271–276.

SHAO, Z., XUE, C., ZHUGE, Q., SHA, E. H.-M., AND XIAO, B. 2004. Security protection and checking

in embedded system integration against buffer overflow attacks. In Proc. Int’l Conf. Information
Technology: Coding and Computing, vol. 1. 409–413.

SON, S. H., MUKKAMALA, R., AND DAVID, R. 2000. Integrating security and real-time requirements

using covert channel capacity. IEEE Trans. Knowledge and Data Engineering, 12, 6, 865–879.

STANKOVIC, J. A., SPURI, M., RAMAMRITHAM, K., AND BUTTAZZO, G. C. 1998. Deadline scheduling for

real-time systems—EDF and related algorithms. Kluwer Academic Publishers, Boston, MA.

SUZUKI, S., KATANE, T., SAOTOME, H., SAITO, O. 2002. Electric power-generating system using mag-

netic coupling for deeply implanted medical electronic devices. IEEE Transactions on Magnetics,
38, 5, 3006–3008.

THOMADAKIS, M. E. AND LIU, J.-C. 1999. On the efficient scheduling of non-periodic tasks in hard

real-time systems. In Proc. 20th IEEE Real-Time Systems Symp. 148–151.

VAN DIJK, L. P. L. VAN DER, WOERD, A. C. MULDER, J., ROERMUND, AND A. H. M. VAN. 1998. An

ultra-low-power, low-voltage electronic audio delay line for use in hearing aids. IEEE Journal of
Solid-State Circuits, 33, 2, 291–294.

XIE, T. AND QIN, X. 2005a. Enhancing security of real-time applications on Grids through dynamic

scheduling. In Proc. 11th Workshop Job Scheduling Strategies for Parallel Processing, (June), MA.

XIE, T. AND QIN, X. 2005b. A new allocation scheme for parallel applications with deadline and

security constraints on clusters. In Proc. 7th IEEE Int’l Conf. on Cluster Computing (Sept.),

Boston, MA.

XIE, T. AND QIN, X. 2006. SHARP: A new real-time scheduling algorithm to improve security of

parallel applications on heterogeneous clusters. In Proc. 25th IEEE Int’l Performance Computing
and Communications Conf. (Apr.), Phoenix, Arizona.

XIE, T., QIN, X., AND SUNG, A. 2005. SAREC: A security-aware scheduling strategy for real-time

applications on clusters. In Proc. the 34th Int’l Conf. Parallel Processing, (June), Norway.

ZHANG, Y. AND SIVASUBRAMANIAM, A. 2001. Scheduling best-effort and real-time pipeline application

on time-shared clusters. In Proc. Int’l Symp Parallel Architecture and Algorithm.

Received May 2005; revised January 2006; accepted March 2006

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 3, Article 20, Publication date: July 2007.

